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Abstract: Demands and concessions in a multi-stage bargaining process are shaped by the 

probabilities that each side will prevail in an impasse. Standard game-theoretic predictions 

are quite sharp: demands are pushed to the precipice with nothing left on the table, but 

there is no conflict regardless of the degree of power asymmetry. Indeed, there is no delay 

in reaching an agreement that incorporates the (unrealized) costs of delay and conflict. A 

laboratory experiment has been used to investigate the effects of power asymmetries on 

conflict rates in a two-stage bargaining game that is (if necessary) followed by conflict 

with a random outcome. Observed demands at each stage are significantly correlated with 

power, as measured by the probability of winning in the event of disagreement. Demand 

patterns, however, are flatter than theoretical predictions, and conflict occurs in a 

significant proportion of the interactions, regardless of the degree of the power asymmetry. 

To address these deviations from the standard game-theoretic predictions, we also 

estimated a logit quantal response model, which generated the qualitative patterns that are 

observed in the data. This one-parameter generalization of the Nash equilibrium permits a 
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deconstruction of the strategic incentives that cause demands to be less responsive to 

power asymmetries than Nash predictions.  

Keywords: bargaining; conflict; quantal response equilibrium; laboratory experiments 

 

1. Introduction 

When John von Neumann and Oscar Morgenstern began working on Theory of Games and 

Economic Behavior almost a century ago, they were motivated by the observation that most received 

theory pertained to price-based interactions in large markets, whereas a large fraction of economic 

activity involves bargaining in small group settings. The only economics class that John Nash took at 

Carnegie-Mellon as an undergraduate was International Trade, and he was intrigued by the absence of 

a widely accepted model for negotiations between countries over trade issues. The seminal work of 

these game theorists and others has generated a large bargaining literature, involving both theory and 

applications to specific social sciences.
1
 Over the past two decades, for example, students of world 

politics have increasingly thought of interstate war as a bargaining problem. Drawing heavily on the 

literature of economics, bargaining models have become commonplace and have provided a number of 

significant insights regarding when and why states resort to arms. An analysis of strategic bargaining 

has been used to explain how wars begin and end, and how long they last. In addition, bargaining 

models have been adapted to explain the durability of peace agreements, extended deterrence, and the 

relation between trade and conflict. This paradigm also extends to other issues of importance to social 

scientists, e.g., the incidence of costly strikes that follow breakdowns in labor negotiations, or costly 

delays in the adjudication of tort claims. In all of these examples, bargaining is conducted in the 

“shadow of power” [14].
2
 In particular, a failure to reach an agreement in these settings produces a 

crisis or trial that is settled by a contest with an uncertain outcome.  

An alternative perspective on conflict is that stable situations are sometimes disrupted by 

“exogenous” demands that arise from overconfidence, perceived or actual inequities, and the 

personalities of leaders that come to power. Bargaining models, in contrast, are focused on structural 

factors, e.g., power asymmetries, that determine strategic demands and the conflicts that arise 

endogenously in this framework [5,14,15,19]. These scholars claim that parties evaluate the 

distribution of benefits in light of the distribution of power, and decide whether to make demands 

about reallocating benefits to better represent the realities of power, as represented by the probabilities 

of winning in a conflict. So states of equal power, who also have equal shares in the benefits of the 

international system, are less likely to fight than are equally powerful states with decidedly unequal 

benefits. Similarly, the relative probabilities of winning in a labor dispute should affect strike decisions 

                                                             
1 See Holt and Roth [10] for specific references and a perspective on motivations for early work on game theory and on the 

Nash equilibrium in particular. The finite-stage bargaining models considered in this paper can be solved by backward 

induction, using Reinhard Selten’s notion of subgame perfection to rule out Nash equilibria that involve non-credible 

threats to reject favorable offers. 
2 Numerous variants of the bargaining model arise in the political science literature. We focus on a two-stage version of the 

model analyzed in Fearon [5].  
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made by employees. Both the amount of the challenger’s demand and the probability of bargaining 

failure arise from the imbalance between the probability of winning in a conflict and the distribution of 

benefits ex ante (Reed, Clark, Nordstrom, Hwang 2008).  

Despite the theoretical appeal of the basic insights from bargaining theory, empirical evaluation of 

the claims that arise from these models has lagged behind. The lack of empirical work is not for lack of 

effort. Instead, the gap is due to the simple fact that many elements of the basic bargaining model are 

either difficult to measure or are unobservable. For example, in international bargaining and in labor 

negotiations alike, neither the probability of success nor the costs of bargaining failure are as explicitly 

known as models would suggest. Experimental analysis offers a unique opportunity to  

observe how power imbalances and other factors affect behavior in the context of models with clear  

theoretical predictions.  

A common modeling approach is to constrain the timing and nature of decisions in a manner that 

makes it possible to derive clear theoretical predictions. The structure of a bargaining process can be 

simplified by designating one person as a decision maker in each discrete stage of the game, e.g., with 

alternating offers or a randomly determined decision order. The standard Stahl-Rubinstein model of 

alternating-offer bargaining has an infinite horizon, with no conflict, but effects of discounting and 

delay are sufficient to induce an immediate agreement that is shaped by the potential costs of delay. 

Finite versions of this model that are convenient for laboratory experiments typically impose 

exogenous payoffs in the final stage.
3
 For example, the single-stage ultimatum game that has been 

used in hundreds of laboratory experiments has zero payoffs for each player if the ultimatum demand 

by one is rejected by the other. A zero payoff is sensible if a monopolist walks away from a deal, 

leaving both parties with no trade, or if conflict involves a total destruction of the potential surplus. 

Conflict, whether it is legal, economic, or military, can involve significant costs, but in the absence of 

nuclear escalation, these costs are unlikely to eradicate the value of the rights being contested. 

Moreover, conflict involves additional uncertainty about who will ultimately prevail.  

In a laboratory experiment, conflict risk can be implemented by having the outcome of an impasse 

be determined by a random lottery. The predictions of this conflict bargaining model with a lottery 

depend on relative power, as measured by the probabilities that each side would prevail. In theory, 

demands and counter-offers should be shaped by power asymmetries, along with delay and conflict 

costs, but the subgame-perfect Nash prediction is similar to that of other models: (1) no delay; (2) 

nothing left on the table (in an expected payoff sense); and (3) no conflict. Un-modeled “exogenous” 

factors like overconfidence, overweighting of low probabilities, or differences in risk aversion and 

perceptions of fairness can generate conflict in laboratory bargaining games.  

