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Abstract: Sponsored search advertising has grown rapidly since the last decade and is now a
significant revenue source for search engines. To ameliorate revenues, search engines often
set fixed or variable reserve price to in influence advertisers’ bidding. This paper studies
and compares two pricing mechanisms: the generalized second-price auction (GSP) where
the winner at the last ad position pays the larger value between the highest losing bid and
reserve price, and the GSP with a posted reserve price (APR) where the winner at the last
position pays the reserve price. We show that if advertisers’ per-click value has an increasing
generalized failure rate, the search engine’s revenue rate is quasi-concave and hence there
exists an optimal reserve price under both mechanisms. While the number of advertisers
and the number of ad positions have no effect on the selection of reserve price in GSP, the
optimal reserve price is affected by both factors in APR and it should be set higher than GSP.

Keywords: Sponsored search advertising; symmetric Nash equilibrium; generalized failure
rate; generalized second-price auction; reserve price
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1. Introduction

In sponsored search advertising each advertiser bids for keywords and purchases sponsored links
relevant to his business from Google, Yahoo!, MSN, and their partners. When an internet user searches
a specific term or keyword in a search engine, sponsored links may be displayed in the front page in
addition to search result links. Whenever a sponsored link is clicked, its sponsor or advertiser will pay
the search engine a fee, called cost per-click (CPC), for the service of leading consumers to his web site.
Many corporations and small businesses take advantage of this affordable, targeted advertising method.
Google reported an annual revenue of $37.91 billion in 2011, and 96% of it came from its advertising
business (Google Investor Relations [1]).

Sponsored links associated with a particular keyword are sold through auction where each advertiser
submits a bid to the search engine for his willingness to pay for a CPC. In 2002 Google introduced
AdWords, which stipulates that an advertiser in position i pays a CPC that equals the bidding price of
the advertiser in position i + 1 plus a minimum increment. Named the generalized second-price (GSP)
auction, this mechanism has become the building block in sponsored search advertising. The revenue
created by each sponsored link to the search engine is determined by the advertiser’s CPC and the click
through rate (CTR), i.e., average number of clicks the link receives per unit time. There are a limited
number of sponsored links that a search engine can display on each page, and the links at the top of a
page receive significantly more clicks than ones at the bottom (Brooks [2]). For instance, ad links on
Google’s first page are most valuable, of which up to 3 links are on the top of search results and at most
8 links are on the right side.

To screen advertisers and improve the quality of sponsored links, search engines set up reserve price
called minimum bid to each keyword auction. Advertisers must pay at least the minimum bid per click
to maintain the active status of their ad links. Since early 2008 Yahoo! has no longer fixed its minimum
bid at $0.10 and started imposing variable minimum bids for some keywords (Yahoo! Search Marketing
Blog [3]). Later Google introduced the first page bid estimate to approximate the minimum CPC needed
to show a sponsored link in the first page, which is “based on placement in the last position on the right
hand side of Google. This may be anywhere between positions 1 and 11, depending on how many ads are
shown for that query” (Google Adwords Help [4]). If a link appears in the bottom-most position among
top links above search results, or if it is the only top link, the advertiser pays the amount of the CPC
threshold (Google Adwords Help [5]). Both first page bid estimate and CPC threshold are announced to
advertisers and updated regularly. To avoid various nomenclatures, we use reserve price to represent the
CPC that is charged to the advertiser winning the last ad position.

Motivated by the economy in sponsored search advertising and intrigued by the opaqueness of its
practice, we study and compare two pricing mechanisms for selling multiple heterogeneous ad positions.
The first is the GSP auction defined by Edelman et al. [6] and Varian [7] where the bidder winning the
lowest position pays the larger value between reserve price and the highest losing bid. The second, which
we suspect being adopted in practice, especially for selling top sponsored links above search results, is
basically a hybrid between an auction and a posted price mechanism. It is similar to GSP except for
stipulating that the winner of lowest position pays the posted reserve price regardless the number of
positions sold. Calling it the GSP auction with posted reserve price (APR), we attempt to address the
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following questions: (i) Does the optimal reserve price exist for each mechanism? Is it the same as the
one that applies to single-item auctions? (ii) In addition to bidder’s private value, are there other factors
that affect the selection of optimal reserve price? (iii) Which mechanism creates more expected revenue
for the search engine?

Although GSP has been widely used in the literature to analyze sponsored search advertising, it is
based on a static game that ignores the dynamic nature of the auction. The search engine determines
a reserve price before the auction starts while no ad position has been sold. In the reality, however,
the search engine may review periodically as to whether the current reserve price needs to be revised
given part of or all ad positions have been occupied. In a separate paper (Yang et al. [8]), we will
show that in the dynamic setting, the constant reserve price, suggested by GSP, is not optimal. On the
other hand, the optimal reserve price derived from APR is able to capture the influence of the number of
positions sold.

The rest of the paper is organized as follows. Section 2 reviews the related literature and highlights
our contribution. Section 3 starts with the discussion on equilibrium strategy in GSP and APR. We
then study these two pricing mechanisms for the search engine and derive the optimal reserve prices.
Comparison and analysis are presented in Section 4. Concluding remarks are placed in Section 5.

2. Literature Review and Contribution of the Paper

Reserve price for auctions has been studied long before sponsored search advertising came into
practice. Myerson [9], Riley and Samuelson [10] consider single-item auctions where risk neutral
bidders have independent private values. They discover that the item should be awarded to the bidder
who has the highest value if and only if it exceeds a critical threshold. Maskin and Riley [11] extend
the analysis to auctions with multiple identical items and show that the seller should set a fixed reserve
price independent from the number of bidders. Bulow and Roberts [12] use marginal revenue analysis
to associate auction theory with economic fundamentals. They let F (·) and f(·) denote the probability
distribution and density functions of bidders’ willingness to pay, respectively. If the monopolistic seller
sets a take-it-or-leave-it price r, then the expected quantity of sales would be q(r) = 1− F (r) = F̄ (r).
They show that the seller should disqualify those bidders with negative marginal revenues, and the value
that renders zero marginal revenue is the optimal reserve price. Explicitly, it is the solution of

MR(r) =
d

dq
[r · q(r)] = r − F̄ (r)

f(r)
= 0 (1)

