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Abstract: This paper examines a general model of contract in multi-period settings
with both external and self-enforcement. In the model, players alternately engage in
contract negotiation and take individual actions. A notion of contractual equilibrium,
which combines a bargaining solution and individual incentive constraints, is proposed and
analyzed. The modeling framework helps identify the relation between the manner in which
players negotiate and the outcome of the long-term contractual relationship. In particular,
the model shows the importance of accounting for the self-enforced component of contract
in the negotiation process. Examples and guidance for applications are provided, along with
existence results and a result on a monotone relation between “activeness of contracting” and
contractual equilibrium values.
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1. Introduction

Many economic relationships are contractual, in that the parties negotiate and agree on matters of
mutual interest and intend for their agreement to be enforced. Enforcement comes from two sources:
external agents who are not party to the contract at hand (external enforcement) and the contracting
parties themselves (self-enforcement). Most contracts involve some externally enforced component and
some self-enforced component. When parties negotiate an agreement, they are coordinating generally
on both of these dimensions.
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In this paper, I further a game-theoretic framework for analyzing contractual settings with both
externally enforced and self-enforced components. I model a long-term contractual relationship in
which, alternately over time, the parties engage in contracting (or recontracting) and they take individual
productive actions. I discuss various alternatives in the analysis of contract negotiation and I define a
notion of contractual equilibrium that combines a bargaining solution with incentive conditions on the
individual actions. Existence results, examples, and notes for some applications are also provided.

The framework developed herein is designed to clarify the relation between the self-enforced and
externally enforced components of contract, and to demonstrate the advantages of explicitly modeling
the self-enforced component in applied research. The framework emphasizes the roles of history, social
convention, and bargaining power in determining the outcome of contract negotiation and renegotiation.
It also helps one to compare the implications of various theories of negotiation and the meaning
of disagreement.

The main points of this paper are as follows. First, self-enforced and externally enforced components
of contract may be conditioned on different sets of events, due to differences between the parties’
information and that of an external enforcer. Second, the selection of self-enforced and externally
enforced components of contract entail the same basic ingredients—in particular, the notion of a
disagreement point and relative bargaining power. Third, these ingredients are more nuanced for
self-enforcement than for external enforcement, because the implications for self-enforcement depend
on how statements made during bargaining affect the way in which the players coordinate on individual
actions later. Furthermore, because there may be multiple ways of coordinating future behavior even in
the event that the parties do not reach an agreement, there are generally multiple disagreement points.
The manner of coordination under disagreement has important implications for the agreements that the
players will reach.

Third, the connection between statements made during bargaining and future coordination can be
represented by a notion of activeness of contracting. Active contracting means that the players are able,
through bargaining, to jointly control the manner in which they will coordinate in the future. Non-active
contracting means that history and social convention are more powerful in determining the way in which
the players will coordinate in the future. Fourth, under some technical assumptions, there is a negative
relationship between activeness of contracting and the maximum attainable joint value (sum of payoffs).

1.1. MW Example

Here is an example that illustrates some of the issues in modeling both the self- and externally
enforced components of contract. Suppose that a manager (player 1) and a worker (player 2) interact
over two periods of time, as shown in Figure 1.

At the beginning of the first period, the parties engage in contract negotiation. The contract includes
vectors mhh,mhl,mlh,mll 2 R2, which specify externally enforced monetary transfers between the
manager and the worker contingent on actions they take in the second period. Each vector is of the
form m = (m1,m2), where m1 is the monetary transfer to player 1 and m2 is the transfer to player 2.
Transfers can be negative and I assume that m1+m2  0, meaning that the parties cannot create money.
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I also assume that the transfers are “relatively balanced” in that mhh
1 +mhh

2 = mhl
1 +mhl

2 = mlh
1 +mlh

2 =

mll
1 +mll

2 .1

Figure 1. Time line for the MW example.

Period 1 Contract formation, with externally
enforced component mhh, mhl, mlh, mll.

Worker selects investment I.

Period 2 Contract revision/renegotiation, where
mhh, mhl, mlh, and mll  can be changed.

Players simultaneously choose levels
of effort.

Later in the first period, the worker selects an investment I 2 {0, 1, 2, 3, 4}. The investment yields an
immediate benefit 8I to the manager and an immediate cost I2 to the worker. The manager observes I ,
but this investment cannot be verified by the external enforcer.

At the beginning of the second period there is another round of contracting, at which point the
specification of transfers may be changed. Then the parties simultaneously select individual effort
levels—“high” or “low”—and they receive monetary gains according to the following matrix:

9 + m1
hl,  m2

hlhigh

low

highM
W

17 + m1
hh,  – 1 + m2

hh

10 + m1
lh,  – 1 + m2

lh  m1
ll,  m2

ll

low

The table represents that the parties’ efforts generate revenue, which is 18 if both exert high effort,
10 if exactly one of them exerts high effort, and zero otherwise. Each party’s cost of high effort is 1.
The manager obtains the revenue, minus his effort cost, plus the transfer m1 (which can be negative).
The worker receives the monetary transfer m2 minus his effort cost. That there is a different vector m
for each cell of the table means that the external enforcer can verify the second-period effort choices of
both players.

Assume that each player’s payoff for the entire relationship is the sum of first- and second-period
monetary gains. Thus, an efficient specification of productive actions is one that maximizes the players’
joint value (the sum of their payoffs). Clearly, efficiency requires the worker to choose I = 4 in the first
period (it maximizes 8I � I2) and requires the players to select (high, high) in the second period. Note,
however, that the parties would not have the individual incentives to select (high, high) in the second
period unless mhh

1 � mlh
1 �7 and mhh

2 � mhl
2 +1; that is, (high, high) must be a Nash equilibrium of the

1 I elaborate on this assumption in Section 5, where the example is described more formally.
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matrix shown above. Furthermore, the worker has the strict incentive to choose I = 0 if the first period
is viewed in isolation. Whether efficiency, or even I > 0, can be achieved depends on the details of the
contracting process.

Before considering contractual alternatives, consider the parties’ incentives regarding their effort
choices in the second period. Any of the four effort profiles can be made a Nash equilibrium in dominant
strategies with the appropriate selection of externally enforced transfers. This is true even if one restricts
attention to balanced transfers (where no money is discarded). For example, to make “low” a dominant
action for both players, one could specify the following transfers: mhh

= mll
= (0, 0), mhl

= (�10, 10),
and mlh

= (8,�8). This is an example of forcing transfers, because the players are given the incentive
to play a specific action profile regardless of what happened earlier in the game.

I next sketch three contractual alternatives. While these are presented informally and do not cover
the full range of possibilities, they illustrate the contractual components and issues that are formally
addressed in this paper.

• Alternative 1:

The players make the following agreement at the beginning of the first period. They choose a
specification of transfers that satisfies mll

= (0, 0) and that forces (low, low) to be played in the
second period. With these transfers, the players would each obtain zero in the second period. The
players also agree that if the worker invests I = 4 then, at the beginning of period 2, they will
recontract to specify transfers that force (high, high) to be played and mhh

= (�17, 17). For any
other investment I , the players expect not to change the specification of transfers.

If this contractual agreement holds, then it is rational for the worker to select I = 4 in the first
period. If he makes this choice, he gets �16 in the first period and, anticipating recontracting to
force (high, high), he gets 16 in the second period. If he chooses any other effort level in the first
period, the worker obtains no more than zero. An efficient outcome results.

• Alternative 2:

In first-period negotiation, the players choose a specification of transfers that forces (low, low)

with mll
= (0, 0), as in Alternative 1. In the second period, the players renegotiate to pick

transfers that force (high, high) with mhh
= (�9, 9), and they do so regardless of the worker’s

first-period investment level. In other words, the outcome of second-period renegotiation is the
ex-post efficient point in which the players obtain equal shares of the bargaining surplus relative
to their initial contract. Anticipating that his second-period gains do not depend on his investment
choice, the worker optimally selects I = 0.

• Alternative 3:

The players’ initial contract specifies mhh
= mhl

= (�9, 9), mlh
= (�1, 1), and mll

= (0, 0),
which yields the following matrix of second-period payoffs:
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0, 9high

low

high     lowM
W

8, 8

9, 0 0, 0

Note that, for this matrix, (high, low), (low, high), and (low, low) are the Nash equilibria, and these
are ex post inefficient.2 The players agree that, in the event that they fail to renegotiate in the second
period, the equilibrium on which they coordinate will be conditioned on the worker’s investment
choice. Specifically, if the worker chose I � 3 then they coordinate on equilibrium (high, low),
whereas if I < 3 then they coordinate on equilibrium (low, high). That is, the disagreement point
for second-period negotiation depends on the worker’s action in the first period.

Assume that the players do renegotiate in the second period so that the efficient profile (high, high)
is achieved. The joint surplus of renegotiation is 16 � 9 = 7. Suppose that player 1 has all of the
bargaining power and thus negotiates a transfer that gives him the entire surplus. The worker
therefore gets 9 if (high, low) is the disagreement point, whereas he gets 0 if (low, high) is the
disagreement point. Clearly, with this contractual arrangement, the worker optimally selects I = 3

in the first period.

External enforcement is represented by the way in which the contract directly affects the players’
payoffs (through vectors mhh, mhl, mlh, and mll in the example). Self-enforcement relates to the way in
which the players coordinate on their individual actions, including the effort levels that they will choose
in the second period. Self-enforcement requires that these effort levels constitute a Nash equilibrium of
the “induced game” that the externally enforced transfers create.

Obviously, the self- and externally enforced components of contract interact, because, at minimum,
the externally enforced transfers influence which second-period action profiles are Nash equilibria.
In Alternatives 1 and 2, the specification of transfers forces a unique action profile in the second
period. In Alternative 3, the initial specification of transfers creates a situation in which there are three
Nash equilibria. The self-enforced component of contract specifies how the players will select among
these equilibria.

Whether a given contractual alternative is viable depends on what is assumed about second-period
contracting. Alternative 1 is viable only if renegotiation accommodates an ex post inefficient outcome
conditional on the worker failing to invest. In other words, Alternative 1 relies on fairly inactive
contracting, where the players are sometimes unable to maximize their joint value. Alternative 1 also
assumes that, if the worker invests I = 4, then the parties will bargain in a way that gives the entire
renegotiation surplus to the worker.

2 The determination of efficiency includes consideration of transfers; the profile (high, low) is inefficient because, with the
appropriate transfers, both players can be made better off if they select (high, high). That the Nash equilibria are weak
is of little consequence for the point of the example; for simplicity of exposition, this example was constructed to avoid
having to examine mixed strategy equilibria.
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Alternative 2 presumes that ex post efficiency is always reached in the renegotiation process, so there
is active contracting here. In Alternative 3, the second-period disagreement point is made a function of
first-period play, via the self-enforced component of contract. Note that this manner of conditioning
could not be achieved through the externally enforced part, because the external enforcer does not
observe the worker’s investment. Alternative 3 has active contracting in the sense that the players always
renegotiate to get the highest joint value in the second period, but history still plays a role in determining
the self-enforced component of the disagreement point.

The example shows that, to determine what the players can achieve in a contractual relationship,
it is important to model the negotiation process, to differentiate between self-enforced and externally
enforced components of contract, and to posit a level of contractual activeness. The modeling framework
developed in this paper helps to sort out these elements.

1.2. Relation to the Literature

By differentiating between the two components of contract, this paper furthers the research agenda
that seeks to (i) discover how the technological details of contractual settings influence outcomes; (ii)
demonstrate the importance of carefully modeling these details; and (iii) provide a flexible framework
that facilitates the analysis of various applications. By “technological details,” I mean the nature of
productive actions, the actions available to external enforcers, the manner in which agents communicate
and negotiate with one another, and the exact timing of these various elements in a given contractual
relationship. In other papers, I and coauthors focus on the nature of productive actions [1–3],
the mechanics of evidence production ([4,5]), and contract writing and renegotiation costs [6,7].
These papers and the present one show that the technological details can matter significantly.

This paper builds on the large and varied contract-theory literature. In many of the literature’s standard
models (such as the basic principal-agent problem with moral hazard), the self-enforced aspects of
contracting are trivial. However, there are also quite a few studies of contractual relations in which
self-enforcement plays a more prominent role. Finitely repeated games constitute an abstract benchmark
setting in which there is no external enforcement. For this setting, Benoit and Krishna (1993) [8] provide
an analysis of renegotiation. The basic idea is that, at the beginning of the repeated game, the players
agree on a subgame-perfect Nash equilibrium for the entire game, but they jointly reevaluate the selection
in each subgame. Benoit and Krishna assume that, in each period, the parties select an equilibrium on
the Pareto frontier of the set of feasible equilibria, where feasibility incorporates the implications of
negotiation in future periods.