Our goal in this paper is to evaluate the extent to which bargaining outcomes and conflict rates are 

shaped by structural factors like power asymmetries. Even though the theory is straightforward, there 

is good reason to be skeptical of predictions that rely on backward induction reasoning. Our analysis 

therefore, is based on a laboratory experiment with financially motivated human subjects. In short, we 

find a significant relationship between players’ known winning probabilities and their initial demands 

and counteroffers. The effects of power asymmetries, however, are not as strong as predicted, and 

                                                             
3 Goeree and Holt [8] report experiments with an array of two-stage bargaining games with a shrinking “pie” and zero 

payoffs in the event of an impasse, but with asymmetric “outside earnings” that are varied to enhance fairness concerns.  
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conflict occurs in about a quarter of the interactions, irrespective of whether or not differences in the 

probabilities of winning are high or low. Some behavioral explanations of the observed deviations 

from game-theoretic predictions are analyzed. 

 

2. A Simple Model of Conflict Bargaining 

We begin with a standard analysis of a two-stage model, which is followed by a derivation of the 

predictions for the particular setup parameters used in the experiment. In the model, two risk neutral 

players bargain over the division of surplus of size S, e.g., a parcel of territory or the surplus available 

in a trade agreement. The status quo division is (q, S − q), where q is the initial allocation for the first 

player, who begins by demanding an amount x1 and offering S − x1 to the other player. The responder 

can either accept the offer, in which case it is implemented, or make a counteroffer to divide the 

discounted value of the second-stage “pie,” δS, where δ ≤1. Thus the counteroffer is a split of δS – x2 

for the first player and x2 for the second. If the initial demand is rejected and a counteroffer is made, 

then the first player must decide whether to accept the counteroffer or to engage in a costly conflict, 

which the first player wins with probability P. The conflict costs for the first player (“proposer”) and 

the second player (“responder”) are denoted by cp and cr respectively. 

Assuming that both the players are fully informed of the payoffs and the win probabilities, the game 

is solved through backward induction. In the second stage, the responder’s demand would be an 

amount x2 for which the residual available to the proposer, δS – x2, is equal to the proposer’s expected 

payoff in a conflict after incurring the conflict cost, PδS − cp, assuming that indifference will result in 

acceptance.
4
 This equation determines the responder’s second stage demand: x2 = (1 − P)δS + cp, 

which is a decreasing linear function of the proposer’s win probability. This value of x2 is what the 

responder can expect to earn if play goes to the second stage, so the proposer makes a minimal offer of 

this amount to the responder in the first stage:  

x1 = S − x2 = S − (1 − P)δS − cp = (1 − δ)S + PδS − cp (1) 

which is an increasing linear function of P. For example, if conflict costs are 2, S = 10, and δS = 9, 

then the initial and final demands would be: x1 = 9P − 1, and x2 = 11 − 9P. The effects of the payoff 

parameters are intuitive. For example, as delay costs increase (via a reduction in δ) the initial demand 

in Equation (1) is predicted to increase to take advantage of the strategic first-mover advantage. One 

interesting asymmetry for this two-stage game is that the equilibrium demands depend only on the 

conflict cost for the proposer, and that a higher proposer conflict cost increases the predicted spread 

between x1 and x2. 

 

 

                                                             
4 The assumption of acceptance in the case of indifference is innocuous in a continuous model where “small” adjustments 

are possible. In a game with discrete decisions, this assumption could be motivated by a small aversion to risk. 

Alternatively, the probabilistic choice functions used for a logit model of discrete choice would imply acceptance 

probabilities of 0.5 in the case of indifference (see Equation (2) in Section 5 below).  
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3. Experimental Design 

The laboratory experiment is based on the two-stage bargaining model, with a pie size of $10 and a 

second stage (discounted) pie size of $9. The initial allocation was unbalanced at $3 for the proposer 

and $7 for the responder. Conflict costs were set at $2 for each player, and the proposer win 

probabilities were set at one of four levels: 0.2, 0.4, 0.6, and 0.8, where the probabilities were 

explained in terms of the roll of a 10-sided die.  

Subjects in the experiment were constrained to make discrete integer dollar demands, rather than 

continuous amounts. In this case, the backward induction arguments still yield a pattern of initial 

demands that is an increasing function of proposer win probabilities. The calculations may be 

illustrated for the case of a proposer win probability 0.8, for which the proposer’s expected payoff 

from conflict is 0.8(9) − 2 = $5.20, so a second-stage offer of $6 would be accepted, leaving the 

responder with $3. Given this knowledge, the proposer can demand $7 in the first stage and offer $3 to 

the responder. The other three sets of equilibrium demands can be derived analogously. For win 

probabilities of 0.2, 0.4, 0.6, and 0.8, the first stage demands are $1, $3, $5, and $7, and the second 

stage demands are $9, $7, $5, and $3 respectively. 

The experiment was conducted using the Political Conflict option for the web-based Veconlab 

Bargaining Game.
5
 This option implements a two-stage dispute model with an array of parameter 

choices. The instructions are configured automatically to match the setup parameters selected.
6
 Each 

bargaining game implemented the two-stage model described in the previous section. For the 

parameters used, conflict is risky since the winner receives $9 and the loser receives nothing. After 

conflict costs were subtracted, conflict payments are $7 for the winner and −$2 for the loser.  

Each session consisted of 12 subjects being randomly matched for 10 rounds, with one value of P 

used in the first five rounds, and a switch to another value of P in the final five rounds. We ran 12 

sessions that used all possible treatment orders. The random pairing was chosen to avoid complications 

arising from repeated play with the same opponent.
7
 The change in the win probability treatment in the 

second half of each session permits a within-subjects analysis of changes in relative power. Data from 

the second treatment, however, could be biased by “order effects,” a possibility that we will consider 

later. Order effects can also be interesting, since the impact of changes in power asymmetries may alter 

conflict rates.  

                                                             
5 The Veconlab site can be found by a Google search for “veconlab admin”. From the main menu, select Bargaining, and 

then select Bargaining Games. The login page for subjects can be found with a google search for “veconlab login”. This 

web-based game and can be used for teaching in any wireless classroom, as long as students are reminded to bring laptops. 

A direct link to this bargaining game admin setup is: http://veconlab.econ.virginia.edu/bg/bg.php 
6 Instructions for the P = 0.2 treatment are provided in the Appendix. 
7 For instance, in repeated interactions, subjects can seek to establish a reputation and make strong demands, or firm 

counter-demands. Random matching does provide a chance for subjects to gain a better understanding of the procedures 

and payoffs, while preserving the one-shot flavor of the interaction that is more appropriate for the study of many 

bargaining situations that arise in unique, non-repeated legal or political settings. Fixed matchings would be more 

appropriate for the study of complex strategies for repetitive bargaining situations that are common in economic markets. 
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The 144 subjects were University of Virginia students who were paid $6 for participating, plus half 

of accumulated earnings. Earnings were in the $18–$25 range, for a one-hour session, and were paid 

immediately after each session. 

 

4. Results 

4.1. Aggregate Data Patterns 

The aggregate proposer demands shown in Figure 1 are increasing functions of the proposer 

probability of winning, but the pattern is clearly flatter than the locus of Nash predictions, which are 

connected by a dashed line. Moreover, demands are greater than Nash predictions at all proposer win 

probabilities below the highest level.  