A complication of sponsored search advertising is the heterogeneity of auction items or ad positions.
As the click-through rate is descending with positions, each advertiser chooses a position (or none) to
maximize his payoff, and equilibrium becomes a natural issue. Since GSP auctions are infinitely repeated
games, the sets of equilibria can be very large and analysis of possible equilibrium strategies becomes
intractable. Edelman et al. [6] focus on a static GSP in which bids are stabilized. They find that the
GSP auction generally does not have equilibrium in dominant strategies, and truth-telling does not lead
to an equilibrium. They define a locally envy-free equilibrium of the simultaneous game induced by
GSP where each advertiser cannot be better off by swapping bids with the advertiser ranked one position
above. Varian [7] proposes a notion of symmetric Nash equilibrium (SNE) and shows that the bids at
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the lower bound of SNE are the same as the bids under the locally envy-free equilibrium. Varian [7] also
shows that there is a compelling reason for players to bid at the lower bound of SNE. Empirical evidence
indicates that actual bidding observed in Google’s ad auction is in the neighborhood of lower bound
of SNE.

While research on sponsored search auction has been popular, study on its reserve price is sporadic.
Edelman and Schwarz [13] show that (1) applies to the optimal reserve price for a generalized English
auction. Defined in Edelman et al. [6] with more details, the generalized English auction starts with
a clock showing the current price, increasing over time from a reserve price. Bidders participating in
the auction are willing to pay at least the reserve price. As price goes up bidders start dropping out.
One’s bid is the price shown on the clock when he quits. The auction ends until the last bidder remains,
who wins the top ad position paying the price shown on the clock when the next-to-last one quits. The
next-to-last bidder wins the second position and pays the bid price of the third-highest bidder, and so
on. In light of this definition, in the generalized English auction, if the number of qualified bidder does
not exceed the number of positions, the one winning the last position pays the reserve price per click;
otherwise, he pays the larger value between the reserve price and the highest losing bid. In Theorem 1 we
prove the same optimality condition (1) for a generalized English auction when the number of bidders
is uncertain. However, in the APR mechanism when the winner of the lowest position pays the reserve
price regardless of the number of slots sold, the optimal reserve price does not satisfy (1).

In this article we study two pricing mechanisms, GSP and APR, in selling multiple heterogeneous ad
positions. In both mechanisms advertiser at position i pays the bid price of the advertiser at position i+1.
The only difference is that in APR the one occupying the last slot pays the posted reserve price while
in GSP he pays the larger value between reserve price and the highest losing bid. Since the number of
bidders in each period may vary, we assume that the bidding stream follows a Poisson distribution. The
number of qualified bidders, hence, is also a Poisson variable endogenously affected by the reserve price.
Poisson arrival assumption is standard in revenue management literature (Xiao and Yang [14], Feng and
Xiao [15]), and it is often adopted by economists. Wang [16] compares an auction with a posted-price
mechanism selling a uniquely indivisible object when buyers arrive randomly according to a Poisson
process. He finds that if the auctioning cost is absent, the auction always creates more revenue than
posted-price selling. As the empirical study by Varian [7] at Google shows that advertisers tend to follow
bidding strategies at the lower bound of symmetric Nash equilibrium, we focus on the lower bound of
SNE (or equivalently locally envy-free strategies) and maximize the search engine’s long-term expected
revenue rate with reserve price as a control variable. We prove that in either mechanism the expected
revenue rate is quasi-concave if advertisers’ per-click value has an increasing generalized failure rate
function. In GSP the optimal reserve price satisfies the condition of (1), while in APR, optimality
condition suggests that the optimal reserve price should be set higher than the one defined in GSP.
It depends on the number of positions, the number of advertisers, and their per-click values. From the
dynamic point of view, this is reasonable because when the search engine periodically reviews its reserve
price, the number of positions available for sale is unlikely constant. As a result, the reserve price should
reflect it and be adjusted accordingly. The minimum bids stated by search engines (see Yahoo! Search
Marketing Help [17]) corroborate our findings.
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3. Pricing Mechanisms

The keywords auctions in Yahoo! and Google are repeated games in which bidders gradually learn
the value of their competitors and adjust their bids accordingly. The set of equilibria in repeated games
can be very large and the strategies leading to such equilibria are complex. As Edelman et al. [6] note,
it may not be reasonable to expect advertisers capable of executing such strategies, especially when
they manage thousands of keywords. Edelman and Schwarz [13] show that a static game with certain
equilibrium strategy set is able to capture many important characteristics of the underlying dynamic
game. Hence, we study a simultaneous-move one-shot auction assuming that (1) bidders are likely to
learn all relevant information about each other’s value over time; (2) bidders submit their stable bids in
equilibrium. A drawback of this simplification is it implies that the auction always begins with the same
number of positions available prior to arrivals of bidders. In reality, the auction is continuous and the
number of positions remaining for sale varies from time to time.

In practice, Google ranks advertisers based on the product of each advertiser’s bid and his “quality
score”. The quality score is determined by a number of factors including the CTR, the keyword’s
relevancy to the advertiser’s business and the quality of his web site. Varian [7] and Edelman
et al. [6] both show that incorporating quality score in the study does not provide much additional
insight. Hence, in our paper both GSP and APR determine winners solely based on bid prices.

3.1. Equilibrium in GSP and APR

An exogenously given k ad positions are for sale through auction. There are n advertisers
endogenously affected by the reserve price r. The expected CTR received by ad position i is αi. Since
top positions receive higher CTR than lower positions, we have αi > αi+1 for 1 ≤ i ≤ k − 1 and
αi = 0 for i > k. Advertisers are risk-neutral possessing independent private information. They may
have distinct willingness to pay for one click, but for each advertiser, his per-click value stays the same
even if his ad appears in different positions. Let b(i), v(i) and I(i) denote the bid price, per-click value
and identity of the ith highest bid, respectively. If b(i) is greater than the reserve price, both mechanisms
allocate the ith position to the advertiser with the ith highest bid, I(i), where i ∈ {1, ...,min(n, k)}.
When the ith link is clicked by a user, advertiser I(i) pays the search engine an amount that equals the
next highest bid, b(i+1). If advertiser I(i) happens to be the winning bidder in the lowest ranking, he pays
the posted reserve price in APR or the larger value between reserve price and the highest losing bid in
GSP. The revenue received by the search engine from the ith sponsored link is αib(i+1) and the surplus
to advertiser I(i) is αi(v(i) − b(i+1)).