Many papers look at the interaction of self-enforced and externally enforced components of contract
in applied settings. Prominent entries include Telser (1980) [9], Bull (1987) [10], MacLeod and
Malcomson (1989) [11], Schmidt and Schnitzer (1995) [12], Roth (1996) [13], Bernheim and Whinston
(1998) [14], Pearce and Stacchetti (1998) [15], Ramey and Watson (2001, 2002) [16,17], Baker, Gibbons,
and Murphy (2002) [18], and Levin (2003) [19]. In each of these papers, a contract specifies an externally
enforced element that affects the parties’ payoffs in each stage of their game. The parties interact over
time and may sustain cooperative behavior by playing repeated-game-style equilibria. Some of these
papers address the issue of negotiation (and renegotiation) over the self-enforced component of contract;
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this is typically done with assumptions on equilibrium selection, such as Pareto perfection, rather than
by explicitly modeling how contracts are formed. Of these papers, the most relevant to the work reported
here is Bernheim and Whinston (1998) [14]. These authors show that, even when external enforcement
can be structured to control individual actions, parties may prefer relying on self-enforcement because
it can generally be conditioned on more of the history than can externally enforced elements. This is
exactly the feature exhibited in the comparison of Alternatives 2 and 3 in the example discussed above.

The distinction of the modeling exercise herein, relative to the existing literature, is the depth of
modeling about how parties determine the self-enforced aspects of contract, as well as the range of
assumptions accommodated by the theory. Here, notions of bargaining power and disagreement points
are addressed in the context of self-enforcement. The detailed examination of negotiation yields a
foundation for “Pareto perfection” as well as the concepts used in some of my other work (Ramey and
Watson 2002 [17], Klimenko, Ramey, and Watson 2008 [20], Watson 2005, 2007 [2,3]). Furthermore, it
helps one understand the implications of various assumptions about the negotiation process, which offer
a guide for future applied work.

Part of the framework developed here was previously sketched in Watson (2002) [17], which contains
some of the basic definitions and concepts without the formalities. My analysis of negotiation over
self-enforced elements of contract draws heavily from—and extends in a straightforward way—the
literature on cheap talk, most notably Farrell (1987) [21], Rabin (1994) [22], Arvan, Cabral, and Santos
(1999) [23], and Santos (2000) [24].

The present paper is a precursor to Miller and Watson (2013) [25], which develops a notion of
contractual equilibrium for infinitely repeated games without external enforcement. The two papers
are complementary because they focus on different settings and they treat various elements at different
levels. Herein, I concentrate on environments with finite horizons, where backward induction can be used
in a straightforward way to define and construct contractual equilibria. In contrast, [25] examines settings
with infinite horizons, where a distinct set of conceptual issues arise and the analysis requires a recursive
structure. The present paper analyzes a rich class of settings with both self- and eternal enforcement,
whereas [25] looks at a stationary environment with no external enforcement. The present paper allows
for a wide range of bargaining theories and explores the notion of activeness of contracting. Miller
and Watson (2013) [25] focuses on a particular notion of disagreement and examines only bargaining
theories that predict efficient outcomes. Miller and Watson (2013) [25] contains broader results on the
relation between non-cooperative models of bargaining and cooperative solution concepts used in hybrid
models.

1.3. Outline of the Paper

The following section begins the theoretical exercise by describing single contracting problems that
include self-enforced and externally enforced components. Section 3 addresses how contract negotiation
can be modeled. This section first describes bargaining protocols to be analyzed using standard
non-cooperative theory. Assumptions on the meaning of language are described. Then non-cooperative
bargaining theories are translated into a convenient cooperative-theory form. The notion of activeness is
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discussed and it is used to define a partial ordering of bargaining solutions. Three benchmark bargaining
solutions are defined.

In Section 4, I develop a framework for analyzing long-term contractual relationships in which
the parties contract and take individual actions in successive periods of time. I analyze contractual
relationships in terms of the sets of continuation values from each period in various contingencies. The
notion of contractual equilibrium is defined and partly characterized. Section 5 contains the formal
analysis of the MW example and a repeated-game example. Section 6 provides a result on the relation
between contractual activeness and maximal joint value. Section 7 offers concluding remarks and some
notes for applications.

The appendices present technical details and existence results. Appendix A contains the details of
an example discussed in Section 3. Appendix B defines three classes of contractual relationships that
have some finite elements; existence of contractual equilibrium is proved for these classes. Appendix C
contains the proofs of the lemma and theorems that appear in the body of the paper.

2. Contractual Elements in an Ongoing Relationship

Suppose that there are two players in an ongoing relationship and that at a particular time—call it a
negotiation phase—they have the opportunity to establish a contract or revisit a previously established
contract. At this point, the players have a history (describing how they interacted previously) and they
look forward to a continuation (describing what is to come). At the negotiation phase, the players form
a contract that has two components: an externally enforced part and a self-enforced part.

The externally enforced component of their agreement is a tangible joint action x, which is an element
of some set X . For example, x can represent details of a document that the players are registering with
the court, who later will intervene in the relationship; x could be an immediate monetary transfer; or x
might represent a choice of production technology. There is a special element of X , called the default
joint action and denoted x, that is compelled if the players fail to reach an agreement.

The self-enforced component of the players’ joint decision is an agreement between them on how to
coordinate their future behavior. For example, if the players anticipate interacting in a subgame later in
their relationship, then, at the present negotiation phase, they can agree on how each of them will behave
in the subgame. The feasible ways in which the players can coordinate on future behavior are exactly
those that can be self-enforced, as identified by incentive conditions. Coordination on future behavior
yields a continuation value following the negotiation phase.

To describe the set of feasible contracts, it is useful to start by representing the players’ alternatives
in terms of feasible payoff vectors. Let Y x ⇢ R2 be the set of payoff vectors (continuation values)
on which the players can coordinate, conditional on selecting tangible joint action x. The set Y x is
assumed to embody a solution concept for future play. Defining Y ⌘ {Y x}

x2X , the contracting problem
is represented as (X, x,Y). Define

Y ⌘
[

x2X

Y x and Y ⌘ Y x

In payoff terms, the contracting problem can be thought of as a joint selection of a vector in Y , with
disagreement leading to a vector in Y .
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Some of the analysis uses the following assumption.

Assumption 1: The set Y is compact. For every x 2 X , the set Y x is nonempty. Furthermore, the set
Y is closed and satisfies Y ⇢ {y 2 R2 | �1y1 + �2y2  1} for some numbers �1, �2 > 0.

The second part of this assumption is that Y is bounded above (separated by a negatively-sloped line in
R2), assuring that arbitrarily large utility vectors are not available to the players.

It will sometimes be necessary to focus on one player’s payoffs from sets of payoff vectors such as
Y x. For any set W ⇢ R2, let W

i

denote the projection onto player i’s axis. That is, W
i

⌘ {w
i

| w 2 W}.

2.1. BoS Example

Here is a simple example that illustrates the determination of Y x. There are two players who interact
over two phases of time. The first is a negotiation phase, where the players negotiate and jointly select
tangible action x = (l,m). The component l is a “level of interaction” that can be either 1 or 2, whereas
m = (m1,m2) is a vector of monetary transfers from the set

R2
� ⌘ {m 2 R2 | m1 +m2  0}

Note that the players can transfer money between them and can throw away money. We have X =

{1, 2} ⇥R2
�. In the second phase, the players simultaneously take individual actions, with each player

choosing between “left” and “right.” The players then receive payoffs given by the following battle-of-
the-sexes matrix:

6l + m1, 3l + m2 m1, m2

m1, m2 3l + m1, 6l + m2

left

right

left right1
2

Assume that the default joint action is (1, (0, 0)), where no money is transferred and l = 1.
Self-enforcement of behavior in the second phase is modeled using Nash equilibrium. There are

three Nash equilibria of the battle-of-the-sexes game. For the matrix shown above, the two pure-strategy
equilibria yield payoff vectors (6l +m1, 3l +m2) and (3l +m1, 6l +m2), whereas the mixed-strategy
equilibrium yields (2l +m1, 2l +m2). Thus, in this example, we have for any m 2 R2

�:

Y (1,m)
= {(6 +m1, 3 +m2), (3 +m1, 6 +m2), (2 +m1, 2 +m2)}

and
Y (2,m)

= {(12 +m1, 6 +m2), (6 +m1, 12 +m2), (4 +m1, 4 +m2)}
The set Y is given by the shaded region in Figure 2, which shows the intersection with the

positive quadrant.
The figure also shows the three points composing Y (1,(0,0)) ⌘ Y and the three points composing

Y (2,(0,0)).
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Figure 2. Y for the BoS example.
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2.2. More on the MW Example

For another illustration of how to construct Y x, consider the manager-worker example from the
Introduction. Imagine that the parties are negotiating at the beginning of the second period, in the
contingency in which they had selected mhh

= mhl
= (�9, 9), mlh

= (�1, 1), and mll
= (0, 0) in the

first period (recall the description of Alternative 3 in the Introduction).
The parties’ tangible joint action at the beginning of the second period is a new selection of transfers

to supercede those chosen in the first period. Call the second period selections m̂hh, m̂hl, m̂lh, and m̂ll.
The default action specifies m̂hh

= m̂hl
= (�9, 9), m̂lh

= (�1, 1), and m̂ll
= (0, 0). Recall that the

matrix induced by these default transfers is:

0, 9high

low

high     lowM
W

8, 8

9, 0 0, 0

Thus, noting the three Nash equilibria of this matrix, we have

Y = {(9, 0), (0, 0), (0, 9)}

As for the set Y , note that the greatest joint payoff attainable in the second period is 16. Further, for any
vector y = (y1, y2) with y1+y2  16, there is a specification of transfers such that (high, high) is a Nash
equilibrium, 17 + m̂hh

1 = y1, and �1 + m̂hh
2 = y2. This implies that

Y = {y 2 R2 | y1 + y2  16}

The sets Y and Y , intersected with the positive quadrant, are pictured in Figure 3.
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Figure 3. Y for the MW example in a second-period contingency.
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3. Modeling Contract Negotiation and Activeness

Interaction in the negotiation phase leads to some contractual agreement between the players, which
we can represent by a joint action x and a continuation value y 2 Y x. The negotiation process
can be modeled using a non-cooperative specification that explicitly accounts for the details of the
negotiation process. For example, we could assume that negotiation follows a specific offer-counteroffer
or simultaneous-demand protocol. This approach basically “inserts” into the time line of the players’
relationship a standard non-cooperative bargaining game.

For an illustration, consider the ultimatum-offer bargaining protocol whereby player 1 makes an offer
to player 2 and then player 2 decides whether to accept or reject it, ending the negotiation phase. Because
the players are negotiating over both the tangible action x and the intangible coordination of their future
behavior, player 1’s “offer” comprises both of these elements. Because the sets Y x represent (in payoff
terms) the feasible ways in which the players can coordinate future behavior, we can describe an offer
by a tuple (x, y). Translated into plain English, (x, y) means “I suggest that we take tangible action x

now and then coordinate our future behavior to get payoff vector y.”
If an offer is accepted by player 2, then x is externally enforced. Note, however, that “y” is simply

cheap talk. When player 1 suggests coordinating to obtain payoff vector y and player 2 says “I accept,”
there is no externally enforced commitment to play accordingly. In fact, the players could then coordinate
to achieve some other payoff vector. Furthermore, there is no requirement that (x, y) satisfy y 2 Y x;
a player can say whatever he wants to say.

Because y is cheap talk, there are always equilibria of the negotiation phase in which this intangible
component of the offer is ignored; in other words, the players’ future behavior is not conditioned on what
they say to each other in the negotiation phase (other than through the externally enforced x).3 In such

3 For example, the parties may say to each other that, at some later time, they will coordinate on the individual-action profile
a that leads to value y, whereas they both anticipate actually coordinating on a0.
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equilibria, there is a sense in which the players are not actively negotiating over how to coordinate their
future behavior. Rather, some social convention or other institution is doing so. To model more active
negotiation, we can proceed by combining standard equilibrium conditions with additional assumptions
on the meaning of language. These additional requirements can be expressed as constraints on future
behavior conditional on statements that the players make in the negotiation phase. Farrell (1987) [21],
Rabin (1994) [22], Arvan, Cabral, and Santos (1999) [23], and Santos (2000) [24] conduct such an
exercise for settings without external enforcement.4 This section builds on their work and offers the
straightforward extension to settings with external enforcement.

3.1. Bargaining Protocols

To formalize ideas, I begin with some general definitions. I assume that the negotiation phase is
modeled using standard noncooperative game theory.

Definition 1: A bargaining protocol � consists of (i) a game tree that has all of the standard elements
except payoffs; (ii) a mapping  from the set of terminal nodes N of the game tree to the set X; (iii) a
partition {NA, ND} of N ; and (iv) a function ⌫ :NA ! R2.