Figure 1. Average Proposer Demand by Treatment. 

 

The tendency for proposers to demand more as their conflict win probabilities increase is revealed 

more fully in Figure 2, which shows the distributions of proposer demands for each of the four win 

probability treatments. These distributions shift to the right (successively thicker lines) as the value of 

P increases. 

The calculation of the Nash first-stage demand was done in a manner to ensure that it would be 

accepted. A demand of $1 more than the Nash demand would always be rejected. The proposer 

demands in Figure 1 are, on average, in a high range where we would expect them to be rejected, at 

least for probabilities below 0.8. Figure 3 shows responder acceptance probabilities as a function of 

initial proposer demand, for each of the four proposer win probabilities, with thicker lines 

corresponding to treatments with higher value of P. Note that responder acceptance probabilities are 

higher than would be expected, i.e., they are often near 0.5 even when the proposer demands a dollar 
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or more above the Nash prediction (of $1 for P = 0.2, $3 for P = 0.4, $5 for P = 0.6, and $7 for 

P = 0.8). The implication is that the observed tendency of proposers to make high initial demands, 

even when they are disadvantaged, is not irrational given the tendency for responders to accept those 

demands. 

Figure 2. Distributions of Initial Proposer Demands by Treatment. 

 

 

Figure 3. Responder Acceptance Probabilities as Functions of Proposer Demands. 

 

The average (second-stage) responder demands shown in Figure 4 are negatively sloped, as 

predicted, and are closer to Nash predictions than was the case for proposer demands. One possibility 

is that backward induction reasoning is more obvious in the stage closer to the possible conflict. As 

with proposer demands in Figure 1, there is a tendency for responder demands in Figure 4 to be flatter 

in the first part (rounds 1–5) and less so in the second part. The fact that responder demands are 

generally below the Nash predictions (except at P = 0.8) suggests that some responders may have 

cautiously “backed off” from making the maximal demand that a risk-neutral proposer would accept. 

Finally, the “smoothed” nature of responder acceptance probabilities in Figure 3 indicates that these 
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decisions can be modeled as being stochastic, which will be done via logit probabilistic choice 

functions in Section 6 below. 

The proportions of conflict outcomes (for which both the proposer offer and the responder counter 

offer are rejected) are shown in Figure 5. Note that there is no clear relationship between conflict rates 

and power asymmetry, as represented by the proposer win probability. Conflict rates are lower for the 

second part, rounds 5–10, but these rates are much higher than Nash predictions of no conflict. Notice 

that conflict rates observed for the case of a high proposer win probability are slightly higher, but this 

difference is not statistically significant using session averages. 

Figure 4. Average Responder Demand by Treatment. 

 

Figure 5. Conflict Rates by Treatment. 
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The overall picture that emerges from Figures 1–5 is that proposers with power use it aggressively, 

with initial demands that typically exceed risk neutral Nash predictions. Responder acceptance 

proportions, which exhibit regular inverse S-shaped patterns, are also higher than theoretical 

predictions. The effect of proposer demands driven by power asymmetries is, therefore, mitigated by a 

countervailing caution on the side of responders. The net effect of these strategic interactions is that 

conflict rates are significant but are no higher in the presence of strong power asymmetries.  

The theoretical predictions are based on an assumption of risk neutrality, and it is likely that 

attitudes toward risk and fairness play a role, at a minimum, in terms of increasing the variability of 

behavior across individuals. The overall effect of risk preferences is difficult to ascertain, since the 

tendency for proposers to make aggressive initial demands and reject counteroffers would be 

consistent with risk seeking behavior, but the tendency for responders to accept initial demands (more 

often than would be implied by risk neutrality) could be indicative of risk aversion. One thing is clear, 

the presence of random elements in the conflict stage, together with heterogeneity in terms of the 

subjects’ feelings about risk and fairness, could have the effect of increasing conflict rates above what 

would be the case if conflict outcomes were known with certainty. Evidence from ultimatum game 

experiments with a known conflict outcome (0 payoffs for both players) does indicate that conflicts 

can occur even in the absence of uncertainty, especially when the ultimatum demand is deemed to be 

unfair. On the other hand, players in disadvantaged positions in multi-stage bargaining games may 

demand more (something closer to a “fifty-fifty” split), which can also generate conflicts. In the 

conflict bargaining experiment, subjects may derive some value from a conflict that involves an 

interesting throw of the dice or that imposes a cost on the other player who rejected one’s own “fair” 

offer. We will first consider whether a standard model based on the player’s own experiment payoffs 

explains observed conflict rates. Then in the estimation section below, we will consider evidence that 

subjects derive some extra value from conflict.  

4.2. Statistical Tests 

The primary prediction of the model, that the share demanded by the proposer is an increasing 

function of that person’s power (as measured by the win probability) is clearly supported (in a 

qualitative sense) by a “within subjects” comparison of average initial demands for the first and second 

parts of each session. In all 12 cases, the average initial demand is higher for the treatment with the 

higher proposer win probability. This result is significant using a sign test (p = 0.001).
8
  

                                                             
8 The total numbers of accepted and rejected demands for all sessions are presented in the Data Appendix at the end of this 

paper. Data tables for all sessions are available on the web at: http://www.people.virginia.edu/~cah2k/pcg_data.htm  

The sessions are numbered pcg1–pcg13, with the omission of pcg6 which was a test conducted at another university for 

demonstration purposes. For each session, the data table provides links to a graph of data averages by round, along with 

data summaries in “.htm” and spreadsheet formats for each session. The treatment orders and average initial proposer 

demands for all sessions are:  

Session pcg1: $5.17 for P = 0.2, $6.83 for P = 0.8 

Session pcg2: $5.37 for P = 0.4, $6.33 for P = 0.6 

Session pcg3: $5.63 for P = 0.6, $3.70 for P = 0.2 

Session pcg4: $6.17 for P = 0.8, $4.50 for P = 0.4 

Session pcg5: $6.30 for P = 0.8, $4.00 for P = 0.2 
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Moreover, a “between-subjects” comparison of initial demand averages by session indicates that the 

ranking of initial demand averages is roughly consistent with the ranking of proposer win probabilities. 

These session averages are shown in Table 1 for the two parts (rounds 1–5 and rounds 6–10). For the 

first part, shown in the left column, there is only one “reversal,” i.e., the $6.30 average for one of the 

0.6 sessions is greater than the $6.17 average for one of the 0.8 sessions. In addition, there is one “tie” 

at $6.30. The most extreme data pattern in the hypothesized direction would be to have no reversals, 

and the nonparametric Jonckheere test essentially provides the probability (under the null hypothesis 

of no effect) of seeing something at least as extreme as the observed pattern.
9
 For the first part with 

one reversal and one tie, the test statistic is J = 51, and for the second part with a single reversal, the 

test statistic is J = 52. These are significant at p = 0.005.  