Definition 1 (Varian [7]) In a symmetric Nash equilibrium (SNE) bid prices satisfy

αi(v(i) − b(i+1)) ≥ αj(v(i) − b(j+1)),∀ i and j (2)

Varian shows that if a set of prices is an SNE, then it is a Nash equilibrium (NE). He further shows
that if the state of advertiser I(i) satisfies condition (2) for position j = i + 1 and j = i − 1, then it
satisfies (2) for all j. Hence, one only needs to compare each advertiser’s current position with its two
adjacent slots.
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Since the advertiser in position i does not want to move down, we have

αi(v(i) − b(i+1)) ≥ αi+1(v(i) − b(i+2)) (3)

On the other hand, the advertiser in position i+ 1 has no incentive to move one slot up. Thus,

αi+1(v(i+1) − b(i+2)) ≥ αi(v(i+1) − b(i+1)) (4)

The above two inequalities lead to

(αi − αi+1)v(i+1) + αi+1b
(i+2)

αi
≤ b(i+1) ≤

(αi − αi+1)v(i) + αi+1b
(i+2)

αi
(5)

Note that any b(i+1) satisfying the above inequalities is an equilibrium bid. Hence, there is a range of
such equilibrium strategies. From the practical point of view, this seems to make the equilibrium bids
indeterminate. Varian [7] examines the boundary cases by choosing the upper and lower bounds in (5),
which yields

b(i+1) =
(αi − αi+1)v(i+1) + αi+1b

(i+2)

αi
, (lower bound) (6)

b(i+1) =
(αi − αi+1)v(i) + αi+1b

(i+2)

αi
, (upper bound) (7)

It is easy to see that the bidding strategy at the lower bound belongs to the locally envy-free
equilibrium (Edelman et al. [6]) and it is in fact the lowest-revenue envy-free equilibrium (Edelman
and Schwarz [13]). Equations based on such an equilibrium with various names can be found in
several literatures including the self-selection condition in the priority pricing mechanism studied in
Harris and Raviv [18], and the indifference constraint in Wilson [19] that considers the myopic incentive
constrained pricing.

Questions that follow naturally are why advertisers are destined to the lower bound of SNE and how
their bids converge to this particular point? Varian [7] explains that it is more reasonable for the bidder
to compare his current payoff with what he will end up if he outbids the advertiser one slot above
him. He argues that among all SNE strategies, the lower bound strategy is the most appealing one to
advertisers since it defines the lowest bid prices that render each agent the most advantageous position.
Varian also shows that the lower bound strategy is closely related to the two-sided matching problem
discussed in Roth and Sotomayor [20]. Edelman et al. [6] show that if the dynamic game ever converges
to a static vector of bids, that static equilibrium should correspond to a locally envy-free equilibrium
of the static game induced by the GSP. In addition, both Edelman et al. [6] and Varian [7] show that
in the dominant-strategy Vickrey–Clarke–Groves equilibrium, the position and CPC of each advertiser
coincide with those in the lower bound of the SNE, and the outcome is the best for advertisers but worst
for the search engine. Hence, the lower bound strategy provides incentives to advertisers and it is most
likely attainable. Edelman and Schwarz [13] further show that the lower bound strategy in a GSP with
complete information, capturing behaviors in an incomplete information game, can be viewed as a valid
approximation. The empirical analysis conducted by Varian [7] over a random sample of 2425 auctions
at Google also shows that there is demonstrable evidence indicating that the actual bidding in Google’s
ad auction converges to the neighborhood of the equilibrium strategy at the lower bound of SNE.
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In the rest of the paper we use the term of (lowest-revenue) envy-free equilibrium and lower
bound of the SNE interchangeably. Any equilibrium strategy examined will satisfy the lower bound
constraint (6).

3.2. Optimal Reserve Price in Sponsored Search Advertising

We consider n qualified advertisers whose per-click values are represented by an n-dimensional
random vector (X1, X2, · · · , Xn). The realization of these n values is (x1, x2, · · · , xn). Rearranging
x1, x2, · · · , xn in an increasing order so that x(1) ≤ x(2) ≤ · · · ≤ x(n),where x(1) = min{x1, x2, · · · , xn},
x(2) is the second smallest value in the n-tuple, and so on. The function X(i) of (X1, X2, · · · , Xn) that
takes on the x(i) in each possible sequence (x1, x2, · · · , xn) of values assumed by (X1, X2, · · · , Xn) is
known as the ith order statistic.

Let X1, X2 · · · , Xn be identical and independent random variables with common probability density
function f(x) and distribution function F (x). We approximate the total number of advertisers by a
Poisson random variable with a mean λ. When the reserve price is equal to r, the probability for each
potential advertiser to participate in the auction is F̄ (r) = 1− F (r) and λF̄ (r) is the average number of
qualified bidders. One can regard λF̄ (r) as the demand function for ad positions and λ as the maximum
arrival rate when the reserve price is set to zero. Hence, the probability of having n eligible bidders per
unit time is equal to [λF̄ (r)]n

n!
e−λF̄ (r). Following Lariviere and Porteus [21], we define h(x) = f(x)

F̄ (x)
as the

failure rate of F (·) and g(x) = xh(x) as the generalized failure rate. As

g(x) = x
f(x)

F̄ (x)
= − x

dx

dF̄ (x)

F̄ (x)

the generalized failure rate g(x) is the absolute value of the price elasticity.
For a qualified bidder j its per-click value satisfies the following conditional distribution function

Fr(x) = P [Xj ≤ x|Xj ≥ r] =
P [r ≤ Xj ≤ x]

P [Xj ≥ r]
=
F (x)− F (r)

F̄ (r)

Hence, the marginal probability density function of X(i) is given by

f(i)(x) =
n!

(i− 1)!(n− i)!
[Fr(x)]i−1[1− Fr(x)]n−i

f(x)

F̄ (r)
(8)

and the expectation of X(i) can be written as

E[X(i)] =
∫ ∞
r

xf(i)(x)dx =
n!

(i− 1)!(n− i)!