The mapping  identifies, for each path through the tree, a tangible action from X that the players have
selected. Reaching terminal node n implies that  (n) will then be externally enforced. Although no
payoff vector is specified for terminal nodes, it is understood that if players reach terminal node n

in the negotiation phase then their behavior in the continuation leads to some payoff in Y  (n).
Note that a well-defined extensive-form game can be delineated by assigning a specific payoff vector
to each terminal node of �.

The additional structure provided by items (iii) and (iv) in the definition is helpful in distinguishing
between “agreement” and “disagreement” outcomes of the bargaining protocol. The idea is that we can
label some outcomes as ones where agreements are presumed to have been made. The others are labeled
as disagreement outcomes (an impasse in bargaining).

The set NA comprises the terminal nodes at which the players have reached an agreement, whereas
ND comprises the terminal nodes at which the players have not reached an agreement. Nodes in ND

must specify x, because agreement is required for the players to select some other joint action. Thus,
 (n) = x for all n 2 ND.

The function ⌫ associates with each terminal node in NA the continuation payoff vector that was
verbally stated in the players’ agreement. That is, if bargaining ends at terminal node n 2 NA, then
we say that the offer of ( (n), ⌫(n)) = (x, y) was made and accepted. Note that ⌫(n) is essentially
cheap talk.

Consider, as an example, the ultimatum-offer protocol in which player 1 makes an offer and
player 2 accepts or rejects it. For this game tree, each terminal node represents a path consisting of
player 1’s offer (x, y) and player 2’s response (“accept” or “reject”). We have  (x, y; accept) = x and

4 See also Farrell and Rabin (1996) [26].
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 (x, y; reject) = x for every x 2 X and y 2 R2. That is, if player 2 accepts (x, y) then external
enforcement of x is triggered; otherwise, the default action x occurs. Furthermore,

NA
= {(x, y; accept) | x 2 X, y 2 R2}

and ⌫(x, y; accept) = y. That is, if player 1’s offer of (x, y) is accepted by player 2, then the players
have identified the continuation payoff y. Remember, though, that y is not necessarily a feasible payoff
vector in the continuation.

3.2. Equilibrium Conditions and Activeness Refinements

An equilibrium in the negotiation phase is a specification of behavior that is rational given some
feasible selection of future behavior.

Definition 2: Take a bargaining protocol � and let s be a strategy profile (mixed or pure) for this
extensive form. Call s an equilibrium of the negotiation phase if there is a mapping 's

: N ! R2

such that (i) 's

(n) 2 Y  (n) for every n 2 N ; and (ii) s is a subgame-perfect equilibrium in the extensive
form game defined by � with the payoff at each node n 2 N given by 's

(n).5 Call y⇤ an equilibrium
negotiation value if it is the payoff vector for some equilibrium of the negotiation phase.

Implied by the domain of 's is that the behavior in the negotiation phase becomes common knowledge
before the players begin interacting in the continuation. Clearly, studying equilibrium in the negotiation
phase is equivalent to examining a subgame-perfect equilibrium in the entire game (negotiation phase
plus continuation); here, I am simply representing post-negotiation interaction by its continuation value.

Assumptions about the meaning of language can be viewed as constraints on the function 's in the
definition of equilibrium of the negotiation phase. It may be natural to assume that if a player accepts an
offer (x, y) and if y 2 Y x (that is, y is consistent with x), then the continuation value y becomes focal
and the players coordinate their future behavior to achieve it. This is expressed by

Agreement Condition: Equality 's

(n) = ⌫(n) holds for all n 2 NA satisfying ⌫(n) 2
Y  (n).

We could also make an assumption about the continuation value realized when the players fail to
agree. One such condition is that the players share responsibility for disagreement in the sense that
the continuation value does not depend on how the players arrived at the impasse.

Disagreement Condition: There is a vector y 2 Y such that 's

(n) = y for all n 2 ND.

Miller and Watson (2013) call this “no fault disagreement” and base their construction of contractual
equilibrium on this assumption about disagreement.

The Agreement and Disagreement Conditions are added to the conditions on 's in Definition 2.
To refer to the resulting equilibrium definitions, I use the language “equilibrium negotiation value under
[the Agreement Condition, the Disagreement Condition, or both].”

5 One could use something other than subgame perfection for condition (ii), but subgame perfection is suitable for my
purposes herein.
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Even with the Agreement and Disagreement Conditions, the disagreement value y is an arbitrary
vector that can depend on the players’ history of interaction. One can imagine that y is selected by
a previous agreement between the players or by some social norm—either way, taken as given by the
players in the current negotiation phase. In contrast, one can imagine a more active form of negotiation
in which communication in the current negotiation phase determines how the players coordinate their
future behavior when they disagree.6

Here is a story for how y may be decided in the current negotiation phase. In the event that bargaining
ends at an impasse, there is one more round of communication in which “Nature” selects one of the
players to make a final declaration about how they should coordinate their future behavior. Assume
that Nature chooses player 1 with probability ⇡1 and player 2 with probability ⇡2. Also suppose, along
the lines of The Agreement Condition, that the declaration becomes focal, so that the players actually
coordinate appropriately. Then, when player i gets to make the final declaration, he will choose the
continuation value ŷi 2 Y satisfying ŷi

i

= maxY
i

. (Recall that Y
i

is the projection of Y onto player i’s
axis.) For simplicity, assume that

ŷi
j

= max{y
j

| (ŷi
i

, y
j

) 2 Y }

so that player i is generous where it does not cost him. The disagreement value is thus given by:

Random-Proposer Disagreement Condition: The disagreement value is the constant
vector y ⌘ ⇡1ŷ

1
+ ⇡2ŷ

2.

The vectors ŷ1 and ŷ2 exist by Assumption 1.

3.3. Example: BoS with the Ultimatum-Offer Protocol

To illustrate the implications of the Agreement, Disagreement, and Active Disagreement Conditions,
I consider as an example (i) the BoS contracting problem described in Section 2.1; and (ii) the
ultimatum-offer protocol described at the end of Section 3.1. Recall that Figure 2 shows sets Y and Y for
the BoS contracting problem. What follows are brief descriptions of the sets of equilibrium negotiation
values with and without these conditions being imposed. See Appendix A for more details.

The set of equilibrium negotiation values (without the Agreement, Disagreement, and Active
Disagreement Conditions) is given by the shaded region in the left picture shown in Figure 4.

The points with y1 < 3 are not equilibrium values because, by making an offer of x = (2, m̃) with
m̃1 � �1 and m̃2 > �2, player 1 guarantees himself a payoff of at least 3. This is because (i) if player 2
accepts such an offer, then, regardless of which continuation value they coordinate on, player 1 gets
at least

minY
(2,m̃)
1 = 4 + m̃1 � 3,

and (ii) player 2 could rationally reject such an offer only if he anticipates getting at least 4+m̃2 himself,
but the two such points in Y yield at least 3 to player 1. The asymmetry of the set of equilibrium

6 There is an important philosophical issue regarding the essential role of a social norm even with the most active of
contracting, which I discuss in Section 4.
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negotiation values follows from the asymmetry of the bargaining protocol—that player 1 makes the
ultimatum offer.

Figure 4. Equilibrium negotiation values in the BoS example.
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The set of equilibrium negotiation values is reduced under the Agreement Condition, as shown in
the right picture of Figure 4. Here, player 1 can guarantee himself a value of 12 � " by offering
x = (2, (�", ")) and y = (12 � ", 6 + ") for any small " > 0; such an offer must be accepted
by player 2 in equilibrium. Points in the shaded region can be supported with appropriately chosen
disagreement values.

The set of equilibrium negotiation values is further reduced under both the Agreement, Disagreement
and Disagreement Conditions, as shown in Figure 5.

Figure 5. More equilibrium negotiation values in the BoS example.
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With these conditions imposed, we have the standard outcome of the ultimatum-offer-bargaining
game as though all aspects of the continuation value were externally enforced and the disagreement value
were some fixed element of Y . In the left picture of Figure 5, the set of equilibrium negotiation values
(for various y 2 Y ) comprises the three points indicated on the efficient boundary of Y . The picture
on the right shows the single equilibrium negotiation value that results when the Random-Proposer
Disagreement Condition is added; the case pictured has ⇡2 2 (1/2, 1).

3.4. Cooperative-Theory Representation

Whatever are the assumed bargaining protocol and equilibrium conditions, their implications can be
given a cooperative-theory representation in terms of a bargaining solution S that maps contracting
problems into sets of equilibrium negotiation values. That is, for a contracting problem (X, x,Y),
S(X, x,Y) is the set of equilibrium negotiation values for the given bargaining protocol and equilibrium
conditions. It can be helpful to specify a bargaining solution S directly (with the understanding of what
it represents) because this allows the researcher to focus on other aspect of the strategic situation without
getting bogged down in the analysis of negotiation. One can then compare the effects of imposing various
conditions regarding negotiation by altering the function S.

On the technical side, note that S(X, x,Y) is a subset of the convex hull of Y . For some applications,
it will be the case that S(X, x,Y) is contained in Y . Points in the convex hull of Y that are not in
Y are possible in settings in which the bargaining protocol involve moves of Nature or where players
randomize in equilibrium. One can also use the definition of S to model situations in which the players
select lotteries over joint actions and continuation values. In these cases, an equilibrium negotiation
value may be a nontrivial convex combination of points in Y .

3.5. Representation of Contractual Activeness

When a bargaining solution produces more than one negotiation value (a nontrivial set) for a given
contracting problem, then there is a role for social convention and history to play in the selection of the
outcome. The selection may also be determined by a previous contract that the players formed. A larger
set of negotiation values implies greater scope for social convention, history, and prior agreements, and so
contracting is “less active.” In more active contracting, contract selection depends mainly on the current
technology of the relationship (including the bargaining protocol and the future productive alternatives)
rather than on historical distinctions that are not payoff relevant from the current time. More active
contracting is associated with a smaller set of negotiation values.

One can thus compare the relative activeness of two different bargaining solutions in terms of
set inclusion.

Definition 3 Let S and ˆS be bargaining solutions that are defined on the set of contracting problems
that satisfy Assumption 1. Bargaining solution ˆS is said to represent more active contracting than does
S if, for every contracting problem (X, x,Y) that satisfies Assumption 1, ˆS(X, x,Y) ⇢ S(X, x,Y).

In this case, S imposes fewer constraints on the outcome of the negotiation process and it allows a
greater role for social convention, history, and prior agreements to play in the selection of the outcome.



Games 2013, 4 473

For example, if the players would arrive at a particular contracting problem (X, x,Y) in two or more
different contingencies (from two different histories), then S affords wider scope for differentiating
between the histories than does S 0.

Note that activeness of contracting relates to assumptions about the meaning of verbal statements that
the players make during bargaining, such as the Agreement and Disagreement Conditions described in
Section 3.2. Stronger assumptions about the relation between language and expectations imply more
active contracting. Recall that this is particularly relevant for the self-enforced component of contract,
because, on this dimension, a verbal statement of agreement does not force the parties to subsequently
act accordingly (as external enforcement can do) and there are various possibilities for the link between
the parties’ verbal agreement and the way they actually coordinate. Language is more meaningful, and
contracting more active, when statements of agreement—at least those that are consistent with individual
incentives—induce the parties to comply.

3.6. Benchmark Solutions

Various bargaining protocols and equilibrium conditions can be compared on the bases of (i) the
extent to which they support outcomes that are inefficient from the negotiation phase; and (ii) the extent
to which they represent the players’ active exercise of bargaining power. In this subsection, I describe
three benchmark solutions that collectively represent a range of possibilities on these two dimensions.

The first benchmark solution is defined by the set of equilibrium negotiation values for the
Nash-demand protocol without the conditions stated in Section 3.2. In the Nash-demand protocol, the
players simultaneously make demands (x1, y1) and (x2, y2), and this vector of demands defines the
terminal node of the bargaining protocol. Equal demands are labeled as agreements; otherwise the
outcome is disagreement. If the demands are equal, so x1

= x2 and y1 = y2, then  ((x1, y1), (x2, y2)) =

x1
= x2 is compelled by the external enforcer and the stated continuation value is ⌫((x1, y1), (x2, y2)) =

y1 = y2. Otherwise, the default joint action x is compelled. It is easy to verify that the equilibrium
negotiation values in this case are given by

SND
(X, x,Y) ⌘ {y⇤ 2 Y | y⇤1 � minY 1 and y⇤2 � minY 2}

The superscript “ND” here denotes “Nash demand.”
The second and third benchmark solutions refer to the set of equilibrium negotiation values for

a standard K-round, alternating-offer bargaining protocol under the Agreement and Disagreement
Conditions. I assume no discounting during the bargaining protocol, but there is random termination.