Table 1. Average Proposer Initial Demands by Session.  

Proposer Win Probability First Part (rounds 1–5) Second Part (rounds 6–10) 

0.2 $4.37, $4.83, $5.17 $3.70, $4.00, $4.47 

0.4 $5.30, $5.37, $5.50 $4.50, $4.73, $4.87 

0.6 $5.53, $5.63, $6.30 $6.17, $6.33, $6.93 

0.8 $6.17, $6.30, $7.30 $6.83, $7.10, $7.57 

The average responder demands by session, shown in Table 2 for each part, show the reverse 

pattern, with lower responder demands as the proposer win probability increases. This correlation is 

significant at p = 0.005 using the Jonckheere test (J = 46 for part 1 and J = 52 for part 2.) 

Table 2. Average Responder Counter Demands by Session.  

Proposer Win Probability First Part (rounds 1–5) Second Part (rounds 6–10) 

0.2 $5.90, $6.64, $7.25 $7.06, $7.07, $7.18 

0.4 $5.21, $5.59, $5.82 $6.08, $6.50, $6.57 

0.6 $4.50, $5.27, $5.27 $3.83, $4.25, $4.71  

0.8 $3.76, $4.78, $5.18 $3.47, $3.76, $4.17 

The story that emerges from these tests is that the power asymmetry treatment has a systematic 

effect on both proposer and responder demands. These effects could, in principle, be diminished in the 

2nd part if the effect of the 1st part treatment tends to persist. This does not seem to be the case for the 

proposer and responder demand patterns, since the treatment effects in the second part do not appear to 

exhibit more noise. The qualitative patterns of proposer and responder demands and conflict rates are 

                                                                                                                                                                                                                

Session pcg7: $4.37 for P = 0.2, $6.17 for P = 0.6 

Session pcg8: $5.50 for P = 0.4, $7.10 for P = 0.8 

Session pcg9: $5.53 for P = 0.6, $4.73 for P = 0.4 

Session pcg10: $4.83 for P = 0.2, $4.87 for P = 0.4 

Session pcg11: $5.30 for P = 0.4, $4.47 for P = 0.2 

Session pcg12: $6.30 for P = 0.6, $7.57 for P = 0.8 

Session pcg13: $7.30 for P = 0.8, $6.93 for P = 0.6 
9 See Siegel and Castillan [17] for an explanation of the Jonckheere test and for a table with p values. 
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the similar for both the 1st and 2nd parts, and hence, the main treatment effects are not obscured by 

order effects. 

To take a closer look at order effects, consider Table 3, which shows average proposer demands in 

the 2nd part, organized by 2nd part treatment (left column) and by 1st part treatment (top row). In all 

columns, an increase in 2nd part proposer power (moving down the column) tends to increase average 

proposer demands. The effects of increases in 1st part proposer power on 2nd part demands (moving 

left to right) are not in the same direction for all rows. This suggests that order effects, if they are 

present, are subtle. 

Table 3. Part 2 Average Proposer Demands for All 12 Sessions, Sorted by Current Power 

Treatment (Rows) and Previous Power Treatment (Columns). 

 1st Part P = 0.2 1st Part P = 0.4 1st Part P = 0.6 1st Part P = 0.8 

2nd Part P = 0.2 - 4.47 3.70 4.00 

2nd Part P = 0.4 4.87 - 4.73 4.50 

2nd Part P = 0.6 6.17 6.33 - 6.93 

2nd Part P = 0.8 6.83 7.10 7.52 - 

One possibility is that order effects are the result of the increased “steepness” in the 2nd part 

proposer and responder demands, which is apparent from Figures 1 and 4. If this increased steepness is 

due to the residual impact of a treatment change in round 6, then the steepness might be expected to be 

more enhanced in round 6 than in round 10. This is not the case, since the average proposer demands 

in round 6 rise from $4.39 (for P = 0.2) to $6.94 (for P = 0.8), whereas the rise is somewhat sharper in 

round 10, from $3.83 (for P = 0.2) to $7.56 (for P = 0.2).
10

 An alternative explanation is that the 

enhanced steepness of proposer and responder demands in Figures 1 and 4 is due to more “Nash-like” 

behavior in later rounds. We will consider this possibility in the estimation section 6.  

Another interesting possibility is that the increases in power asymmetry from parts 1 to 2 may 

increase conflict rates. Some evidence consistent with this perspective is provided by Table 4, which 

shows session average conflict rates for the 2nd part, sorted by current and previous treatment 

parameters. The four sessions with an increased degree of power asymmetry are marked with an 

asterisk, e.g., a change from P = 0.4 (a “forty-sixty” split) in the first part to 0.2 (a “twenty-eighty” 

split) in the second. The other eight sessions are characterized by a decreased power asymmetry 

(e.g., from 0.8 to 0.6) or no change in asymmetry (e.g., from 0.8 to 0.2). The conflict rates for the four 

sessions with increased power asymmetry are, on average, higher than the conflict rates for the other 

                                                             
10 As a rough descriptive exercise, we ran simple linear regression of 2nd part average proposer demands by session on 

1st and 2nd part values of the proposer win probability, P. A positive coefficient for the 1st part value of P would indicate 

an inertia effect, so that more proposer power in the 1st part shows up as higher demands in the second part. In contrast, a 

negative coefficient for the 1st part value of P would tend to make the average demand line for the 2nd part steeper in 

Figure 1, as is observed. For example, when P is low in the 2nd part, the first part treatment tends to be higher, and a 

negative coefficient on the 1st part value of P would make proposer demands in the 2nd part even lower. As expected, the 

coefficient for the 2nd part value of P was positive and highly significant (t = 9.6), but the coefficient for the 1st part value 

of P was positive and insignificant (t = 0.6). This analysis suggests that the steepness of average proposer demands for the 

2nd part in Figure 1 is not primarily due to order effects.  



Games 2013, 4 386 

 

eight sessions. This difference is statistically significant (p = 0.05) using a permutation test (24 of the 

495 possible permutations of sessions averages between treatments result in treatment differences as or 

more extreme than what is observed). This order effect would imply higher conflict rates at the 

extremes of P = 0.2 in the top row and at P = 0.8 in the bottom row, each of which involve an increase 

in asymmetry in two of three sessions for that row. This could be an explanation for the very slight 

“U” shape in the conflict rates observed in Figure 5 for the 2nd part. It would be interesting to design 

an experiment with large changes in power asymmetry, in order to evaluate the effects of these 

changes on conflict rates. 

Table 4. Part 2 Average Conflict Rates for All 12 Sessions, Sorted by Current Power 

Treatment (Rows) and Previous Power Treatment (Columns). 

 1st Part P = 0.2 1st Part P = 0.4 1st Part P = 0.6 1st Part P = 0.8 

2nd Part P = 0.2  0.23 * 0.20 * 0.20 

2nd Part P = 0.4 0.33  0.13 0.17 

2nd Part P = 0.6 0.13 0.20  0.20 

2nd Part P = 0.8 0.13 0.37 * 0.30 *  

* These are sessions with an increase in power asymmetry in part 2. 