∫ ∞
r

x[Fr(x)]i−1[1− Fr(x)]n−i
f(x)

F̄ (r)
dx (9)

Let p be the CPC the advertiser at the last position pays, i.e., b(n∧k)+1 = p, where n ∧ k = min(n, k).
Note that in GSP p is the larger value between r and the highest losing bid while p = r in APR. Equation
(6) enables us to derive b(i) recursively. For i < n ∧ k,

b(i) =
αib

(i+1) + (αi−1 − αi)X(n−i+1)

αi−1

(10)
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When there are k positions offered and n advertisers qualified, search engine’s revenue per unit time
is given by

R(n, n ∧ k) = pαn∧k +
n∧k−1∑
l=1

αlb
(l+1) (11)

In view of (10), for l < n ∧ k − 1, we have

αlb
(l+1) = αl+1b

(l+2) + (αl − αl+1)X(n−l)

= pαn∧k + (αl − αl+1)X(n−l) + · · ·+ (αn∧k−1 − αn∧k)X(n−n∧k+1)

which can be substituted into (11) to form a linear function of order statistics:

R(n, n ∧ k) = p(n ∧ k)αn∧k +
n∧k−1∑
l=1

l(αl − αl+1)X(n−l) (12)

As the true per-click values of advertisers are unknown to the search engine, R(n, n∧k) is uncertain and
its expectation can be depicted as

E[R(n, n ∧ k)] = p(n ∧ k)αn∧k +
n∧k−1∑
l=1

l(αl − αl+1)E[X(n−l)]

Conditioning on the number of qualified bidders n, the expected revenue rate is

Ψ(r) =
∞∑
n=0

E[R(n, n ∧ k)]
[λF̄ (r)]n

n!
e−λF̄ (r) (13)

The objective of the search engine is to maximize Ψ(r) by choosing an optimal reserve price r∗.

3.2.1. GSP

Lemma 1 In the lower bound of the locally envy-free equilibrium, the expected revenue rate to the
search engine from the static generalized second-price auction (GSP) for sponsored search advertising
is

ΨA(r) = r
k∑

n=1

(α1 + · · ·+ αn)
[λF̄ (r)]n

n!
e−λF̄ (r) +

k∑
n=1

∫ ∞
r

( n∑
l=1

αl − nαn
)

[λF̄ (x)]n

n!
e−λF̄ (x)dx

+ r(α1 + · · ·+ αk)
∞∑

n=k+1

[λF̄ (r)]n

n!
e−λF̄ (r) +

∞∑
n=k+1

∫ ∞
r

k∑
l=1

αl
[λF̄ (x)]n

n!
e−λF̄ (x)dx (14)

The proof of Lemma 1 and all other proofs are placed in the appendix.
In a GSP, the revenue contributions from n bidders consist of two parts: the minimum amount to win

a position, represented by

r(α1 + · · ·+ αn∧k)
[λF̄ (r)]n

n!
e−λF̄ (r)

and the extra to secure each winning position, represented by

[(α1 − αn) + · · ·+ (αn−1 − αn)]
∫ ∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx
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if n ≤ k and

(α1 + · · ·+ αk)
∫ ∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx

if n > k.
The standard regularity condition in the auction literature requires an increasing failure rate (IFR)

(Maskin and Riley [11]), while a milder condition is an increasing generalized failure rate (IGFR). The
assumption that the distribution function has an IGFR is prevalent in pricing and revenue management
literature (Ziya et al. [22] and Lariviere [23]). It ensures either a unimodal or quasi-concave
revenue function when selling a single product. Our model extends the result to the scenario with
heterogeneous products.

Theorem 1 If the value per click of each advertiser is a variable with IGFR, then (i) ΨA(r) is a
quasi-concave function; (ii) the optimal reserve price r∗ is given as the solution to the equation

r∗ − 1− F (r∗)

f(r∗)
= 0 (15)

Note that the generalized failure rate is the absolute value of price elasticity. IGFR implies that
consumers respond to a price increase more negatively when the reserve price is high than when it is
low. In sponsored search advertising, it means that the demand reduction in ad links resulted from a
mark-up is increasing in the reserve price, which reflects the behavior of rational advertisers. Thus, the
assumption of IGFR in Theorem 1 is minor and reasonable.

In auctions of selling a single item or multiple homogeneous items, the optimal reserve price solves
Equation (1) (Bulow and Roberts [12]). Theorem 1 shows that it is also the optimality condition for the
static GSP with heterogeneous items. Notice that condition (15) is equivalent to g(r) = 1 and g(r) is
the absolute value of price elasticity of demand. As g(r) is an increasing function of r, it makes perfect
sense for (15): increase the reserve price when demand is inelastic until the elasticity reaches unity;
further increases will reduce the revenue.

Although English auctions with multiple heterogeneous items and endogenous entries have been
studied in the literature, to our knowledge, there has not been theoretical development for an analytical
solution of the optimal reserve price. The significance of Theorem 1, hence, is twofold. It provides
the optimal reserve price for a static generalized English auction where the payment schedule for the
last winning bidder is dependent on the number of bidders; second, it shows that heterogeneity among
objects alone does not necessarily lead to a varied optimal reserve price.

3.2.2. APR

Lemma 2 In the locally envy-free equilibrium, the expected revenue rate to the search engine from APR
for sponsored search advertising is

ΨP (r) =
∞∑
n=1

[
r
n∧k∑
l=1

αl
[λF̄ (r)]n

n!
e−λF̄ (r) +

∫ ∞
r

( n∧k∑
l=1

αl − (n ∧ k)αn∧k

)
[λF̄ (x)]n

n!
e−λF̄ (x)dx

]
(16)

When there are n bidders in the auction, their contributions consist of two parts: the minimum amount
they have to pay to win a position, represented by

r(α1 + · · ·+ αn∧k)
[λF̄ (r)]n

n!
e−λF̄ (r)
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and the premium paid for securing each winning position, represented by

[(α1 − αn∧k) + · · ·+ (αn∧k−1 − αn∧k)]
∫ ∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx

For example, the advertiser taking the first position in the auction must pay α1r
[λF̄ (r)]n

n!
e−λF̄ (r) per

unit time to pass the revenue threshold defined by the reserve price, and an extra amount (α1 −
αn∧k)

∫∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx to be on top. In general, the heterogeneity among items for sale drives each

consumer to select the most advantageous one for him. If all items are identical (with the same CTR or
quality), no one will pay more than the reserve price.

