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Abstract: Players in economic situations often have preferences not only over their own 

outcome but also over what happens to fellow players, entirely apart from any strategic 

considerations. While this can be modeled directly by simply writing down final 

preferences, these are commonly unknown a priori. In many cases it is therefore both 

helpful and instructive to explicitly model these interactions. This paper presents a simple 

structure in the context of game theory, building on a model due to Bergstrom, that 

incorporates these ‘synergisms’ between players. It is powerful enough to cover a wide 

range of such interactions and model many disparate experimental and empirical results, 

yet straightforward enough to be used in many applied situations where altruism, or a baser 

motive, is implied. 

Keywords: altruism; interdependent preferences; fairness; cooperation 

 

1. Introduction 

Frank [1] states that “Our utility-maximization framework has proven its usefulness for 

understanding and predicting human behavior. With more careful attention to the specification of the 

utility function, the territory to which this model applies can be greatly expanded.” This is a 

particularly germane observation with respect to game theory. Theorists tend simply to assume that 

they are given the full and correct final preferences of players in a game, and that their object is to 

analyze the resulting strategic interactions. Where these preferences come from, and especially what 

differences might arise between the payoff to an individual and his or her ultimate preference over 

outcomes, has generally not been considered to be within the purview of game theory. However, as 

Frank pointed out, this necessarily limits the scope of the theory. For instance, it is probably not an 

exaggeration to say that all game theorists feel that no rational player should ever knowingly play a 
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strictly dominated strategy. And yet this is exactly what robustly occurs in the one-shot Prisoner’s 

Dilemma. The fault lies not with the theory, but with the inattention as to its application. 

This paper attempts to provide a general, formal, theoretical link between the base payoffs in a 

game, and the resulting final utilities or preferences. The discrepancy is due to the fact that players 

care about the utilities of the other players in the game, e.g. due to altruism. The main reason to 

formalize this link is to provide applied and experimental economists with a model for this pervasive 

interaction, so they are not forced to come up with new (and ad hoc) formulations every time it is 

relevant. There is also a second reason, the stock-in-trade of theorists: to understand the process better. 

The jump from payoffs to final utilities goes on all the time in almost all games, so we should have a 

model (or, better yet, several competing models) of how it happens and what it implies. 

We introduce a general definition of games with synergistic utility. Synergistic utility functions 

capture the idea that utility increases in one’s own payoff, and may increase or decrease in others’ 

utilities. Sufficient technical conditions are imposed for the concept to be well-defined, but otherwise 

the formulation is general enough to allow maximal variety in specific applications. All players are 

fully rational (including being expected-utility maximizers) and no new equilibrium concepts are 

introduced. A specific example, the linear synergistic utility function, is introduced and analyzed in 

greater detail. Several applications of the theory are given, including: cooperation in the Prisoner’s 

Dilemma, overproduction in Cournot oligopoly, extended play in the centipede game, and interior 

solutions in the dictator game. 

The paper proceeds to Section 2, in which some of the related literature, both applied and 

theoretical, is discussed and compared with the synergistic utility concept. In Section 3, the formal 

model, including the central definition, is given. Next, Section 4 illustrates the theory with examples 

both of different synergistic utility functions and of their application to different games of interest. 

Section 5 addresses several topics from game theory, such as incomplete information, in the context of 

synergistic games. Finally, Section 6 briefly concludes. 

2. Literature 

The literature relating to altruism and interdependent preferences is wide and diverse, with each 

paper seemingly taking its own course. The first broad category can be considered to be the various 

applications of altruistic-like tendencies in specific situations. This includes, in the macroeconomics 

literature using overlapping generations (OLG) models, the famous paper of Barro [2] on Ricardian 

equivalence, the subsequent paper by Kotlikoff et al. [3] which disputes the finding, and Kimball’s [4] 

extension to  

two-sided altruism. The models in these papers have “dynasties” in which ancestors care about their 

descendants’ consumption as well as their own. Bisin [5] and Verdier [6] study the Prisoner’s 

Dilemma in the context of cultural transmission, modeling altruism with the addition of a positive 

constant. All of these papers model altruism in one direction only, i.e. there is no feedback effect 

between the players. In labor economics, Rotemberg [7] studies relations in the workplace. He 

determines under what conditions cooperation can be obtained and when this benefits the employer, 

but defines altruism only insofar as an employee’s utility is the sum of payoffs to the group. He states, 

“Cooperative outcomes for either individual in the Prisoner’s Dilemma obtain only when both 
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individuals feel altruistic toward each other.” As we shall see, this contradicts the conclusions of a 

synergistic utility model, in which an altruistic player may desire to cooperate even when facing a non-

altruistic opponent. 