5. Experimental Implications 

The experimental results show some evidence for the imperfect use of subgame perfect Nash 

equilibrium strategies. Although the demands and counteroffers fail to match game theoretic 

predictions, they do indicate that subjects involved in a bargaining game with a conflict stage take 

relative power into account when making demands. Although the qualitative features of some of the 

Nash predictions are apparent in the data, the systematic directional biases we observe are hardly 

surprising, given the results of prior laboratory studies (without the conflict stage).
11

 For example, 

Neelin, Sonnenschein, and Spiegel [13] ran experiments using multi-stage bargaining games. Their 

results for two-stage games reflect a certain regularity, subjects who are disadvantaged in the sense 

that they are predicted to demand less than half of the pie tend to be more aggressive, and subjects who 

are predicted to obtain a large share of the pie tend to demand less than they “should,” which is in line 

with ultimatum game experiments.  

Anomalous results in bargaining experiments are typically thought to reflect concerns for fairness, 

rather than straightforward self-interested strategic behavior [9]. Goeree and Holt [7] exaggerated 

fairness considerations by providing subjects in two-stage bargaining games with unequal and known 

outside income payments. These “outside income” payments changed the equal final payoff locus, and 

exogenously induced inequities seemed to have a more prominent effect than delay cost changes that 

altered selfish Nash predictions. In many legal and political settings, however, it is hard to imagine that 

the actors have much concern for others’ payoffs. Instead of enhancing equity considerations, it may 

be instructive to move in the other direction. In particular, equity considerations in the lab can be 

                                                             
11 Failure to see subgame perfect equilibrium results in bargaining experiments has become so frequent that it is the rule, 

rather than the exception [16,1]. The conflict between theory and experimental results in bargaining games is so prominent 

that Samuelson [16] highlights this case in describing the role of experiments in testing and improving economic theory. 
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dampened by providing unequal private incomes that are not common knowledge, which would make 

equal-payoff outcomes difficult to ascertain. We conjecture that the effect of having a contest at the 

end of each game in our experiment is to create a competitive atmosphere that dampens concerns for 

fairness.  

The addition of the random conflict lottery can introduce another source of potential bias, since 

anomalous results for risky choices are quite common. For example, probabilities might be 

overweighted if they are small. For early evidence supporting the notion of nonlinear probability 

weighting, see Cohen, Jaffray and Said [3], who report results from an experiment with choices 

between a sure option and a lottery and observe less sensitivity to probabilities in their subjects’ 

choices than would be expected. In particular, subjects seemed to overweight low probabilities of gains 

and underweight high probabilities of gains, with the result being a relative insensitivity to 

intermediate probabilities. Similar patterns are reported by Kahneman and Tversky [11]. Our data are 

consistent with these results in the sense that an overweighting of low proposer win probabilities might 

cause them to think that they can demand more and that responders would accept less than would be 

predicted on the basis of expected value calculations.
12

 Nevertheless, the biases away from risk-neutral 

Nash predictions in Figures 1, 4, and 5 are not concentrated at the extremes of 0.2 and 0.8, which 

suggests another explanation. 

Finally, it is well known from “centipede” and other multi-stage games that backward induction 

does not come easily to subjects. Binmore, Shaked, and Sutton [2] dismiss the notion that we should 

expect to see subgame-perfect behavior in the laboratory, because even they, as designers, had to work 

to come up with the game theoretic results for their ultimatum bargaining game.
13

 Even in the absence 

of the need for backward induction and probability assessments, e.g., a 1-stage bargaining game with 

no conflict, the Nash predictions are based on a perfect rationality assumption that a gain of only a 

penny would be enough to induce the other person to accept a final offer. A small amount of 

irrationality could produce random responses, and the effects of such randomness should be magnified 

in the presence of multiple stages and the exogenous uncertainty of a conflict. The next section 

presents a quantal response model of conflict bargaining in which “irrational” rejections or acceptances 

become more likely as expected payoff differences diminish, which provides an incentive for 

responders to be cautious with final counter-offers that are too near the “edge.” The converse of this is 

that proposers may be more aggressive with initial demands knowing that responders may accept a 

smaller share if they anticipate being cautious with counteroffers. By construction, a model with errors 

will produce conflicts. The interesting question, however, is whether such a model (without inequity 

aversion and probability misperception) can produce (1) proposer demands that are above Nash levels 

and too flat; (2) responder demands that are below Nash levels and too flat; and (3) conflict 

proportions that are significant and relatively invariant to power asymmetries.  

 

                                                             
12 Probability weighting can also explain anomalies like the Allais paradox. See the discussion in Davis and Holt [4]. 
13 They stress the frequent need for a rule of thumb in understanding problems. However, they indicate that learning and 

experience can bring players closer to the theoretical predictions. Comparisons of first-half and second half data for 

proposals and conflicts in Figures 1, 4, and 5 offer some support for this point of view, despite the fact that clear deviations 

from subgame-perfect Nash predictions do persist. 
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6. Estimation of a Quantal Response Model of Two-Stage Bargaining 
 

Consider a proposer who receives a counter offer of 9 – x2 in the final stage and must decide 

whether to accept or reject. A conflict with a win probability of p yields an expected payoff of 9p − cp. 

Given a logit precision parameter of λ, the probability that the counteroffer is accepted is calculated as 

a ratio of exponentials of precision-adjusted expected payoffs for accepting and rejecting:  
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which converges to 0.5 as λ→0 (pure noise) and which converges to 1 only if the payoff for accepting, 

9 – x2, is higher than the expected conflict payoff (perfect rationality). Also, note that equal expected 

payoffs result in choice probabilities of 1/2 in this case.
14

 

Given λ, which is assumed to be the same for the responder, the model is solved by backward 

induction by letting the responder probabilities for each demand x be determined analogously as ratios 

of precision-adjusted expected payoffs. The responder’s payoff for making a demand of x2 depends on 

the acceptance probability from Equation (2) and the expected conflict payoff: 

Pr(accept| x2, p)*x2 + (1−Pr(accept| x2, p))*(9(1−p) − cr). Let this expected payoff for a responder 

counter demand of x2 be denoted by π(x2| p). In a quantal response equilibrium (McKelvey and Palfrey, 

1995), the assumption is that the proposer choice probability in Equation (2) is equal to the responder’s 

belief probability used to construct the expected payoff for each possible responder counter-offer. 

Then the responder’s choice probabilities for each possible counter-demand are calculated:  
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for x2 = 1, … 9, where the denominator ensures that the choice probabilities for each of the 9 possible 

counter demands sum to 1. As before, a very high value of the precision parameter will put 

probability 1 on the expected-payoff-maximizing demand.  