The marginal revenue function can be verified as

Ψ′P (r) = [1− rf(r)

F̄ (r)
]
k∑

n=1

nαn
[λF̄ (r)]n

n!
e−λF̄ (r) + kαk

∞∑
n=k+1

[λF̄ (r)]n

n!
e−λF̄ (r)

Theorem 2 If each advertiser’s per-click value is a random variable with IGFR, then ΨP (r) is
quasi-concave and there exists a unique reserve price that maximizes the expected revenue rate. The
optimal reserve price r∗ is given as the solution to the equation

r∗ − [1 + θ(r∗)]
1− F (r∗)

f(r∗)
= 0 (17)

where

θ(r∗) =
kαk

∑∞
n=k+1

[λF̄ (r∗)]n

n!∑k
n=1 nαn

[λF̄ (r∗)]n

n!

The optimality condition (17) of reserve price in APR clearly differs from (15) in GSP, which can be
written as g(r) = 1 + θ(r). The perturbation factor θ(r) shows that it is directly related to the bidder
population λ, the number of available ad positions k, and the distribution of bidders’ valuation function
F . The proof of Theorem 2 shows that θ(r) is decreasing in r. With the assumption of IGFR, there is an
optimal reserve price that achieves the maximal expected revenue rate.

4. Discussions

4.1. Revenue Comparison

The only difference between GSP and APR discussed in the preceding section is what the kth highest
bidder pays when there are at least k qualified advertisers. In APR the kth position winner pays reserve
price while in GSP, the bidder winning the kth ad spot pays the reserve price, or the (k + 1)th highest
bid, whichever comes higher. The two different auction mechanisms, hence, affect bidding in their own
ways. APR bidders may perceive that they have good chance to win as long as they bid over the reserve
price. On the contrary, GSP bidders have no idea how much the one at the last position will pay, thus
each has a tendency to bid more aggressively. As a result, GSP creates higher revenue for the seller.
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Corollary 1 The revenue surplus of GSP over APR is given explicitly by

ΨA(r)−ΨP (r) = kαk

∫ ∞
r

∞∑
n=k+1

[λF̄ (x)]n

n!
e−λF̄ (x)dx

As the reserve price increases from zero, both revenue rates go up while APR is affected more since
Ψ′A(r) < Ψ′P (r). When the reserve price reaches a level where at most k bidders can afford it, the
marginal revenue difference diminishes and ΨP (r) converges to ΨA(r).

Although on average the GSP mechanism creates more revenue, APR has some practical appeals.
First, the sponsored search auction is continuous and advertisers can update their bids over time. When
a consumer clicks the ith ad link, advertiser I(i) pays the search engine the bid price b(i+1) in real-time.
Without a posted reserve price, it may take a long time for advertisers to reveal their true willingness
to pay. The longer the bid price lingering at a low level, the more revenue loss the search engine will
suffer. Second, strategic bid behaviors in sponsored search auction are not uncommon. In GSP it is
easier for advertisers to collude and artificially depress bid prices, especially when the demand exceeds
the number of links since the winner of the last position pays the next highest bid price instead of the
reserve price. Imposing a starting price is able to mitigate that risk. Third, reserve price has become an
effective tool for search engines to improve advertising quality. A consumer’s need may not always be
met after clicking a sponsored link. Imposing a reserve price and screening out irrelevant links is able to
reduce consumers’ utility loss and increase the traffic for existing ads. In addition, we have just shown
that once the reserve price is raised to a level where there are at most k qualified bidders, the revenue
difference between APR and GSP becomes negligible.

4.2. Elevated Reserve Price

Classical auction theory shows that when selling identical items to a given number of bidders, the
marginal revenue from a bidder with value r is r − 1

h(r)
. Without complete information to tell bidders

apart, the seller charges only r − 1
h(r)

to the bidder instead of extracting his entire value. Hence, the
inverse failure rate 1

h(r)
can be understood as the consumer surplus or his information rent attributed to

the private information on his willingness to pay. If we compare the first-order conditions (17) with (1),
the only difference is the perturbation factor θ(r). By specifying a reserve price for winning the last
item, the seller reveals additional information to bidders with which they can use the reserve price as a
reference for bidding. Hence, in APR bidders retain more information rent and achieve higher consumer
surplus that equals to 1+θ(r)

h(r)
. It is worth noting that θ(r) is decreasing in r. As reserve price increases,

the additional consumer surplus disappears because the chance of underbidding is diminishing.

Corollary 2 In APR mechanism selling multiple heterogeneous ad positions, the optimal reserve price
should be set higher than the one in GSP.

Intuitively 1+θ(r)
h(r)

implies higher consumer surplus and lower marginal revenue for the seller with the
same r. Hence the seller will set a higher reserve price to offset reduced revenue resulting from the
revealed information.

Example 1 There are k = 5 sponsored links for sale. Bid arrival follows a Poisson distribution with
mean λ = 20. The per-click value of each advertiser is random and uniformly distributed within [0, 1].
The CTRs are defined according to the empirical results in Brooks [2].
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Figure 1. Search engine’s expected revenue rates from APR and GSP mechanisms

Figure 1 depicts the search engine’s expected revenue rates versus reserve price in APR and GSP,
respectively. GSP creates more revenue than APR, and its revenue advantage disappears as the reserve
price increases. It is clear that the optimal reserve price in GSP is 0.5 according to (15). Figure 1 also
verifies that the search engine should set the reserve price higher in APR.

4.3. Advertiser Population

Each keyword for sale has its own market, whose demand is gauged by both the market size and
depth. While market size represents the average number of potential buyers, market depth stands for the
amount they each bid. The dynamic nature of advertising business is likely to influence the market size
and depth over the course of time. Hence, it is necessary for the search engine to review the reserve price
for each keyword when such changes in the market take place. The following proposition shows how
the population of potential bidders affects the optimal reserve price.

Corollary 3 In APR where the value distribution is IGFR, the optimal reserve price r is an increasing
function of the arrival rate of advertisers λ.