In any odd-numbered round, player 1 makes an offer to player 2, who then decides whether to accept
or reject it. If player 2 accepts, then the negotiation phase ends. If player 2 rejects player 1’s offer,
then a random draw determines whether the negotiation phase ends or continues into the next round;
the latter occurs with probability e��⇡1 . In an even-numbered round, the players’ roles are reversed and
e��⇡2 is the probability that the following round is reached in the event that player 1 rejects player 2’s
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offer. I assume that the values ⇡1 and ⇡2 are nonnegative and sum to one, and I write ⇡ = (⇡1, ⇡2).
The negotiation phase ends for sure after round K. Let �A

(K, ⇡,�) denote this bargaining protocol.7

Functions  and ⌫ are defined as in the first benchmark solution. For any agreement outcome,
functions  and ⌫ give the agreed upon values of x and y. At any disagreement node n, where bargaining
ended without a player accepting an offer, we have  (n) = x.

It is easy to verify that, under Assumption 1, there is an equilibrium of the negotiation phase
�

A
(K, ⇡,�) that satisfies the Agreement and Disagreement Conditions and that has agreement in the

first round.8 For any disagreement value y 2 Y , let Q(y,�) be defined as the limit superior of the set of
implied equilibrium negotiation values as K ! 1. Define the limit in terms of the Hausdorff metric, so
that y⇤ 2 Q(y,�) if and only if there is a sequence of vectors {yK}1

K=1 such that (i) yK is an equilibrium
negotiation value for �A

(K, ⇡,�) under the the Agreement and Disagreement Conditions; and (ii) {yK}
has a subsequence that converges to y⇤.

Consider the limit superior of Q(y,�) as the “time between offers” � converges to zero:

Q(y) ⌘ lim

�!0
Q(y,�).

Q(y) ⇢ Y is implied by Assumption 1 and by the construction of Q. I define the second benchmark
bargaining solution to be the set that results by looking at all feasible disagreement values:

SAA
(X, x,Y) ⌘

[

y2Y

Q(y).

For the third benchmark solution, I add the Random-Proposer Disagreement Condition to focus on
the “active disagreement” vector:

SAD
(X, x,Y) ⌘ Q(⇡1ŷ

1
+ ⇡2ŷ

2
).

By taking advantage of Binmore, Rubinstein, and Wolinsky’s (1986) [27] analysis, we can show that,
assuming Y is convex, Q(y) is the generalized Nash bargaining solution evaluated on bargaining set Y ,
with disagreement value y, and with the players’ bargaining weights given by ⇡.

Lemma 1: If Y is convex then Q(y) = argmax

y 2 SPB(Y )

y � y

(y1 � y
1
)

⇡1
(y2 � y

2
)

⇡2 .

Here, SPB(Y ) denotes the strong Pareto boundary of the set Y . Note, therefore, that if Y is convex
then bargaining solution SAA is a subset of, and bargaining solution SAD is a point on, the strong Pareto
boundary of Y .

7 One could have K = 1, but the case of a finite K has perhaps a more straightforward interpretation whereby the
continuation of the relationship must start at �K units of time from when negotiation begins.

8 For some nonconvex examples of Y , one can find mixed equilibria and/or equilibria in which delay occurs. I ignore these.
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4. Contractual Relationships

In this section, I develop a framework for examining multi-period contractual relationships. Each
period consists of two phases of time: the negotiation phase and the individual-action phase. In
the negotiation phase, the players make a joint contracting decision. Interaction in the negotiation
phase is modeled as described in the preceding sections. In the individual-action phase, the players
make independent decisions that are modeled as non-cooperative interaction. I constrain attention to
finite-horizon settings in which, in each negotiation phase, all payoff-relevant information about future
interaction is commonly known.

4.1. Formal Description of the Game with Joint Actions

Suppose that two players interact over a finite number of discrete periods. At the beginning of each
period, a state variable z represents the payoff-relevant aspects of the players’ history as well as any
events on which the players are assumed to condition their behavior. With common knowledge of z,
the players first select a joint action x. Then, simultaneously and independently, the players choose
individual actions a1 and a2 (for players 1 and 2, respectively) and an exogenous random draw a0 is
realized. Write a = (a0, a1, a2) as the individual-action profile. At the end of the period, the players
receive payoffs given by a vector u(z, x, a). The state is then updated and interaction continues in the
next period or the game terminates.

To be more precise, fundamentals of the game include a set of states Z, a set of joint actions X , and
a set of individual-action profiles A. There is a correspondence X :Z -- X and a function x :Z ! X
such that X(z) gives the set of joint actions available to the players in a period that begins in state z, and
x(z) 2 X(z) denotes the default joint action in this state. Further, A

i

(z, x) denotes the set of feasible
individual actions for player i in a period in which z is the state and x is the joint action that the players
selected. The feasible individual-action profiles are given by

A(z, x) = A0(z, x)⇥ A1(z, x)⇥ A2(z, x)

where A(z, x) ⇢ A. Assume that Nature selects a0 according to some probability distribution ↵0(z, x)

in each period. Note that Nature’s actions and probability distribution may be influenced by the state and
joint action of the current period.

There is a transition function f : Z ⇥ X ⇥ A ! Z that defines the state in the following period as
a function of the current period’s state and actions.9 Specifically, if x and a are the actions taken in a
period that begins in state z, then z0 = f(z, x, a) is the state in the next period. There is an initial state
of the relationship zinit 2 Z in effect at the beginning of the first period. There is also a nonempty set
of terminal states Zterm ⇢ Z that mark the end of the game. A feasible path of play is a sequence
{(zt, xt, at)}T

t=1 such that

9 By making z the full history of the relationship, we have a setting of almost perfect information. From this, assumptions
about on what the players condition their behavior are achieved by restricting Z. Imperfect information can be
accommodated by specifying that the state does not fully record all of the players’ past actions; in this case, one’s attention
is limited to settings in which the events that are not common knowledge are also not payoff relevant for future interaction,
and then we are assuming public equilibrium.
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(i) z1 = zinit;

(ii) xt 2 X(zt), at 2 A(zt, xt

), and zt+1
= f(zt, xt, at)

for all t = 1, 2, . . . T � 1; and

(iii) f(zT , xT , aT ) 2 Zterm.

Assumption 2: There is a positive integer ⌧ such that every feasible path of play has T  ⌧ and at least
one feasible path has T = ⌧ .

This assumption is maintained hereinafter. It implies that Z can be partitioned into sets Z1, Z2, . . . , Z⌧+1

with the following properties. First, Z1
= {zinit} and Z⌧+1

= Zterm. Second, for each t 2 {1, 2, . . . , ⌧},
each z 2 Zt, and actions x 2 X(z) and a 2 A(z, x), we have

f(z, x, a) 2 Z t+1 ⌘
⌧+1[

k=t+1

Zk

Partitioning Z in this way facilitates backward-induction analysis.
Finally, there is a payoff function u :Z ⇥ X ⇥ A ! R2. For any given path of play {zt, xt, at}T

t=1,
the payoff vector for the entire game is the sum of per-period payoffs:

TX

t=1

u(zt, xt, at)

One can incorporate discounting by defining u and the state system appropriately.

4.2. Contractual Equilibrium

To analyze the contractual relationships described in the previous subsection, I combine a bargaining
solution S with individual incentive conditions. The former models how players select among joint
actions in the negotiation phase, whereas the latter identify Nash equilibria for the individual-action
phase in each period. The analysis is most conveniently conducted using a recursive formulation in
which we focus on within-period payoffs and continuation values.

In the recursive formulation, we posit a value correspondence V :Z -- R2 (a mapping from states to
subsets of R2) with the interpretation that, for each z 2 Z, V (z) is a set of continuation-value vectors
for the players at the start of a period in state z. For V to be consistent with the bargaining solution S, it
must be that V (z) ⌘ S(X(z), x(z),Y(z)), where (X(z), x(z),Y(z)) is the contracting problem that the
players face at the beginning of the period in state z.

In turn, Y(z) = {Y x

(z)}
x2X(z) should correctly describe the feasible continuation values over the

joint actions that are available to the players. For a specific x 2 X(z), every feasible continuation
value is supported by some (possibly mixed) action profile (↵⇤

1,↵
⇤
2) that is a Nash equilibrium in the

individual-action phase of the current period. The Nash equilibrium condition is

y
i

= E [u
i

(z, x, (a0, ai, aj)) + v
i

(f(z, x, (a0, ai, aj))) | ↵0(z, x),↵
⇤
i

,↵⇤
j

]

� E [u
i

(z, x, (a0, a
0
i

, a
j

)) + v
i

(f(z, x, (a0, a
0
i

, a
j

))) | ↵0(z, x),↵
⇤
j

]

(1)

for all a0
i

2 A
i

(z, x) and for i = 1, 2. In this expression, y
i

is player i’s continuation payoff from the
beginning of the current period and E denotes the expectation taken over Nature’s probability distribution



Games 2013, 4 477

↵0(z, x) and whatever randomizing the players do. The function v selects continuation-value vectors
for the start of the next period. These should be consistent with the behavioral theory, meaning that
v(z0) 2 V (z0). Thus, for every x 2 X(z), we have

Y x

(z) ⌘ {y 2 R2 | there exists v :Z t+1 ! R2 and (↵⇤
1,↵

⇤
2) 2 4A�0(z, x) such that

Condition (1) holds for i = 1, 2, and v(z0) 2 V (z0) for all z0 2 Z t+1}. (2)

In this expression, 4A�0(z, x) denotes the set of uncorrelated probability distributions over A1(z, x)⇥
A2(z, x).

These elements compose the notion of rational behavior.

Definition 4: Let S be a given bargaining solution. A value correspondence V : Z -- R2 is said to
represent contractual equilibrium if

(i) V (z) ⌘ {(0, 0)} for every z 2 Zterm and

(ii) for every z 2 Z \ Zterm, we have V (z) = S(X(z), x(z),Y(z)) 6= ;, where Y(z) is
defined by Equation (2).

If such a correspondence exists, say that contractual equilibrium exists.

Theorem 1: Take as given a contractual relationship and a bargaining solution S. If Assumption 2 is
satisfied and contractual equilibrium exists, then there is a unique value correspondence that represents
contractual equilibrium.

This result is a straightforward consequence of the backward-induction construction. The result is
proved in Appendix C; existence results for three classes of contractual relationships are presented in
Appendix B.

I conclude this section with notes on the meaning and interpretation of contractual equilibrium.
Suppose that, consistent with contractual equilibrium, the players actively select a continuation value
y in some state z. Note that y incorporates contractual equilibrium play in future states. For instance,
if z0 is a state that may follow from z, then continuation value y incorporates the expectation that the
players would obtain some value y0 in state z0, where y0s is itself consistent with contractual equilibrium.
Furthermore, y0 could arise specifically because the players would coordinate on disagreement point y0 in
state z0. Therefore, by selecting y in state z, the players are coordinating on specific disagreement points
for future states. In other words, an agreement in one state entails a specification of the disagreement
points for all possible future states, along with the expectation of how the players will make agreements
subject to these disagreement points. Thus, a lot is wrapped up in the joint selection of a continuation
value y.

Considering the nature of an agreement, there is a philosophical issue about the essential role of
social norms in the equilibrium context. As just discussed, the disagreement point that the players would
coordinate on in some state z must have been determined by the contract that the players made in the
previous period. But if z is the initial state then there is no previous period. So the question is: What
is the disagreement point in the first period? Clearly, if future play would be consistent with contractual
equilibrium, then the first-period disagreement point must be an element of Y x

(zinit). The point in this
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set that the players coordinate on must be determined exogenously, by some sort of social norm or other
institution. Furthermore, since the first-period disagreement point relates to disagreement points in later
periods, this institution coordinates the players’ expectations from every history in which the players had
never reached an agreement.10

5. Analysis of Examples

This section contains analysis of the MW example, an example of a repeated game with contracting,
and an example of contracting with spot transfers. These examples illustrate the procedure for
characterizing contractual equilibrium and they demonstrate how the activeness of contracting influences
the outcome.

5.1. MW Example

In this subsection, I formally elaborate the MW example from the Introduction. A state is denoted
z = (h, µ), where h is the history of individual actions to a particular period and µ is a function that tells
the external enforcer what monetary transfer to make contingent on the history; that is, following history
h, the external enforcer compels transfer µ(h) = (m1,m2), where m

i

is the amount given to player i.
Let H ⌘ H1 [H2 [H3, where

H1
= {hinit} is the set containing the initial (null) history of actions hinit,

H2
= {�} ⇥ {0, 1, 2, 3, 4} is the set of individual-action profiles in the first period (investment levels
for the worker and a null, trivial action “�” for the manager), and

H3
= {�} ⇥ {0, 1, 2, 3, 4} ⇥ {high, low}2 is the histories of individual actions through the end of the
second period.

Note that H3 includes the worker’s first-period investment choice and both players’ second-period
effort choices.