Proposer demands and acceptance probabilities for the first stage are calculated analogously by 

computing a “value” for optimal continuation for each player. The value of continuation would be the 

proposer’s expected payoff associated with a vector of possible responses from Equation (3) and an 

assumption that the proposer’s final decisions about whether to accept or reject will be in accordance 

with the acceptance probabilities from Equation (2).
15

 In this manner, the single precision parameter 
                                                             
14 The logit probabilistic choice function is derived by assuming that the random errors associated with each expected 

payoff have a particular (double exponential) distribution. The implied assumption that these errors are identically and 

independently distributed is needed to avoid a model in which any distribution of choice probabilities can be achieved by 

manipulating the error distributions for each payoff term (see Goeree, Palfrey, and Holt, 2006, for examples of such 

manipulations). In other words, the assumption of independent and identically distributed errors is needed to ensure that the 

probabilistic choice model actually has empirical content, regardless of whether the model involves isolated individual 

decisions in a standard logit analysis or strategic interactions in a quantal response equilibrium. To reiterate, it is a common 

misunderstanding to believe that any pattern of choice proportions can be explained with a quantal response model, but this 

observation is only true for a general error specification that does not require “i.i.d.” error terms.  
15 Notice that this is a “quantal continuation value,” not an optimal continuation value (which would involve always 

making the decision that provides the highest expected payoff).  
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enters all of the various acceptance and rejection probabilities and demand probabilities for proposers 

and responders. Estimation involves finding the value of λ that maximizes the probability of seeing the 

data pattern that was actually observed. The likelihood function is a product of terms, each involving a 

probability for a particular category raised to a power representing the number of observations in that 

category. The data consist of the numbers of accepted and rejected demands for each of the four 

proposer win probabilities (0.2, 0.4, 0.6, 0.8) for each of the 10 possible initial demands and each of 

the 9 possible counter-offers.  

This model is a one-parameter generalization of the Nash equilibrium determined by λ, which for 

each value of p generates 9 proposer acceptance probabilities from Equation (2), 10 responder 

acceptance probabilities for each value of p, and the probabilities associated with each possible initial 

proposer demand and each possible responder counter offer. All of these probabilities are functions of 

the proposer win probability p. Using data from the second half (rounds 6–10), we obtained a maximum 

likelihood estimate of λ = 1.110, with a standard error of 0.031.
16

 The maximized likelihood function 

was: −2,857. The vectors of initial proposal probabilities were used to calculate QRE predictions for 

average proposer demands for each proposer win probability, as shown by the dark dot-dash line in 

Figure 6. As is the case for the second half data averages (gray line), these QRE predictions lie above the 

Nash prediction and are too flat relative to the Nash prediction. The proposers in the experiment, 

however, are making demands that are not quite as high as predicted by the QRE estimates.  

Figure 6. Average Proposer Demands (Second Part) and QRE Predictions. 

 

Similarly, the QRE predictions for the responder demands trace out a line that begins below the 

dashed Nash prediction line in Figure 7 and is too flat relative to the that line. This feature of the QRE 

predictions matches the second half data (gray line). 

Finally, note that the QRE predictions for conflict rates shown in Figure 8 are at about the level 

observed in the second-half data, but without the upward spike for the highest proposer win 

                                                             
16 Estimation based on the first half data provides a lower precision, λ = 0.762, which implies more “noise,” as would  

be expected. 
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probability. These predictions are a major improvement over the Nash prediction of zero conflict rates 

for all power treatments.  

Figure 7. Average Responder Demands (Second Part) and QRE Predictions. 

 

Figure 8. Conflict Rates (Second Part) and QRE Predictions. 

 

An analysis of the proposer “continuation values” provides an interesting insight as to why initial 

proposer demands might be too high and too flat relative to Nash predictions. The proposer 

continuation values implied by the QRE choice probabilities are shown in the top row of Table 3. For 

example, a proposer with a win probability of 0.2 (and who has an initial demand rejected) can expect 

to earn $0.99 in the final stage, largely because responders are less aggressive than predicted in this 

stage in anticipation of “irrational” rejections. The Nash continuation value after a rejected initial 

proposal would be 0 for this proposer, since the 0.2 chance of winning $9 in a conflict is less than the 

$2 conflict cost, so a responder second-stage counter-offer of $0 “should” be accepted by a perfectly 

rational proposer. The other proposer continuation values in the top row are also greater than the Nash 

continuation values in the second row, although the difference goes away for the highest proposer win 

probability of 0.8. The important point is that the higher the proposer’s continuation value from 
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rejection, the higher the optimal initial demand, which explains why proposer demands lie above Nash 

levels for win probabilities below 0.8.  

The bottom part of Table 5 also shows the inferred continuation values for responders following 

their rejection of an initial proposer demand. For example, with a proposer win probability of 0.2, the 

responder continuation value is $9 since the proposer has no power when the conflict cost exceeds the 

proposer’s expected gain from conflict. Note that the inferred responder QRE continuation values in 

the third row are below their Nash continuation values in the bottom row, presumably because of the 

possibility that proposers will sometimes reject aggressive responder demands and force the responder 

into a costly conflict. This possibility reduces the optimal responder demand, which helps explain the 

qualitative direction of deviations from Nash predictions in Figure 7.  

Table 5. Continuation Values Inferred From Quantal Response (QRE) and Nash Models. 

Proposer Win Probabilities: p = 0.2 p = 0.4 p = 0.6 p = 0.8 

Proposer Continuation Values (QRE):  $0.99 $2.54 $4.25 $5.89 

Proposer Continuation Values (Nash) $0 $2 $4 $6 

Responder Continuation Values (QRE) $7.05 $5.15 $3.28 $1.47 

Responder Continuation Values (Nash) $9 $7 $5 $3 

One unresolved issue that came up in the earlier discussion of experimental results is the 

observation that both proposer and responder demand patterns are “flatter” (less responsive to proposer 

win probabilities) in the first five rounds than was the case in the last five rounds. We do not believe 

that this difference was caused by the treatment change, as discussed previously, since the steepness of 

demand patterns continued to increase from round 6 to round 10. /This observation suggests some kind 

of learning or other change in attitudes. Note that the steeper demand lines for part 2 in Figure 1 (for 

proposers) and Figure 4 (for responders) are closer to the dotted line Nash predictions, which suggests 

an increase in the precision parameter λ. Estimation of the QRE model using only data from the first  

five rounds yields an estimate of λ = 0.76 (standard error = 0.025), which is in fact lower than the 

estimate of λ = 1.11 (standard error = 0.031) using data from the final five rounds. These different 

parameter estimates can be used to generate “predictions” for the patterns of average proposer and 

responder demands for each part. The lower precision estimate for part 1 (more noise) does yield a 

flatter predicted response of proposer and responder demands to changes in the proposer win 

probability, P, as shown in Table 6. The top part of the table indicates that predicted proposer demands 

are less responsive to increases in P in part 1 than in part 2. The bottom half of the table shows a similar 

pattern for responder demands (more flatness in predictions for the first part). In terms of levels and 

crossover points, these predictions do deviate somewhat from the actual data patterns shown in Figures 1 

and 4, but the general qualitative differences in relative flatness are present in the QRE predictions. 
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Table 6. Quantal Response Predictions for Proposer and Responder Demands Using 

Separate Precision Estimates for Part 1 (Rounds 1–5) and Part 2 (Rounds 6–10). 