Any additional demand is beneficial to the search engine because a new advertiser not only pays more
for a sponsored link than the current reserve price, but also increases the competition and prompts other
advertisers to raise the bids accordingly to secure their positions. Hence, given the limited space for
displaying sponsored results on its front page, when the population of bidders for a keyword increases,
the search engine should lift reserve price to create more revenue. Recognizing the importance of the
market size, search engines make continuous efforts to recruit new advertisers. For instance, Yahoo!
offers a $25 of signing credit for any new customer. In addition, no longer using the fixed $.10 minimum
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bid policy for sponsored search, Yahoo! now adjusts reserve price in a particular keyword market based
on multiple factors including the number of bidders and the bid amounts (see Yahoo! Search Marketing
Help [17]). Such a shift in pricing strategy corroborates our theoretical findings.

5. Conclusion

In sponsored search advertising advertisers compete for ad links that appear in the front page of major
search engines including Google and Yahoo! through auctions. Search engines often set variable reserve
price to influence advertiser’s bidding and create more revenue. However, as advertising capacity is
perishable, arbitrary thresholds may adversely affect revenues.

This paper compares two pricing mechanisms in sponsored search advertising—the generalized
second-price auction (GSP) where the last winning position is charged the larger value between the
reserve price and the highest losing bid, and an alternative GSP with posted reserve price (APR) where
the last winning position pays the reserve price regardless how many positions are sold. Although the
standard GSP is extensively studied in the literature to derive optimal reserve price, it fails to capture
the dynamics of the auction. The continuous bidding game is unlikely to have the same number of
unsold positions in each period and may require periodical reviews of the reserve price. The proposed
APR mechanism is an attempt to remedy the problem. We assume that the number of eligible bidders
is endogenously controlled by the reserve price. Focusing on the lower bound of the SNE our models
maximize the long-term expected revenue rate. If the value per click of bidders has the property of IGFR,
the expected revenue rates in both GSP and APR are quasi-concave of the reserve price and there exists
a unique optimizer for each mechanism. In particular, the optimal reserve price in GSP is proved to
be the same as the one in single-item auctions that is dependent on only the private value distribution.
In contrast, the optimal reserve price in APR, depending on both the numbers of bidders and positions,
should be set higher compared with the one in GSP.

Current research can be extended in several directions. First, in our model the CTR of each slot
is exogenous. Although this is a standard assumption, it may not always be the case especially when
not all slots are occupied. For instance, when it is only ad showing the link on the right of the first
page may receive more clicks than when it has companies. Taking this situation into account will make
our pricing model much more complex. On the other hand, it may facilitate the analysis on the optimal
number of sponsored links a search engine should sell in the first page. Second, our model maximizes the
expected revenue rate in a static auction with an endogenous number of bidders. It might be interesting
to consider a dynamic model investigating how the search engine should update the reserve price at each
period based on the incumbent and potential new entry. Third, it is worth exploring the Bayes–Nash
equilibria of GSP and APR, and investigating whether the Revenue Equivalence Theorem (Myerson [9])
applies to the two mechanisms.
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Appendix

Proof of Lemma 1 Let RA(n, n ∧ k) be the expected average revenue rate from a GSP. We have

RA(n, n) = rnαn +
n−1∑
l=1

l(αl − αl+1)X(l+1), ∀n ≤ k

and

RA(n, k) =
k∑
l=1

l(αl − αl+1)X(l+1), ∀n > k

Obviously, RA(0, 0) = 0 as no ad position will be occupied. In an auction with n bidders and reserve
price r, RA(n, n ∧ k) is a random variable. For 1 ≤ n ≤ k,

E[RA(n, n)] = αnnr + n!
∫ ∞
r

x
n−1∑
l=1

l(αl − αl+1)F n−l−1
r (x)F̄ l

r(x)

(n− l − 1)!l!

f(x)

F̄ (r)
dx

and for n > k,

E[RA(n, k)] = n!
∫ ∞
r

x
k∑
l=1

l(αl − αl+1)F n−l−1
r (x)F̄ l

r(x)f(x)

(n− l − 1)!l!F̄ (r)
dx

where αk+1 = 0 indicates that the search engine does not offer more than k ad positions. These equalities
are true because for n ≤ k, the last bidder will pay r for each click and for n > k, the kth bidder will
pay the (k + 1)th bid price, which may be higher than r.

Let ΨA(r) denote the expected revenue rate of a GSP. It can be decomposed into the sum of ΨA1(r)

and ΨA2(r) where

ΨA1(r) =
k∑

n=1

αnnr
[λF̄ (r)]n

n!
e−λF̄ (r)

and

ΨA2(r) =
k∑

n=2

λne−λF̄ (r)
∫ ∞
r

x
n−1∑
l=1

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)

(n− l − 1)!l!
f(x)dx

+
k∑
l=1

∫ ∞
r

x
∞∑

n=k+1

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)f(x)

(n− l − 1)!l!
λne−λF̄ (r)dx

= λ
k∑
l=1

∫ ∞
r

xf(x)l(αl − αl+1)
[λF̄ (x)]l

l!
e−λF̄ (x)dx

Hence, the expected revenue rate function becomes

ΨA(r) =
k∑

n=1

αnnr
[λF̄ (r)]n

n!
e−λF̄ (r) + λ

k∑
l=1

∫ ∞
r

xf(x)l(αl − αl+1)
[λF̄ (x)]l

l!
e−λF̄ (x)dx

Applying integration by parts to the last item in ΨA(r), we have

ΨA(r) = r
k∑

n=1

(α1 + ...+ αn)
[λF̄ (r)]n

n!
e−λF̄ (r) +

k∑
n=1

(α1 + ...+ αn − nαn)
∫ ∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx

+ r(α1 + ...+ αk)
∞∑

n=k+1

[λF̄ (r)]n

n!
e−λF̄ (r) + (α1 + ...+ αk)

∞∑
n=k+1

∫ ∞
r

[λF̄ (x)]n

n!
e−λF̄ (x)dx
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Proof of Theorem 1 Taking the derivative of ΨA(r) with respect to r leads to

Ψ′A(r) = [1− rf(r)

F̄ (r)
]
k∑

n=1

nαn
[λF̄ (r)]n

n!
e−λF̄ (r)

Dividing both sides by
∑k
n=1 nαn

[λF̄ (r)]n

n!
e−λF̄ (r) leads to

Ψ′A(r)

e−λF̄ (r)
∑k
n=1 nαn

[λF̄ (r)]n

n!