The transfer function µ maps H to R2 with the following constraints. First, recall that, in the story,
the external enforcer observes second-period effort choices but not the worker’s first-period investment.
This is represented by assuming that the transfer function is measurable with respect to the partition

H ⌘ �
H1, H2, H2 ⇥ {(high, high)}, H2 ⇥ {(high, low)}

H2 ⇥ {(low, high)}, H2 ⇥ {(low, low)} 

of H . The story also indicates that the transfer function must be relatively balanced. The interpretation
I offer for this is that the transfer is actually the sum of (i) an immediate, voluntary transfer that the
players make as they reach agreement in the negotiation phase, and (ii) a contingent transfer compelled

10 This exogenous “seed” of an equilibrium is required because contractual equilibrium is an equilibrium concept based
on sequential rationality, whereby the theory applies following periods of out-of-equilibrium behavior. Perhaps could
imagine a different theory that is based on rationalizability along histories in which agreement has not been reached. The
resulting conceptual and technical issues would be interesting but are beyond the scope of this paper.
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by the external enforcer after individual actions are taken in a given period. Furthermore, the external
enforcer only compels balanced transfers that sum to zero. I make the additional technical assumption
that transfers are contained in some set M = {m 2 R2 | m1,m2 � ��, m1 + m2  0}, where �
is arbitrarily large. To represent this idea, define X to be the subset of transfer functions of the form
µ :H ! M that are measurable with respect to H and have the following property. For t = 2, 3 and
h, h0 2 H t, µ1(h) + µ2(h) = µ1(h

0
) + µ2(h

0
).

The initial state is defined as zinit = (hinit, µ0
), where µ0 denotes the constant transfer function that

always specifies zero transfers. At the beginning of any period in state z = (h, µ), the set of feasible joint
actions is X(z) ⌘ X and the default joint action is µ. Regarding individual actions, there is no random
draw. The set of feasible individual-action profiles in the first period is given by A(zinit, µ) = {�} ⇥
{1, 2, 3, 4}. The set of individual-action profiles in the second-period is A((h, µ), µ) = {low, high}2
for all h 2 H2. The transition of the state works in the obvious way. From state z = (h, µ), where
h 2 H1 [H2, if µ is the joint action (transfer function selected) and a is the individual action profile in
the current period, then the state in the following period is z0 = (h0, µ) where h0

= (h; a) is the history
formed by appending a to h. Every state of the form z = (h, µ) for h 2 H3 is a terminal state.

On payoffs, in the first period for any a = (�, I) and µ 2 M , we have u(zinit, µ, a) = (8I,�I2) +

µ(a). Regarding the second period, take any z = (h, µ) where h 2 H2 and a 2 {low, high}2, the vector
u(z, µ, a) is given by µ(h; a) plus the vector in the cell of the matrix

9, 0high

low

M
W

17, – 1

10, – 1 0, 0

lowhigh

that is relevant for action profile a.
Minor modifications represented by this formal description of the game, relative to the description in

the Introduction, are (i) that the monetary transfers are restricted to be in some compact set and (ii) that
an externally enforced transfer can be specified for the first period in addition to those specified for the
second period. Item (i) allows an existence result from Appendix B to apply (in particular, Theorem 4);
item (ii) was left out of the description in the Introduction because it was not central to the discussion.

For convenience, given any transfer function µ, I shall let mll be the vector specified for each h 2 H3

in which (low, low) is the individual-action played in the second period, I let mhl be the vector specified
for each h 2 H3 in which (high, low) is the individual-action played in the second period, and so on.
This is in accord with the notation used in the presentation of the example in the Introduction.

I next characterize contractual equilibrium and find the maximum joint value that the players can
attain, for each of the benchmark bargaining solutions SND, SAA, and SAD defined in Section 3.6.
By Theorem 4 in Appendix B, contractual equilibrium exists in the cases of SND and SAA; existence
will be obvious for the case of SAD. Write V ND, V AA, and V AD for the value correspondences that
represent contractual equilibrium for these three cases. The following analysis establishes that

max{v1 + v2 | v 2 V ND
(zinit)} = 32
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v1 + v2 = 31 for all v 2 V AA
(zinit)

and
v1 + v2 = 16 for all v 2 V AD

(zinit)

Thus, in this example, more active contracting implies a lower attainable joint value.
First consider SND. Let µ̃ denote a transfer function that forces (low, low) to be played in the second

period and has m̃ll
= (0, 0). This is the transfer function from Alternative 1 in the Introduction. Take any

h 2 H2 and let z = (h, µ̃) be any state at the start of the second period where µ̃ is the current transfer
function. Note that Y (z) = (0, 0) because, unless the transfer function is renegotiated, the players will
have the incentive to play (low, low) at the end of the period. Also note that the players can renegotiate
to pick a transfer function that forces (high, high) and arbitrarily divide or throw away the value. This
means that

B ⌘ {y 2 R2 | y1, y2 � 0, y1 + y2  16} ⇢ Y (z)

By the definition of SND, we therefore have

V ND
(z) = SND

(X(z), x(z),Y(z)) = B

In the first period, the players can select µ̃ and agree on a second-period continuation value of (0, 16)
if the worker chooses I = 4 and a value of (0, 0) if the worker chooses any I 6= 4. That is, the players
agree to coordinate on these history-dependent continuation values in the negotiation phase at the start
of the second period.

When the players anticipate coordinating in this way, player 2 has the incentive to choose I = 4 in
the first period and therefore (if no transfer is specified for period 1) the payoff from the beginning of the
game is (32,�16) + (0, 16) = (32, 0). All or part of the joint value of 32 can be transferred to player 2
by way of an additional constant transfer (in period 1, for instance). The bottom line is that

{y 2 R2 | y1, y2 � 0, y1 + y2  32} ⇢ Y (zinit)

In addition, it is not difficult to check that

Y (zinit) = {y 2 R2 | y1 � 9, y2 � 0, y1 + y2  16}

By the definition of SND, we conclude that

V ND
(zinit) = {y 2 R2 | y1 � 9, y2 � 0, y1 + y2  32}

Next consider SAA with bargaining weights given by ⇡ = (1, 0), as described in the Introduction.
Let µ̃ denote the transfer function associated with Alternative 3. That is, m̃hh

= m̃hl
= (�9, 9), m̃lh

=

(�1, 1), and m̃ll
= (0, 0). Take any h 2 H2 and let z = (h, µ̃) be any state at the start of the second

period where µ̃ is the current transfer function. Noting that

Y (z) = {(0, 0), (0, 9), (9, 0)}

and B ⇢ Y (z) (as with the previous case), and using the definition of SAA, we have

V AA
(z) = {(16, 0), (7, 9)}
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In the first period, the players can select µ̃ and agree on a second-period continuation value of (7, 9)
if the worker chooses I = 3 and a value of (16, 0) if the worker chooses any I 6= 3. That is, the players
agree to coordinate on these history-dependent continuation values in the negotiation phase at the start
of the second period. Importantly, it is the disagreement point for their second-period negotiation that
achieves history dependence.

When the players anticipate coordinating in this way, player 2 has the incentive to choose I = 3 in
the first period and therefore (if no transfer is specified for period 1) the payoff from the beginning of
the game is (24,�9) + (7, 9) = (31, 0). One can easily verify that no contract achieves a higher joint
value than 31. To do so would require a specification of second-period transfers such that (i) there are
two equilibria in the individual-action phase; and (ii) player 2’s payoffs in these two equilibria differ by
strictly more than 9. It is not difficult to calculate that, because the transfer function is constrained to be
relatively balanced (so mhh

1 +mhh
2 = mhl

1 +mhl
2 = mlh

1 +mlh
2 = mll

1 +mll
2), the maximum difference in

player 2’s payoffs in multiple equilibria of the individual-action phase is 9.
Continuing with the case of SAA, one can easily calculate that Y (zinit) = {(16, 0)}. Combining this

with the analysis of the preceding paragraph, we conclude that V AA
(zinit) = {(31, 0)}.

Finally, consider SAD, with bargaining weights given by ⇡ = (1, 0). In this case, V AD
(z) is a singleton

for every z 2 H2. Furthermore, on H2, V AD is invariant in the “h” part of the state. Thus, whatever
contract is formed in the first period, player 2’s continuation value from the beginning of the second
period does not depend on his investment choice. He optimally selects I = 0. The players can do no
better than agree to the contract of Alternative 2 in the Introduction. Player 1’s bargaining power gets
him the entire joint value, so V AD

(zinit) = {(16, 0)}.

5.2. A Sequence of Stage Games with Contracting

The next example is a simple three-period sequence of stage games with no transfers and no external
enforcement. There are no joint actions. Contracting thus relates only to the self-enforced activity.
The example demonstrates that activeness of contracting is, in general, not monotonically related to the
maximally attainable joint values.

Suppose that the individual actions and payoffs are given by the three stage-game matrices shown in
Figure 6.

Figure 6. Stage games for second example.

1, 1 0, 0

0, 0 0, 0

a1
1

a1
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a2
2a2

1

1
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1

a1
2

a2
2a2

1

1
2

4, 4 7, 10

10, 7 4, 4

a1
1

a1
2

a2
2a2

1

1
2

a1
3

a2
3

0, 0

0, 0 0, 13

13, 0

12, 12

Period 1 Period 2 Period 3
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The first stage game is played in period 1, the second in period 2, and the third in period 3. I next
describe this contractual relationship formally. Because there are no joint actions, we can leave x out
of the picture. First note that {a11, a21} ⇥ {a12, a22} is the space of individual action profiles in periods 1
and 3, whereas {a11, a21, a31} ⇥ {a12, a22, a32} is the space of individual action profiles in period 2. Next
note that the state is simply the history of action profiles, so the set of states can be defined as follows:
Z1 ⌘ {zinit},

Z2 ⌘ Z1 ⇥ {a11, a21}⇥ {a12, a22}
Z3 ⌘ Z2 ⇥ {a11, a21, a31}⇥ {a12, a22, a32}
Z4 ⌘ Zterm ⌘ Z3 ⇥ {a11, a21}⇥ {a12, a22}

and Z ⌘ [4
t=1Z

t. State transitions are given by f(z, a) = (z; a) for each z 2 Z \ Z4, where “(z; a)”
denotes the history formed by appending a to z. The definition of A(·) should be obvious. The payoff
function u is defined according to the matrices shown in Figure 6.

Consider the class of bargaining solutions S�, parameterized by � and defined as follows:

S�(X, x,Y) ⌘ {y⇤ 2 Y | there exists y 2 SPB(Y ) and y 2 Y such that

y⇤ � y and max{|y1 � y⇤1|, |y2 � y⇤2|}  �} (3)

where “SPB” denotes the strong Pareto boundary. That is, S� is the set of vectors that weakly dominate
a disagreement value and are within � of the strong Pareto boundary of Y . If � = 0 then this is simply
the strong Pareto boundary weakly above the disagreement set and, in the context of the multistage
game, will yield “strong Pareto perfection.” If � > 0 then inefficient points are included. This class of
bargaining solutions is ordered by activeness, so that for �  �0 it is the case that S� represents more
active contracting than does S�0 .

By Theorem 3 in Appendix B, contractual equilibrium exists. Note that, because the set of joint
actions is trivial, Y (z) = Y (z) for every z. Note also that, in this relationship, the actions in a period
have no direct effect on the set of feasible actions or the payoffs in future periods. Therefore, for any
two histories z, z0 2 Zt for some t, we must have Y (z) = Y (z) = Y (z0) = Y (z0) ⌘ Y t and V (z) =

V (z0) ⌘ V t.
I next calculate the value correspondences for the case of bargaining solution S0 (where � = 0) and

bargaining solution S1 (where � = 1). Let V t and ˆV t describe the value correspondences for these two
cases, respectively, and let Y t and ˆY t be the feasible continuation values from period t in these two cases.

Consider first the case of � = 0 and let us construct V by backward induction, starting with the
third period. The stage game in period 3 has two Nash equilibria, with payoffs (1, 1) and (0, 0). Thus,
we have Y 3

= {(1, 1), (0, 0)}. Because bargaining solution S0 selects the Pareto dominant vector, we
obtain V 3

= {(1, 1)}. Since there is just one continuation value from the start of period 3, the only action
profiles that can be achieved in period 2 are the Nash equilibria of the period 2 stage game (two in pure
strategies, plus one mixed). These equilibria yield payoff vectors (10, 7), (7, 10), and (6, 6). Adding the
continuation value yields

Y 2
= {(11, 8), (8, 11), (7, 7)}

Bargaining solution S0 selects only the two vectors on the Pareto boundary, so we have

V 2
= {(11, 8), (8, 11)}
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Finally, let us examine the players’ incentives regarding individual actions in period 1. Note that it is
rational for the players to select (a11, a22) in period 1 if they would then coordinate on continuation value
(11, 8) following this action profile but switch to continuation value (8, 11) if player 1 were to deviate.
This leads to continuation value (18, 18) from the beginning of the game. In fact, if the players were
to coordinate in another way from the start of period 2, then only (a21, a

1
2) can be achieved in period 1.