 P = 0.2 P = 0.4 P = 0.6 P = 0.8 

Predicted Proposer Demands, Part 1 $5.19 $5.87 $6.90 $7.92 

Predicted Proposer Demands, Part 2 $4.77 $5.59 $6.80 $8.05 

Predicted Responder Demands, Part 1 $7.50 $6.47 $5.24 $4.14 

Predicted Responder Demands, Part 2 $7.85 $6.46 $4.92 $3.51 

To summarize, maximum likelihood estimation of a simple model that adds a “noise” dimension to 

the standard game-theoretic analysis provides a logit precision parameter that, in turn, generates 

predicted decision patterns, which are similar to the patterns observed in the data:  

(1) Proposer initial demands are increasing in proposer win probabilities, as expected, but are 

above Nash levels and are “too flat,”  

(2) Responder final demands are decreasing in proposer win probabilities, but are below Nash 

levels and are also too flat. 

(3) Conflict rates are significant and are roughly invariant to changes in proposer win probabilities.  

Separate estimation for the part 1 and part 2 data suggests that noise declines in the final five 

rounds, which explains the reduced flatness in the proposer and responder demand patterns, and the 

reduction in conflict rates observed in the second part.  

One interesting divergence between data and predictions of this one-parameter model is that 

conflict rates are under-predicted for both parts. In the first part, the predicted conflict rate (averaged 

over all four proposer win probabilities) is 0.21, whereas the observed conflict rate is close to 0.30. In 

the second part, the predicted conflict rate was 0.18, again below, but only slightly below, the observed 

rate of 0.22. As discussed earlier, it could be the case that subjects in the experiments derive some 

extra value from conflict, e.g., if there is some excitement in seeing a random outcome, or if there is a 

feeling of satisfaction from imposing a conflict cost on the other player after one’s offer has been 

rejected.
17

 As a result, we do not think too much importance should be attached to the overall levels of 

observed conflict rates. An admittedly ad hoc inclusion of a “conflict value” term in both proposer and 

responder conflict payoffs yields estimated values of about a dollar for each part.
18

  

 

 

                                                             
17 The possible interest in seeing a random outcome instead of a predictable payoff was suggested to us by an anonymous 

referee. A second referee suggested that risk aversion and fairness considerations may enhance the desirability of conflict. 
18 The estimated conflict values and standard errors are $1.08 (0.11) for part 1 and $0.74 (0.08) for part 2, which indicates 

a moderate preference for conflict. This added parameter has little effect on the estimates of the logit precision parameter, 

the maximized values of the log likelihood, and the resulting patterns of predicted proposer and responder demands and the 

flat profile of conflict rates. It is no surprise that the inclusion of a value of conflict does raise predicted conflict rates, from 

0.21 to 0.32 in the first part, which is close to the observed average of 0.30, and from 0.18 to 0.24 for the second part, 

which is also close to the observed average of 0.22 in the second part. 
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7. Conclusion 

This paper examines how the probability of winning in a conflict shapes the demands and  

counter-demands that are made in initial stages of the bargaining process. The experimental setup is 

novel in that it allows us to examine an important issue in the literature of international relations, i.e., 

how conflict rates are affected by power asymmetries that would come into play in the event of an 

impasse. The main results are intuitive, that demands and counter-demands are sensitive to relative 

power should a conflict arise, and that conflict does occur in a significant proportion of cases. Conflict 

rates seem to be unaffected by power asymmetries, since the players adjust their demands based on the 

asymmetries. What is observed is that proposers with power use their power to make aggressive 

demands. However, the aggressive demands by the proposers are received by responders who react 

with countervailing caution.  

It is impractical to run experiments with real conflicts between political decision makers. We believe 

that the use of experimental methods provide a venue for testing expectations about bargaining and 

conflict and helps avoid problems of measurement and control that arise with field data, although there is 

clearly a cost in terms of external validity.
19

 Our results are interesting in many ways given the 

prominence of the bargaining model in the recent literature on international conflict. Although the actual 

demands do not match the subgame-perfect Nash predictions, the results are qualitatively consistent with 

expectations from bargaining theory. Conflict outcomes are reduced but remain significant with repeated 

play. The implications of these results are interesting to consider. It appears that when subjects bargain, 

they are influenced by the structure of the game, the basic comparative-statics results derived from a 

Nash equilibrium are observed in the data and supported by appropriate nonparametric tests.  

There are, however, systematic discrepancies between observed demands and subgame-perfect 

Nash predictions. These discrepancies could be a result of difficulties with backward induction 

reasoning that may inject behavioral “noise” into decision making. Probabilistic choice functions are 

typically used to relax the standard assumption of perfect rationality. This approach is especially 

helpful for the analysis of experimental data that show “smoothed” responses, as can be seen from the 

“inverse S” shapes of responder accept proportions in Figure 3. The quantal response model imposes a 

fixed-point equilibrium condition that choice distributions match belief distributions; this approach is a 

simple generalization of Nash requirement that equilibrium strategies be best responses to other 

players’ strategies. For our experiment, the basic quantal response model provides a simple 

explanation of the overall pattern of deviations from Nash predictions, without the need to introduce 

preference parameters that pick up aversions to inequity or risk, although such additions might be 

useful in other contexts. Note that the introduction of additional unobserved parameters would 

necessitate estimation. Any estimation requires an error structure, which is precisely what a quantal 

response model provides, in an equilibrium setting that is appropriate for game theory. Moreover, an 

analysis of the continuation values inferred from the estimated logit precision parameter provides 

insights about why proposer demands are above Nash predictions, why responder demands are below 

                                                             
19 This work could be complemented with field studies done with military officers or legal negotiators through a survey 

design (Tomz and Weeks, forthcoming). Frechette (forthcoming) reviews a series of parallel studies that use both student 

subjects and relevant professionals. Although there are some differences, student subjects do not exhibit greater deviations 

from theoretical predictions, as compared with professionals. 



Games 2013, 4 394 

 

Nash predictions, and why both demand patterns are less responsive to power asymmetries  

than predicted.  