= 1− rf(r)

F̄ (r)

If advertisers’ willingness to pay has an increasing generalized failure rate (IGFR), then the ratio rf(r)
F̄ (r)

is increasing in r and the right-hand side of the preceding equality is decreasing in r. Therefore, Ψ′A(r)

is either positive for all r ≥ 0 or negative for all r ≥ 0 or equals zero at a point r∗ such that for r ≤ r∗,
Ψ′A(r) ≥ 0 and for r > r∗, Ψ′A(r) < 0. That is, ΨA(r) is quasi-concave in r and has a sole maximum at
r∗.

Proof of Lemma 2 Let n be the number of qualified bidders. When n = 1, the search engine gains
the expected revenue E[RP (1, 1)] = RP (1, 1) = α1r. For 1 < n ≤ k, the expected revenue is

E[RP (n, n)] = αnnr + n!
∫ ∞
r

x
n−1∑
l=1

l(αl − αl+1)F n−l−1
r (x)F̄ l

r(x)

(n− l − 1)!l!

f(x)

F̄ (r)
dx

and for n > k, it is

E[RP (n, k)] = αkkr + n!
∫ ∞
r

x
k−1∑
l=1

l(αl − αl+1)F n−l−1
r (x)F̄ l

r(x)f(x)

(n− l − 1)!l!F̄ (r)
dx

where Fr(x) = F (x)−F (r)
1−F (r)

, F̄r(x) = 1− Fr(x) and F̄ (r) = 1− F (r).
Let ΨP (r) = ΨP1(r) + ΨP2(r) where

ΨP1(r) =
k−1∑
n=1

αnnr
[λF̄ (r)]n

n!
e−λF̄ (r) +

∞∑
n=k

αkkr
[λF̄ (r)]n

n!
e−λF̄ (r)

and

ΨP2(r) =
k−1∑
n=2

λne−λF̄ (r)
∫ ∞
r

x
n−1∑
l=1

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)

(n− l − 1)!l!
f(x)dx

+
k−1∑
l=1

∫ ∞
r

x
∞∑
n=k

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)f(x)

(n− l − 1)!l!
λne−λF̄ (r)dx

It follows that

ΨP2(r) =
k−2∑
n=1

λn+1e−λF̄ (r)
∫ ∞
r

x
n∑
l=1

l(αl − αl+1)[F (x)− F (r)]n−lF̄ l(x)

(n− l)!l!
f(x)dx

+
k−1∑
l=1

∫ ∞
r

x
∞∑
n=k

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)f(x)

(n− l − 1)!l!
λne−λF̄ (r)dx

=
k−2∑
l=1

e−λF̄ (r)
∫ ∞
r

x
k−2∑
n=l

λn+1 l(αl − αl+1)[F (x)− F (r)]n−lF̄ l(x)

(n− l)!l!
f(x)dx
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+
k−1∑
l=1

∫ ∞
r

x
∞∑
n=k

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)f(x)

(n− l − 1)!l!
λne−λF̄ (r)dx

= e−λF̄ (r)
k−2∑
l=1

∫ ∞
r

xl(αl − αl+1)λl+1

eλ[F (x)−F (r)] −
∞∑

n=k−1

{λ[F (x)− F (r)]}n−l

(n− l)!

 F̄ l(x)

l!
f(x)dx

+
k−1∑
l=1

∫ ∞
r

x
∞∑
n=k

l(αl − αl+1)[F (x)− F (r)]n−l−1F̄ l(x)f(x)

(n− l − 1)!l!
λne−λF̄ (r)dx

= e−λF̄ (r)
k−2∑
l=1

∫ ∞
r

xl(αl − αl+1)λl+1eλ[F (x)−F (r)] F̄
l(x)

l!
f(x)dx

+ e−λF̄ (r)
∫ ∞
r

x(k − 1)(αk−1 − αk)λkeλ[F (x)−F (r)] F̄
k−1(x)

(k − 1)!
f(x)dx

= λ
k−1∑
l=1

∫ ∞
r

xf(x)l(αl − αl+1)
[λF̄ (x)]l

l!
e−λF̄ (x)dx

Applying integration by parts to the last expression leads to

ΨP2(r) = r
k−1∑
n=1

n(αn − αn+1)
∞∑

l=n+1

[λF̄ (r)]l

l!
e−λF̄ (r) +

k−1∑
n=1

n(αn − αn+1)
∞∑

l=n+1

∫ ∞
r

[λF̄ (x)]l

l!
e−λF̄ (x)dx

Hence, the expected revenue rate becomes

ΨP (r) = ΨP1(r) + ΨP2(r)

=
k−1∑
n=1

αnnr
[λF̄ (r)]n

n!
e−λF̄ (r) +

∞∑
n=k

αkkr
[λF̄ (r)]n

n!
e−λF̄ (r) +

r
k−1∑
n=1

n(αn − αn+1)
∞∑

l=n+1

[λF̄ (r)]l

l!
e−λF̄ (r) +

k−1∑
n=1

n(αn − αn+1)
∞∑

l=n+1

∫ ∞
r

[λF̄ (x)]l

l!
e−λF̄ (x)dx

= r
k∑

n=1

(α1 + ...+ αn)
[λF̄ (r)]n

n!
e−λF̄ (r) + r(α1 + ...+ αk)

∞∑
n=k+1

[λF̄ (r)]n

n!
e−λF̄ (r) +

∫ ∞
r


k∑

n=2

(α1 + ...+ αn − nαn)
[λF̄ (x)]n

n!
e−λF̄ (x) + (α1 + ...+ αk − kαk)

∞∑
n=k+1

[λF̄ (x)]n

n!
e−λF̄ (x)

 dx
Proof of Theorem 2 Taking the derivative of ΨP1(r) with respect to r, we obtain

Ψ
′

P1(r) =
ΨP1(r)

r
+

k−1∑
n=1

αnnr
n[λF̄ (r)]n−1[−λf(r)]

n!
e−λF̄ (r) +

k−1∑
n=1

αnnr
[λF̄ (r)]n[λf(r)]

n!
e−λF̄ (r)

+
∞∑
n=k

αkkr
n[λF̄ (r)]n−1[−λf(r)]

n!
e−λF̄ (r) +

∞∑
n=k

αkkr
[λF̄ (r)]n[λf(r)]

n!
e−λF̄ (r)

=
ΨP1(r)

r
+

k−1∑
n=1

αnnr
n[λF̄ (r)]n−1[−λf(r)]

n!
e−λF̄ (r) +

k−1∑
n=1

αnnr
[λF̄ (r)]n[λf(r)]

n!
e−λF̄ (r)

− αkkrλf(r)e−λF̄ (r) [λF̄ (r)]k−1

(k − 1)!