Therefore, we obtain
Y 1

= {(14, 11), (11, 14), (18, 18)}
and the bargaining solution selects V 1

= {(18, 18)}.
The story is different in the case of � = 1. For period 3, we have ˆY 3

= {(1, 1), (0, 0)} as before, but
now both values are selected by the bargaining solution because (0, 0) is a distance of 1 from (1, 1), given
the metric used in the bargaining solution. Thus, we have ˆV 3

= {(1, 1), (0, 0)}. In period 2, (a31, a32)
can be supported in equilibrium. This is achieved by the players coordinating on continuation value
(1, 1) if this profile is played, and coordinating on continuation value (0, 0) if (a31, a

3
2) is not played.

This specification leads to continuation value (13, 13) from period 2. The other values that can be
achieved all utilize stage-game Nash equilibria in period 2, so the set of feasible continuation values is

ˆY 2
= {(13, 13), (11, 8), (8, 11), (10, 7), (7, 10), (7, 7), (6, 6)}

Only (13, 13) is selected by the bargaining solution, because none of the other values is within unit
distance of this point. Thus, ˆV 2

= {(13, 13)}. This further implies that, in period 1, only the stage-game
Nash equilibrium (a21, a

1
2) can be played. So we obtain ˆV 1

=

ˆY 1
= {(16, 16)}.

In this example, S0 represents more active contracting than does S1, yet V 1 dominates ˆV 1. From the
beginning of the game, the players fare strictly better if S0 describes their negotiation behavior than if S1

does. Intuitively, the problem with S1 is that (a11, a22) cannot be supported in the first period because there
is no way to punish deviators with the single continuation value from the start of period 2. If the players
could make spot transfers, then more continuation values would be available based on the disagreement
points in period 2, which is the next topic of the paper.

6. Activeness and Monotonicity

The second example demonstrates that there is no general monotonicity relation between activeness
of contracting and the maximal values attainable in contractual equilibrium. The issue with the second
example is that the players are unable to transfer utility at the Pareto frontier. In settings where individual
and joint actions have long-term effects (influencing the available actions and payoffs in future periods),
monotonicity generally will fail to hold even with transfers. This section describes a simple class of
contractual relationships, along the lines of the second example but with spot transfers, for which a
monotonicity result obtains.

Definition 5: A contractual relationship is said to be a sequence of stage games with spot transfers
if it has the following structure. Interaction occurs over T periods, for some positive integer T . The
joint action in each period is a transfer x 2 R2

�. For each t = 1, 2, ldots, T , the set of individual action
profiles in period t is given by some product set At

= At

0 ⇥ At

1 ⇥ At

2, where At

0 is the space of random
draws. Payoffs in period t are given by a function ũt

:At ! R2. The set of states is Z ⌘ [T+1
t=1 Z

t, where:
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(i) Z1 ⌘ {zinit},

(ii) for t 2 {1, 2, . . . , T}, Zt+1 ⌘ Zt ⇥ (R2
� ⇥ At

), and

(iii) Zterm ⌘ ZT+1.

Regarding state transitions, for z 2 Zt, x 2 R2
�, and a 2 At, the state at the start of period t + 1

is f(z, t, a) ⌘ (z; x, a) 2 Zt+1, where “(z; x, a)” denotes the vector formed by appending (x, a) to z.
Regarding feasible actions and payoffs, for any t  T , z 2 Zt, x 2 R2

�, and a 2 At, define X(z) ⌘ R2
�,

x(z) ⌘ (0, 0), A(z, x) ⌘ At, and u(z, x, a) ⌘ ũt

(a) + x.

This class of contractual relationships is a slightly generalized version of the repeated-game setting
that Miller and Watson (2013) studies, but with a finite horizon. The spot transfers are exactly as specified
by Miller and Watson, including that disagreement implies zero transfers in the current period. The slight
generalization is that here I allow for different stage games across periods, whereas Miller and Watson
focus on settings with a fixed stage game over an infinite number of periods.

As was the case for the example in Section 5.2, contractual equilibrium values depend only on the
period number. That is, for any two histories z, z0 2 Zt for some t, we have V (z) = V (z0) ⌘ V t.
The same is true for the feasible continuation values and disagreement values: Y (z) = Y (z0) ⌘ Y t and
Y (z) = Y (z0) ⌘ Y t. Note, however, that generally Y t 6= Y t, because transfers are zero in disagreement.

To present the monotonicity result, I use an additional definition and two assumptions are about
bargaining solutions. For any vector w 2 R2 and any set W ⇢ R2, define the sum as w + W ⌘
{w + w0 | w0 2 W}. Also, let “Y + w” be defined as the collection of sets {Y x

+ w}
x2X .

Definition 6: Contracting problem (X, x,Y) is said to be linear-comprehensive if Y = R2
� + w for

some w 2 R2.

A linear-comprehensive problem has a linear Pareto boundary, below which all points are feasible, which
is the case when the players can make spot transfers.

Definition 7: A bargaining solution S is said to be monotone in the disagreement set if, for any
contracting problems (X, x,Y) and (X, x, ˆY) that satisfy Assumption 1, ˆY ⇢ Y , and ˆY = Y ,
the bargaining solution satisfies S(X, x, ˆY) ⇢ (X, x,Y). The bargaining solution is said to be
shift-monotone if, for any contracting problems (X, x,Y) and (X, x, ˆY) that are linear-comprehensive,
satisfy Assumption 1, and have the property that ˆY ⇢ Y and ˆY ⇢ Y , the bargaining solution satisfies
S(X, x, ˆY) ⇢ (X, x,Y) + w for some w 2 R2

�.

Definition 8: A bargaining solution S is said to be invariant to additive constants if, for any
contracting problem (X, x,Y) and vector w 2 R2, the bargaining solution satisfies S(X, x,Y + w) =

(X, x,Y) + w.

“Monotone in the disagreement set” and “invariance to additive constants” are standard conditions.
“Shift-monotone” basically says that if the Pareto boundary of the bargaining set shifts out and the
set of disagreement points expands, then the set of negotiation values expands subject to a normalizing
shift. It is not difficult to confirm that bargaining solutions SND, SAA, and S� described in Sections 3.6
and 5.2 all have these properties (but SAD does not).

Here is the monotonicity result.
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Theorem 2: Consider a contractual relationship given be a sequence of stage games with spot transfers.
Let S and ˆS be bargaining solutions that are shift-monotone and invariant to additive constants, and
suppose that ˆS represents more active contracting than does S. Assume that contractual equilibrium
exists for both S and ˆS. Let ˆV 1, ˆV 2, . . . , ˆV T be the contractual equilibrium values for ˆS, and let
V 1, V 2, . . . , V T be the contractual equilibrium values for S. Then for each t 2 {1, 2, . . . , T}, there exists
a vector wt 2 R2

� such that ˆV t ⇢ V t

+ wt.

An immediate implication of Theorem 2 is that, for each t, the set V is Pareto superior to the set ˆV in
that, for every point v 2 ˆV there is a point v0 2 V that weakly Pareto dominates v. In words, less active
contracting leads to higher maximial joint values in all states. A proof of Theorem 2 may be found in
Appendix C.

7. Conclusions

The modeling exercise reported here has two objectives. First, it seeks to elaborate on the
existing contract-theory literature by clarifying some basic concepts and, in so doing, encouraging
research that explicitly considers both the externally enforced and self-enforced aspects of contract
enforcement. The framework I have developed brings together elements of the contract-theory literature
(which, although not exclusively, tends to focus on renegotiation of externally enforced contracts), the
repeated-game literature (which focuses on renegotiation of self-enforced contracts), and the cheap-talk
literature (which focuses on how verbal statements may influence subsequent behavior in equilibria of
non-cooperative games).

The second objective of this modeling exercise is to introduce the idea of activeness of contracting
(including the key element of a disagreement point for self-enforced components) and to show that the
relation between activeness and the predicted outcomes of a contractual relationship is subtle and perhaps
interesting. I do not take a position on whether people in real contractual settings are more or less active
in their contract negotiation, for this is an empirical issue. Rather, the model helps define activeness and
explore its implications, which is a prerequisite for any empirical evaluation.

The modeling framework developed herein lends itself to a wide variety of applications.
Repeated-game models are one special case. For example, using the terminology developed here,
the analysis of Benoit and Krishna (1993) [8] identifies contractual equilibrium associated with the
bargaining solution that selects weakly efficient continuation values. The point of the present modeling
exercise is not to reinvent the renegotiation-in-repeated-games wheel, of course, but to expand the theory
in terms of generalizing the bargaining theory and including external enforcement. For instance, the
framework can be used to analyze more complicated and realistic settings than are commonly studied in
the literature (for example, settings with monetary transfers and external enforcement, and where players
take actions that directly affect the structure of the game in future periods).

Another special case is the setting of relationships with unverifiable investment and hold-up (Hart and
Moore 1988 [28], Maskin and Moore 1999 [29], and the ensuing body of work). In this category,
the framework facilitates the careful analysis of individual trade actions (Watson 2007 [3]) and the
examination of settings with more complicated dynamics than has been studied to date (such as Watson
2005 [2]). On the abstract side, the framework developed here may be useful in analyzing problems of
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“design” with all sorts of real constraints (on, say, liquidity, the timing and alienability of actions, and
external enforcement) that are currently not extensively studied.

There are some obvious directions for further research, including on the relation between activeness
and maximal joint values. Also, contracts along the lines of Alternative 3 in the MW example represent
a nuanced view of Bernheim and Whinston’s (1998) [14] “strategic ambiguity,” where players take full
advantage of external enforcement to create situations with multiple equilibria and then select among
these equilibria as a function of the history. To create the multiplicity of equilibrium, players may want
to use “less complete” contracts rather than “more complete” ones. (Bernheim and Whinston restrict
attention to forcing contracts, where multiplicity is negatively related to a notion of completeness.)

Additional links to the literature are worth pointing out. Watson (2002) [30] puts forth an informal
version of the contractual equilibrium concept called negotiation equilibrium, whose definition can
be made more precise. A negotiation equilibrium is the instance of contractual equilibrium in which
the parties negotiate actively over only the externally enforced component of contract. Specifically,
a continuation value is selected and fixed for each individual joint action, and then the bargaining set is
defined as the set of these values, yielding a conventional bargaining problem (with a single disagreement
point) to which a bargaining solution is applied. Ramey and Watson (2002) [17] and Klimenko, Ramey,
and Watson (2008) [20] examine another variant that the second group calls a recurrent agreement;
it is built on the theoretical foundation developed here but is based on the idea that, in a repeated game,
players revert to a Nash equilibrium of the stage game when they fail to reach an agreement on how to
play in the continuation.
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A. Bargaining Protocol Example: Ultimatum Offer
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This appendix contains details of the analysis of the ultimatum-offer protocol, which is sketched (in
the context of the BoS contracting problem from Section 2.1) in Section 3.3.

To calculate the set of equilibrium negotiation values, some additional notation is useful. For any set
D ⇢ R2, let D

i

denote the projection on dimension i (player i’s value). Also, for any number d2, define
�x1(d2) to equal

min {y1 | there exists y2 � d2 such that (y1, y2) 2 Y x}
if the bracketed set is nonempty and 1 otherwise. The following lemma characterizes the equilibrium
negotiation values for the ultimatum-offer protocol.

Lemma 2: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation values is

S(X, x,Y) = {y⇤ 2 Y | y⇤2 � minY 2 and, for every x 2 X , either

y⇤1 � �x1(minY 2) or y⇤1 � �x1(minY x

2 ) or both}

This result is easily proved by calculating, for feasible continuation values, the offers that player 2 can
rationally accept or reject.

To calculate the set of equilibrium negotiation values under the Agreement Condition of Section 3.2,
define �x1 (d2) to equal

sup {y1 | there exists y2 > d2 such that (y1, y2) 2 Y x}

if the bracketed set is nonempty and �1 otherwise.

Lemma 3: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation values under
the Agreement Condition is

S(X, x,Y) = {y⇤ 2 Y | y⇤2 � minY 2, y⇤1 � �x1(maxY 2)

and y⇤1 � �x1 (maxY 2) for every x 6= x}

Next, I calculate the set of equilibrium negotiation values under the Agreement and Disagreement
Conditions. In this case, for a given value y, the model of negotiation is equivalent to one in which
both the tangible action x and the value y are externally enforced. Define �1(d2) ⌘ sup

x2X �
x

1 (d2).