Given that risky conflict is a potential outcome of most bargaining procedures, especially those found 

in political and legal interactions, we believe that additional experimental investigation of this area could 

provide valuable insights that could later be validated with field experiments. For example, it is likely 

that the difficulties associated with backward induction can be reduced in a single-stage model or 

enhanced in games with more stages. Another interesting direction would be to explore the effects of 

ambiguity, i.e., a situation in which the proposer win probabilities are not known, which is clearly a 

feature of most field applications. Subjects tend to exhibit more risk aversion in cases of ambiguity [3], 

which can be implemented by not revealing the numbers of various colored marbles in urns used for 

random draws. Finally, the alternating-offer structure of these bargaining games could be generalized to 

allow endogenously or randomly determined decision sequences. 
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Instructions Appendix 

 Rounds and Matchings: The experiment consists of a number of rounds. Note: In each round, you 

will be matched with another person selected at random from the other participants. There will be a 

new random re-matching each round. 

 Initial Allocation: The initial status quo allocation involves a payment of $3.00 to one person, 

designated as Proposer (initial decision-maker), and an amount $7.00 to the other person,  

the responder. 

 Initial Decisions: The proposer begins by proposing an allocation of the total, $10.00, that may or 

may not differ from the initial allocation. The responder must either accept or reject this proposal. 

 Second Stage Decisions: If the responder (second-mover) rejects, then the amount available is 

reduced to $9.00, and the responder can make a proposal for how to allocate this lower amount. If a 

counter proposal is made, the initial proposer (first mover), must either accept it or not. 

 Dispute Outcome: If the counter proposal is rejected, the resulting dispute is resolved randomly, as 

explained on the next page. 

 Conflict Costs: If the process reaches the dispute stage, then a conflict cost is deducted from 

earnings; this cost is $2.00 for the proposer and $2.00 for the responder, irrespective of the outcome 

of the dispute.  

 Role: You have been randomly assigned to be a Proposer (or initial decision-maker) in this 

process, and you will begin by suggesting amounts of money for each of you that sum to $10.00. 
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 OR Role: You have been randomly assigned to be a Responder in this process. The other person 

(proposer) will begin by suggesting amounts of money for each of you that sum to $10.00. 

 Earnings with No Dispute: If the responder accepts the proposed reallocation, then it is 

implemented. If the responder rejects, then the amount available becomes $9.00, and the responder 

must make a counter-proposal on how to allocate this new amount. If the initial proposer accepts 

this counter-proposal, then it is implemented. If the counter-proposal is rejected, then the process 

goes to the dispute stage. 

 Earnings with a Dispute: The outcome is determined by the simulated throw of a 10-sided die, 

labeled 1, 2, ... 9, 10, where each outcome is equally likely. If the throw is less than or equal to 2, 

then the proposer wins, so the chances that the proposer wins are 2 out of 10, which translates into a 

probability .2 that the proposer wins. The winner of the dispute obtains the full amount available at 

this stage $9.00, minus their conflict cost, and the loser receives nothing (a loss equal to the conflict 

cost, which is $2.00 for the proposer and $2.00 for the responder). 

 At the beginning of each round, there will be a new random pairing of all participants, so the person 

who you are matched with in one round may not be the same person you are matched with in the 

subsequent round. Matchings are random, and you are no more likely to be matched with one 

person than with another. 

 The initial status quo allocation involves a payment of $3.00 to the proposer and $7.00 to the responder. 

 The proposer begins by suggesting an alternative allocation of the available $10.00; this proposal 

determines earnings for the round if it is accepted. 

 If the initial proposal is rejected, the amount of money available is changed to $9.00, and the 

responder must then make a counter-proposal for how to allocate this new amount. 

 Finally, the initial proposer must either accept the counter-proposal or reject. An acceptance 

implements the counter-proposal, and a rejection leads to a conflict. 

 In a conflict, the available amount, $9.00 goes to the proposer with probability.2, and it goes to the 

responder with probability .8, as determined by a random process that simulates the throw of a  

ten-sided die. 

 In the event of a conflict, the proposer incurs a cost of $2.00 and the responder incurs a cost of 

$2.00, regardless of the conflict outcome. 

 Special Earnings Announcement: Your cash earnings in this experiment will be 50% of your 

cumulative earnings at the end of the experiment. 
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Data Appendix, First Half (Rounds 1–15) 

Proposer Demands $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

number accepted, p = 0.2 0 0 2 46 32 0 0 0 0 0 

number rejected, p = 0.2 0 0 0 22 60 10 4 0 4 0 

number accepted, p = 0.4 0 0 0 6 84 8 0 0 0 0 

number rejected, p = 0.4 0 0 0 4 22 44 8 4 0 0 

number accepted, p = 0.6 0 0 0 2 66 38 2 0 0 0 

number rejected, p = 0.6 0 0 0 0 4 34 28 6 0 0 

number accepted, p = 0.8 0 0 0 0 14 54 42 0 0 0 

number rejected, p = 0.8 0 0 0 0 6 12 26 22 2 2 

Responder Demands $1 $2 $3 $4 $5 $6 $7 $8 $9 NA 

number accepted, p = 0.2 0 2 2 2 8 20 26 0 0 * 

number rejected, p = 0.2 0 0 0 0 0 6 18 12 4 * 

number accepted, p = 0.4 0 0 0 0 22 2 0 0 0 * 

number rejected, p = 0.4 0 0 0 0 22 30 6 0 0 * 

number accepted, p = 0.6 0 0 0 8 12 0 0 0 0 * 

number rejected, p = 0.6 0 0 0 16 18 16 2 0 0 * 

number accepted, p = 0.8 0 2 0 4 0 0 0 0 0 * 

number rejected , p = 0.8 0 0 8 30 14 6 6 0 0 * 

Data Appendix, Second Half (Rounds 6–10) 

Proposer Demands $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

number accepted, p = 0.2 0 10 40 32 14 0 0 0 0 0 

number rejected, p = 0.2 0 0 2 36 36 8 2 0 0 0 

number accepted, p = 0.4 0 0 4 52 70 2 0 0 0 0 

number rejected, p = 0.4 0 0 0 4 40 8 0 0 0 0 

number accepted, p = 0.6 0 0 0 0 24 94 10 0 0 0 

number rejected, p = 0.6 0 0 0 0 0 6 22 8 2 14 

number accepted, p = 0.8 0 0 0 0 18 12 54 10 0 0 

number rejected, p = 0.8 0 0 0 0 0 4 32 34 10 6 

Responder Demands $1 $2 $3 $4 $5 $6 $7 $8 $9 NA 

number accepted, p = 0.2 0 0 0 0 0 16 28 0 0 * 

number rejected, p = 0.2 0 0 0 0 0 6 16 8 10 * 

number accepted, p = 0.4 0 0 0 0 2 12 0 0 0 * 

number rejected, p = 0.4 0 0 0 0 0 24 12 0 2 * 

number accepted, p = 0.6 0 0 0 18 2 0 0 0 0 * 

number rejected, p = 0.6 0 0 2 20 8 2 0 0 0 * 

number accepted, p = 0.8 0 0 20 18 0 0 0 0 0 * 

number rejected , p = 0.8 0 0 18 16 10 4 0 0 0 * 
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