Similarly,

Ψ
′

P2(r) = −λ
k−1∑
n=1

λne−λF̄ (r)n(αn − αn+1)F̄ n(r)

n!
rf(r)
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= −λ
k−1∑
n=1

e−λF̄ (r)nαn[λF̄ (r)]n

n!
rf(r) + λ

k−1∑
n=1

e−λF̄ (r)nαn+1[λF̄ (r)]n

n!
rf(r)

Adding Ψ
′
P1(r) and Ψ

′
P2(r) yields

Ψ′P (r) =
ΨP1(r)

r
−

k−1∑
n=1

αnnr
[λF̄ (r)]n−1

(n− 1)!
e−λF̄ (r)λf(r)

− αkkrλf(r)e−λF̄ (r) [λF̄ (r)]k−1

(k − 1)!
+ λ

k−1∑
n=1

e−λF̄ (r)nαn+1[λF̄ (r)]n

n!
rf(r)

=
ΨP1(r)

r
−

k∑
n=1

αnnr
[λF̄ (r)]n−1

(n− 1)!
e−λF̄ (r)λf(r) + λ

k−1∑
n=1

e−λF̄ (r)nαn+1[λF̄ (r)]n

n!
rf(r)

=
ΨP1(r)

r
−

k∑
n=1

αn(n− 1)r
[λF̄ (r)]n−1

(n− 1)!
e−λF̄ (r)λf(r)

−
k∑

n=1

αnrλf(r)e−λF̄ (r) [λF̄ (r)]n−1

(n− 1)!
+

k−1∑
n=1

αn+1nr
[λF̄ (r)]n

n!
e−λF̄ (r)λf(r)

=
ΨP1(r)

r
−

k∑
n=1

αnrλf(r)e−λF̄ (r) [λF̄ (r)]n−1

(n− 1)!

=
k∑

n=1

αnn
[λF̄ (r)]n

n!
e−λF̄ (r) +

∞∑
n=k+1

αkk
[λF̄ (r)]n

n!
e−λF̄ (r)

−
k∑

n=1

αnrλf(r)n
[λF̄ (r)]n−1

n!
e−λF̄ (r)

= [1− rf(r)

F̄ (r)
]
k∑

n=1

nαn
[λF̄ (r)]n

n!
e−λF̄ (r) + αkk

∞∑
n=k+1

[λF̄ (r)]n

n!
e−λF̄ (r)

Dividing both sides by
∑k
n=1 nαn

[λF̄ (r)]n

n!
e−λF̄ (r) leads to

Ψ′P (r)

e−λF̄ (r)
∑k
n=1 nαn

[λF̄ (r)]n

n!

= 1− rf(r)

F̄ (r)
+
kαk

∑∞
n=k+1

[λF̄ (r)]n

n!∑k
n=1 nαn

[λF̄ (r)]n

n!

= 1− rf(r)

F̄ (r)
+
kαk

∑∞
n=k+1

[λF̄ (r)]n−k

n!∑k
n=1 nαn

[λF̄ (r)]n−k

n!

If advertisers’ willingness to pay has an increasing generalized failure rate (IGFR), then the ratio rf(r)
F̄ (r)

is
increasing in r. This implies, after simple algebra, that the right-hand side of the preceding equality is
decreasing in r. Therefore, Ψ′P (r) is either positive for all r ≥ 0 or negative for all r ≥ 0 or equals zero
at a point r∗ such that for r ≤ r∗, Ψ′P (r) ≥ 0 and for r > r∗, Ψ′P (r) < 0. That is, ΨP (r) is quasi-concave
in r and has a sole maximum at r∗.

Proof of Corollary 1 Subtracting (16) from (14) gives

ΨA(r)−ΨP (r) = = λ
∫ ∞
r

xf(x)kαk
[λF̄ (x)]k

k!
e−λF̄ (x)dx− kαk

∞∑
n=k+1

r
[λF̄ (r)]n

n!
e−λF̄ (r)

= kαk

∫ ∞
r

xf(x)
λ[λF̄ (x)]k

k!
e−λF̄ (x)dx− kαkr

[
1−

k∑
n=0

[λF̄ (r)]n

n!
e−λF̄ (r)

]
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= kαk

∫ ∞
r

xf(x)
λ[λF̄ (x)]k

k!
e−λF̄ (x)dx− kαk

∫ ∞
r

rf(x)
λ[λF̄ (x)]k

k!
e−λF̄ (x)dx

= kαk

∫ ∞
r

∞∑
n=k+1

[λF̄ (x)]n

n!
e−λF̄ (x) > 0

where the third equation comes from Erlang distribution.

Proof of Corollary 2 In light of Equation (1) the optimal reserve price satisfies g(r∗0) = 1. In Equation
(17), θ(r) is clearly positive. Hence, g(r∗) = 1 + θ(r∗) > 1, and we must have r∗ > r∗0 because of the
assumption of IGFR.

Proof of Corollary 3 We let θ(r, λ) replace θ(r) to underscore its dependence on λ. However, g(r)

is irrelevant to λ. The first-order condition (17) can be rearranged as 1 − g(r(λ)) + θ(r(λ), λ) = 0.
Differentiating with respect to λ in the both sides of the equation establishes

−g′(r(λ))r′(λ) +
∂θ(r(λ), λ)

∂λ
+
∂θ(r(λ), λ)

∂r
r′(λ) = 0

or

r′(λ) =
∂θ(r(λ),λ)

∂λ

g′(r(λ))− ∂θ(r(λ),λ)
∂r

As θ(r, λ) is decreasing in r and increasing in λ, and the valuation of bidders is IGFR, r′(λ) > 0. In
other words, the optimal reserve price is increasing in the total population of bidders that are interested
in the keyword ad positions.
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