Lemma 4: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation values under
the Agreement and Disagreement Conditions is

S(X, x,Y) = {y⇤ 2 Y | y⇤ � y and y⇤1 � �1(y2) for some y 2 Y }

With the addition of the Random-Proposer Disagreement Condition, the characterization is refined
further.

B. Classes of Contractual Relationships and Existence

In this appendix, I delineate three classes of contractual relationships and provide existence results
for them. The following subsections define the three classes, in increasing order of complexity.
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B.1. Finite Actions

In this class, X and A are finite sets, which means that Z can also be taken to be finite.

B.2. Finite Except for Spot Transfers

In this class, each joint action can be written as x = (l,m), where m 2 R2
� is a monetary transfer

in the current period. For each z 2 Z, the feasible joint actions satisfy X(z) = L(z) ⇥ R2
� for some

set L(z). The default action specifies a transfer of zero. Let L ⌘ S
z2Z L(z). The sets A and L are

assumed to be finite and there is a correspondence ˜A : Z ⇥ L -- A such that, for each z 2 Z and
x = (l,m) 2 X(z), we have A(z, x) = ˜A(z, l).

Furthermore, there exist functions ũ : Z ⇥ L ⇥ A ! R2 and ˜f : Z ⇥ L ⇥ A ! Z, such that,
for each z 2 Z, x = (l,m) 2 X(z), and a 2 A(z, x), the payoff vector in the current period satisfies
u(z, x, a) = ũ(z, l, a) +m and the transition function satisfies f(z, x, a) = ˜f(z, l, a). Thus, the action
spaces and state transition do not depend on transfers made previously, and the transfers affect payoffs
additively. The assumptions imply that Z can be taken to be finite.

B.3. Relationships that are Finite Except for Contingent Transfers

I shall first describe the particular structure of this setting and then show how it maps into the general
model. In a nutshell, there is an externally enforced productive action p and an externally enforced
transfer m in each period, in addition to the individual action a. This public action (p,m) takes place at
the end of the period and is conditioned on the history as specified by the externally enforced component
of the players’ contract. Assume a 2 A, p 2 P , and m 2 M , for some sets A and P , and assume
that M ⇢ R2

�. Payoffs and feasible actions are assumed to be functions of the productive actions
a�0 = (a1, a2) and p taken in each period.

Let H denote the set of histories of productive actions (the a’s and p’s); a representative t-period
history is (a1, p1; a2, p2; . . . ; at, pt). The initial, null history is defined as hinit. There is a set of terminal
histories Hterm. Let ˆH ⌘ H \ Hterm denote the non-terminal histories. For h 2 ˆH , the set of feasible
individual actions is ˜A(h) =

˜A0 ⇥ ˜A1(h) ⇥ ˜A2(h), where ˜A0 does not depend on the history (this is
without loss of generality) and we have ˜A(h) ⇢ A. Given h and a 2 ˜A(h), the set of feasible public
actions is P (h, a) ⇢ P . From history h, if a and p are the individual and public actions selected in
the current period, then the history at the start of the next period is h0

= (h; a, p), where (h; a, p) is the
history formed by appending a and p to h.

The players’ externally enforced contract is a vector of functions x = (↵̃0, ⇢, µ), with the mappings
defined as ↵̃0 :H ! �

˜A0, ⇢ :H⇥A ! P , and µ :H⇥A ! M , with the property that ⇢(h, a) 2 P (h, a).
Given history h to the start of the current period, ↵̃0(h) = ↵0 is the probability distribution for Nature’s
action a0 that the contract specifies. For history h and individual action profile a in the current period,
the contract specifies (and the external enforcer compels) the productive action p = ⇢(h, a) and the
monetary transfer m = µ(h, a). Note that the contract can effectively randomize over productive actions
by using the random draw a0. Thus, the function ⇢ can be viewed as a mapping from ˆH ⇥A�0 to �P .
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To represent limited verifiability, we can suppose that ⇢ and µ are measurable with respect to some
partition H of ˆH ⇥A.

There is an initial contract xinit in place at the start of the first period. At the beginning of each
period, the players can renegotiate the contract. Assume, however, that when renegotiating from any
history h, the players are restricted to contracts that are consistent with h occurring—that is, the players
are renegotiating on the contractual terms for only the current and future periods. To make this formal,
consider some t0-period history h = (a1, p1; a2, p2; . . . ; at

0
, pt

0
). Contract x is consistent with h if

pt = ⇢(ht, at) for t = 1, 2, . . . , t0, where ht is the t-period truncation (the first t elements) of h.
Let ˜X(h) denote the set of contracts that are consistent with history h and that satisfy the measurability
requirement relative to H, with the understanding that all contracts are consistent with hinit.

Payoffs are linear in money and are defined by a function ũ :H \H init ! R2. Specifically, in a period
that began with history h and saw productive actions a and p and transfer m (that is, p = ⇢(h, a) and
m = µ(h, a)), the payoff vector is given by ũ(h0

) +m, where h0
= (h; a, p). Assume that the function ũ

depends neither on the current-period random draw a0 nor on the history of random draws.
I make the following extra technical assumptions. First, I assume that A and P are finite sets, implying

that H is finite. Second, I assume that M is compact and contains the zero transfer (0, 0). Third, I assume
that there is a positive integer ⌧ such that all feasible histories are no more than ⌧ periods in length;
this implies Assumption 2.

Here is how the setting of Finite Except for Contingent Transfers maps into the general model.
A state is given by z = (h, x), where h is the history of productive actions to the current period and
x is the contract in effect at the beginning of this period. The set of states is Z ⌘ {(h, x) | x 2 ˜X(h)}.
In the negotiation phase in state z = (h, x), players renegotiate their externally enforced contract by
taking a joint action x 2 X , where X is the set of all contracts of the form x = (↵̃0, ⇢, µ) as described
above. The set of feasible joint actions is X(z) ⌘ ˜X(h) and the default joint action is x(z) ⌘ x.
In the individual-action phase, feasible actions are given by A(z, x) ⌘ ˜A(h). The payoff function
is given by u(z, x, a) = ũ(h; a, ⇢(h, a)) + µ(h, a), where ⇢ and µ are components of x. Finally,
for any state z, joint action x = (↵̃0, ⇢, µ), and individual action profile a, the state transition is given by
f(z, x, a) ⌘ ((h; a, ⇢(h, a)), x).

Note that ↵̃0, as a probability distribution over the finite set ˜A0, is a point in the | ˜A0|-dimensional
simplex. Also, ⇢ is a function with a finite domain and codomain, and µ has finite domain and compact
codomain. Thus, X and X(z) are compact subsets of a Euclidean space. That H is finite further implies
that Z is compact.

The MW example described in Section 5.1 (and less formally in the Introduction) is finite except for
contingent transfers. The MW example is especially simple in that there is no public productive action
p and no random draw a0. Also fitting into this class is the finite-period contracting model of Watson
(2005) [2].11

11 In Watson (2005) [2], P is allowed to be infinite (but compact) and it is assumed that M = R2
�. However, the players’

individual actions are assumed to be payoff irrelevant (they are just messages), the payoff function is continuous, and
the implementation exercise in the paper does not rely on unbounded transfers. It is not difficult to verify that, for these
reasons, the second existence result here (Theorem 4) holds for the model in Watson (2005) [2]. Note also that in that
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B.4. Existence Results

I next provide existence results for the three classes of games just described. To state the first existence
result, I use the following definition.

Definition 9: A bargaining solution S is said to be regular if it is non-empty and compact-valued on
the set of contracting problems that satisfy Assumption 1.

The three benchmark solutions described in Section 3.6 and the solution describes in Section 5.2 are
all regular.

Theorem 3: Take as given a contractual relationship and a regular bargaining solution S. If the
contractual relationship satisfies Assumption 2 and either has finite actions or is finite except for spot
transfers, then contractual equilibrium exists.

The second existence result focuses on settings with externally enforced transfers and some
verifiability of actions. Additional assumptions on the bargaining solution are required for this case.
In the following definitions, it is understood that ˜Y = { ˜Y x}

x2X , ˆY = { ˆY x}
x2X , Y 0

= {Y 0x}
x2X , and

Y 00
= {Y 00x}

x2X .

Definition 10: A bargaining solution S is said to be continuous in the disagreement set if the following
holds for any given X , ˜Y , ˆY , x, and sequence {xk} ⇢ X , such that ˜Y =

ˆY and ˜Y x

k converges to ˆY x in
the Hausdorff metric. We have that S(X, xk, ˜Y) converges to S(X, x, ˆY) in the Hausdorff metric.

The three benchmark solutions described in Section 3.6 and S� defined in Section 5.2 are all continuous
in the disagreement set.

Theorem 4: Take as given a contractual relationship and a regular bargaining solution S. Assume that
the contractual relationship satisfies Assumption 2 and is finite except for contingent transfers. If S is
continuous and monotone in the disagreement set, then contractual equilibrium exists.

Proofs of the two existence results follow.

B.5. Proof of Theorem 3

Take any t 2 {1, 2, . . . , ⌧}. Presume that V is well-defined on Z t+1
=

S
⌧+1
k=t+1 Z

k and that, for each
state z0 in this set, V (z0) is nonempty and compact (as is true on Zterm). I will show that these properties
extend to the domain of Zt. Take any z 2 Zt.

Referring to Step 1 of the inductive procedure described in the proof of Theorem 1, I first show
that Y x

(z) is nonempty for each x 2 X(z). An arbitrary function v defined on Z t+1 implies an induced
simultaneous-move game in the individual-action phase (in state z following a joint action x). This game
has action spaces A1(z, x) and A2(z, x) and it has payoffs given by E [u(z, x, a) + v(f(z, x, a)) | ↵0].

paper the relevant history is defined as the history of messages (the a’s) and the current externally enforced contract; it
does not include the public actions, but these can be reconstructed from the messages and contract.
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This is a finite game under the assumption that the contractual relationship is essentially finite; thus, the
game has a Nash equilibrium, which implies that Y x

(z) 6= ;.
It is further true that Y x

(z) is compact. To see this, note that the graph of the Nash equilibrium
correspondence, as a function of the payoff parameters, is closed (see Fudenberg and Tirole 1991,
Section 1.3.2 for example). Also recall that the set of feasible v functions is closed and bounded by the
presumption that V is compact-valued on Z t+1. These properties together imply that Y x

(z) is closed;
the boundedness of the set of v functions implies that Y x

(z) is bounded.
I next show that the contracting problem at state z 2 Zt satisfies Assumption 1. The preceding

paragraphs establish the requirements for Y (z). To check the properties of Y (z), I examine separately
the two settings covered by the theorem. In the setting of finite actions, Y (z) is compact by virtue of
each Y x

(z) being compact and X(z) being finite; hence, Assumption 1 is satisfied.
In a relationship that is finite except for spot transfers, Y (z) is not compact, but the arbitrary spot

transfers add only R2
� to a compact set. To see this, note that the spot transfer in the current period affects

neither incentives in this period nor feasible continuation values from the start of the next period (recall
Equation (1) and the payoff specification). Thus, for each l 2 L(z) and m 2 R2

�, Y (l,m)
= Y (l,(0,0))

+m

holds.12 This implies that
Y (z) = {y 2 R2 | y1 + y2  �}

where
� = max{y1 + y2 | y 2 Y (l,(0,0))

(z), l 2 L(z)}
The maximum exists because L(z) is finite. The set Y (z) is therefore closed and separated by a line of
negative slope, so it satisfies Assumption 1.

Moving to Step 2 of the inductive procedure, and using the assumption that S is regular, we have that
S(X(z), x(z),Y(z)) exists and is compact. Thus, V extended to Zt is nonempty and compact-valued.
By induction, contractual equilibrium exists.

B.6. Proof of Theorem 4

This proof parallels that of Theorem 3. Note that, in the setting of the theorem, the set H can
be partitioned into sets H1, H2, . . . , H⌧+1 such that, for any x 2 X and t 2 {1, 3, . . . , ⌧}, we have
z = (h, x) 2 Zt if and only if h 2 H t and x 2 ˜X(h). Define Ht ⌘ S

⌧+1
t

0=t

H t

0 and, as in the text,
Z t ⌘ S

⌧+1
t

0=t

Zt

0 .
Take any t 2 {1, 2, . . . , ⌧}. Presume that V is well-defined on Z t+1 and that, for each state z0 in this

set, V (z0) is nonempty and compact (as is true on Zterm). Also presume that, on this domain, V is upper
hemi-continuous as a function of x on the feasible set X(z); that is, for a fixed h 2 Ht+1, presume that
V (h, ·) is upper hemi-continuous. I will show that these properties extend to the domain of Zt.

Take any z 2 Zt. The argument used in the proof of Theorem 3 establishes that Y x

(z) is nonempty
and compact, for each x 2 X(z). In addition, we have the following fact.

12 Recall that, for Y, Y 0 ⇢ R2 and y00 2 R2, Y + Y 0 ⌘ {y + y0 | y 2 Y, y0 2 Y 0} and Y + y00 ⌘ {y + y00 | y 2 Y }.



Games 2013, 4 493

Lemma 5: Assume the presumptions of Theorem 4. Given z 2 Zt, take any sequence {yk, vk, xk,↵k}
such that for all k, (i) yk 2 R2; (ii) vk maps Z t+1 to R2 and satisfies vk(z0) 2 V (z0) for all z0 2 Z t+1;
(iii) xk 2 X(z), and (iv) ↵k is an uncorrelated distribution over A(z, xk

) with ↵k

0 being the distribution
over Nature’s actions that is specified by the contract xk. Further suppose that

yk = E [u(z, xk, a) + vk(f(z, xk, a)) |↵k

]

holds and the Nash equilibrium Condition (1) is satisfied (using yk, vk, xk, and ↵k in place of y, v, x,
and ↵⇤) for every k. Then there is a subsequence {ykr , vkr , xkr ,↵kr} such that xkr converges to some
contract x 2 X(z) and ykr converges to a point y 2 Y x

(z).

Proof of Lemma 5: Because A is finite and X(z) is compact, we can assume (by taking a subsequence)
that ↵k converges to some distribution ↵ 2 �A and that xk converges to some contract x 2 X(z).
The structure of feasible actions implies that ↵ 2 �A(z, x). Because A and P are finite, we can use the
same argument to justify assuming that, for every h0 2 Ht+1, vk(h0, xk

) converges (to a real number).
Define function v :Z t+1 ! R2 by

v(h0, x) ⌘ lim

k!1
vk(h0, xk

)

for every h0 2 Ht+1, and v(h0, x) is an arbitrary selection from V (h0, x) for every h0 2 Ht+1 and x 6= x.
We have vk(h0, xk

) 2 V (h0, xk

) for every k, so upper hemi-continuity of V on the domain Z t+1

implies that v(h0, x) 2 V (h0, x). Thus, we have v(z0) 2 V (z0) for every z0 2 Z t+1. By the convergence
of xk and finiteness of Ht+1, we know that, for a fixed a there is a history h0 2 Ht+1 such that
f(z, xk, a) = (h0, xk

) for all large k. By construction of v, we thus have that vk(f(z, xk, a)) converges
to v(f(z, x, a)). Also, noting that u is continuous, we know that u(z, xk, a) converges to u(z, x, a).
Thus, we obtain

y = E [u(z, x, a) + v(f(z, x, a)) |↵]
Another implication of the convergence is that the Nash equilibrium Condition (1) is satisfied for y,
v, x, and ↵ in place of y, v, x, and ↵⇤. To see this, first note that A(z, x) is independent of x,
meaning that available individual actions do not depend on the current contract. In addition, if the
best-response inequality did not hold for some player i and some action a0

i

, it would imply failure of the
same best-response condition for strategy profile ↵k in the context of contract xk and continuation-value
function vk for large enough k, which is a contradiction. We can thus conclude that y 2 Y (z), proving
the lemma. Q.E.D.

Returning to the proof of Theorem 4, continue to consider any z = (h, x) 2 Zt. Refer to Step 1 of the
inductive procedure described in the proof of Theorem 1. The argument used in the proof of Theorem 3
establishes that Y x

(z) is nonempty for every x 2 X(z). Lemma 5 implies that Y (z) is compact and
that Y x

(z) is compact for every x 2 X(z). For any particular x, the latter conclusion follows from
looking at a sequence {yk, vk, xk,↵k} with xk

= x and yk 2 Y x

(z) and getting y 2 Y x

(z). Thus,
for z = (h, x) 2 Zt, the contracting problem (X(z), x,Y(z)) satisfies Assumption 1.

Moving to Step 2 of the inductive procedure, and using the assumption that S is regular, we have that
S(X(z), x(z),Y(z)) exists and is compact. Thus, V extended to Zt is nonempty and compact-valued.

Finally, I must establish that V (h, ·) is upper hemi-continuous for all h 2 H t. To this end, fix h 2 H t.
Note that X(h, x) = X(h, x0

) and Y x

(h, x) = Y x

(h, x0
), for all x, x0 2 ˜X(h). The second equality
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holds because the externally enforced contract in force at the beginning of the period (x or x0) does not
directly affect the attainable continuation payoffs; only the newly chosen contract x affects incentives
and payoffs in the continuation. Thus, since h is fixed for the remainder of this proof, I will suppress the
state argument and simply write X , Y x, and Y . Also note that, for the fixed h, Lemma 5 implies that Y x

is upper hemi-continuous in x. This follows by limiting attention to sequences such that xk converges.
Next, take any specific sequence {xk} that converges to some x. I will compare various contracting

problems that are associated with the sequence. To formulate them, let Y be the limit superior of Y x

k as
k ! 1:

Y ⌘
1\

k

0=1

closure

" 1[

k=k

0

Y x

k

#

For each k, we have the contracting problem (X, xk,Y), where Y = {Y x}
x2X . Consider also the

artificial contracting problem (X, xk, ˜Y), where we define ˜Y by ˜Y x ⌘ Y x [ Y for all x 2 X .
In addition, consider the contracting problem (X, x,Y) and another artificial problem (X, x, ˆY), where
ˆY is identical to Y except for joint action x for which we define ˆY x ⌘ Y .

By upper hemi-continuity of Y x, we have Y ⇢ Y x. Thus, Y ⇢ Y and ˜Y =

ˆY = Y . That is, the
sets of feasible continuation payoffs (over all x) in the artificial contracting problems (X, xk, ˜Y) and
(X, xk, ˆY) are the same as that in the contracting problems (X, xk,Y) and (X, x,Y). All of these
contracting problems differ only in the disagreement sets. Furthermore, one can easily verify that,
by construction of ˜Y x and because Y is compact, ˜Y x

k converges to Y in the Hausdorff metric.
Using the fact that Y x

k ⇢ ˜Y x

k and that S is monotone in the disagreement set, we have

V (h, xk

) = S(X, xk,Y) ⇢ S(X, xk, ˜Y) (4)

Because ˜Y x

k converges to Y and S is continuous in the disagreement set, we obtain

S(X, xk, ˜Y) converges to S(X, x, ˆY) (5)

Finally, using the monotone property of S again and that Y ⇢ Y x, we have

S(X, x, ˆY) ⇢ S(X, x,Y) = V (h, x) (6)

Along with the sequence {xk}, take a convergent sequence {yk} ⇢ R2 such that yk 2 V (h, xk

) for
each k. Relations 4-6 above establish that the limit of {yk} is contained in V (h, x), which proves upper
hemi-continuity of V (h, ·).

C. Other Proofs

Lemma 1, Theorem 1, and Theorem 2 are restated and proved here.

Lemma 1: If Y is convex then Q(y) = argmax

y 2 SPB(Y )

y � y

(y1 � y
1
)

⇡1
(y2 � y

2
)

⇡2 .

Proof: For i = 1, 2, let g
i

(y
j

) ⌘ max{y
i

| (y
i

, y
j

) 2 Y }. Further, for any fixed y, define

G
i

(y
i

) ⌘ g
i

(e��⇡ig
j

(e��⇡jy
i

+ (1� e��⇡j
)y

i

) + (1� e��⇡i
)y

j

).
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Consider these functions defined on strong Pareto boundary of the set Y , where (because Y is convex)
g1 and g2 are continuous and inverses. These functions characterize the equilibrium of the K-round
bargaining protocol under the Agreement and Disagreement Conditions on Section 3.2. Suppose,
for example, that player 2 would have the offer in round k + 1, where his equilibrium continuation
value is y2. Then player 1’s equilibrium offer in round k is a vector that makes player 2 indifferent
between accepting and rejecting; this offer gives player 1 the amount g1(e��⇡1y2 + (1 � e��⇡1

)y
2
),

which is player 1’s equilibrium value from round k.
Function G

i

relates player i’s equilibrium continuation values across two rounds where player i

makes the offer. Convexity of Y implies that g1 and g2 are convex functions, which further implies
that G

i

is a contraction. To see this, consider the differentiable case, where we have G0
i

(y
i

) =

e��⇡1e��⇡2g0
i

(y
i

)g0
j

(y
j

). Here y
i

and y
j

are numbers satisfying y
i

< g
i

(y
j

). Recalling that g1 and g2

are inverses, this implies that g0
i

(y
i

)g0
j

(y
j

) 2 (0, 1). Thus, G0
i

2 (0, 1).
That G

i

is a contraction implies that player i’s equilibrium payoff in the finite-round protocol
converges to the fixed point of G

i

, which is i’s equilibrium payoff in the infinite-round protocol.
From here, one can use the asymmetric version of Binmore, Rubinstein, and Wolinsky’s (1986) [27]
Proposition 5 to complete the proof. Q.E.D.

Theorem 1: Take as given a contractual relationship and a bargaining solution S. If Assumption 2 is
satisfied and contractual equilibrium exists, then there is a unique value correspondence that represents
contractual equilibrium.

Proof: A value correspondence V can be identified by backward induction, using the partition
{Z1, Z2, . . . , Z⌧+1} of Z that was described earlier in this section. We start with Z⌧+1

= Zterm and
have, for each z in this set, V (z) = {(0, 0)}. Then, for any t 2 {1, 2, . . . , ⌧}, presume that we have
defined V on

S
⌧+1
k=t+1 Z

k. We can extend V to Zt as follows.

Step 1: For every z 2 Zt and every x 2 X(z), define Y x

(z) by Equation (2). In doing
so, note that v need only be defined on

S
⌧+1
k=t+1 Z

k, because no other states can be reached
from z. If every Y x

(z) is nonempty, then this yields a well-defined contracting problem
(X(z), x(z),Y(z)) at state z, for every z 2 Zt.

Step 2: Define V (z) ⌘ S(X(z), x(z),Y(z)), for every z 2 Zt.

If, during this procedure, we find that Y x

(z) = ; for some z and x in Step 1, then the correspondence V is
not well-defined and contractual equilibrium does not exist. Likewise, if S(X(z), x(z),Y(z)) is empty
for some z in Step 2, then contractual equilibrium does not exist. Otherwise, contractual equilibrium
exists and the induction procedure identifies a unique value correspondence by construction. Q.E.D.

Theorem 2: Consider a contractual relationship given be a sequence of stage games with spot transfers.
Let S and ˆS be bargaining solutions that are shift-monotone and invariant to additive constants, and
suppose that ˆS represents more active contracting than does S. Assume that contractual equilibrium
exists for both S and ˆS. Let ˆV 1, ˆV 2, . . . , ˆV T be the contractual equilibrium values for ˆS, and let
V 1, V 2, . . . , V T be the contractual equilibrium values for S. Then for each t 2 {1, 2, . . . , T},
there exists a vector wt 2 R2

� such that ˆV t ⇢ V t

+ wt.
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Proof: I use an induction argument. Define ˆV T+1
= V T+1 ⌘ {(0, 0)}, which trivially satisfies ˆV T+1 ⇢

V T+1
+ wT+1 for wT+1 ⌘ (0, 0). Next suppose that, for some t  T , there is a vector wt+1 2 R2

� such
that ˆV t+1 ⇢ V t+1

+ wt+1. I will show that this implies the existence of a vector wt 2 R2
� such that

ˆV t ⇢ V t

+ wt.
Consider the set of feasible continuation values from period t. These are the sum of stage-game

payoffs in period t and continuation payoffs from period t+ 1, where the action profile in period t must
satisfy the equilibrium incentive condition given by Equation (1) in Section 4.2. Recalling Equation (2),
clearly the set of supported action profiles, and thus the set of feasible continuation values, expands with
the set of continuation values from period t + 1; furthermore, the continuation values merely shift with
an additive constant. This implies that ˆY t ⇢ Y t

+wt+1 and ˆY
t ⇢ Y t

+wt+1. Because ˆS represents more
active contracting than does S, we obtain:

ˆS(R2
�, x,

ˆY t

) ⇢ S(R2
�, x,

ˆY t

) (7)

Because S is shift-monotone, there is a vector rt 2 R2
� such that

S(R2
�, x, ˆY t

) ⇢ S(R2
�, x,Y t

+ wt+1
) + rt (8)

Finally, because S is invariant to additive constants, we have

S(R2
�, x,Y t

+ wt+1
) + rt = S(R2

�, x,Y t

) + wt+1
+ rt (9)

Defining wt ⌘ wt+1
+ rt, which is in R2

�, and combining Equations (7)–(9), we obtain

ˆS(R2
�, x, ˆY t

) ⇢ S(R2
�, x,Y t

) + wt

Noting that ˆV t ⌘ ˆS(R2
�, x,

ˆY t

) and V t ⌘ S(R2
�, x,Y t

) completes the inductive step. Q.E.D.

c� 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
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