Altruism within the family has been studied since Becker [8] and his ‘Rotten Kid Theorem’. He 

models interdependent utilities using a basic additive form. Bruce and Waldman [9] compare this line 

of work to the Samaritan’s Dilemma and Barro-Ricardian equivalence in a similar framework. Other 

work applying some degree of altruism includes Coate [10], who studies insurance with rich and poor 

agents, Bernheim and Stark [11], who address some negative consequences of altruism, and Collard 

[12] in a general equilibrium framework. In the context of society rather than family, Maccheroni, 

Marinacci, and Rustichini [13] give an axiomatic representation of interdependent preferences in the 

presence of a social value function. It is to be emphasized that this is only a small sample of the work 

that employs altruism or interrelated utilities in some form or other. In addition to the various subfields 

of economics already mentioned, these types of models have been used in areas ranging from law to 

philosophy to political science. 

The second general class of papers are those on evolution and biology, which are also closely tied 

to the theoretical psychology literature. Frank [1] is in this vein when he studies the commitment 

problem. He finds that if one can choose to be a guilty type (perhaps through an evolutionary process) 

and show it, one can commit credibly. This can be of great benefit, for instance in the provision of 

public goods. Bergstrom [14] studies genetically predetermined behaviors, which is to say there is no 

free choice on the part of the players. He finds that cooperation in the Prisoner’s Dilemma can be a 

stable outcome when players have preferences taking into account the payoffs (not the utility) of others 

and genetic propagation occurs through imitation of successful strategies. A recent extension of the 

traditional “evolution-of-strategies” literature is the “evolution-of-preferences” literature, typified e.g. 

by Dekel, Ely, and Yilankaya [15], which discusses optimality of utility at a meta-level. This is, once 

again, only a sample of the papers which consider this sort of evolutionary fitness paradigm. They are 

distinguished from the present work in that the latter is concerned with rational and strategic players in 

a non-dynamic setting, but it is interesting to note that some of the conclusions reached are similar. 

A large number of experimental economics papers have looked at different games and found results 

that diverge from those predicted by the basic equilibrium concepts. Dawes and Thaler [16] study 

experiments with public goods, ultimatum games, and the Prisoner’s Dilemma. They discuss altruism 

in general as an explanation but do not suggest a model. Palfrey and Rosenthal [17] also study public 

goods provision, with altruism consisting of a single lump-sum addition to payoffs (from “doing the 

right thing”) when a player contributes. Cooper et al. [18] consider altruism in the setting of cheap talk 

and coordination games. One of the complications that arise from explaining the data in these and 

other games in this way is that it requires not only positive emotional interactions, such as altruism, but 

also negative interactions, such as spite (or at least retribution). For instance, it is otherwise impossible 

to rationalize rejected offers in the ultimatum game. Levine [19] creates a relatively simple theory with 

utility linear in one’s own and one’s opponent’s payoffs (with a possibly negative weight on the 

opponent). He pins down the parameters of his model by matching data on ultimatum and centipede 

games. He then tests the model, with some success, on public goods games and on market games. The 

main distinctions between his theory and the synergistic utility theory are that his players care about 

the payoffs, rather than the utilities, of their opponents, and that he includes a reciprocity factor, so that 
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how a player cares about others depends on how they care about him. It turns out that much of the 

observed behavior can be explained without introducing this additional slight complexity, as will be 

seen below, and that synergistic utilities can also rationalize some behavior (e.g. in the dictator game) 

that Levine’s model, as it stands, cannot. Charness and Haruvy [20] experimentally test several models 

within a single framework, and Andreoni and Miller [21] show that preferences involving altruism are 

rational in the sense that they satisfy GARP. 

This leads naturally to the final group of related papers, those from the game theory literature. 

Geanakoplos, Pearce and Stacchetti [22] introduce the concept of psychological games (and 

psychological equilibrium), in which utility is a function not only of actions but also of beliefs over 

actions. Among other things, this allows utility to depend on reactions of pleasure or anger, although 

only with respect to expected actions in a particular game. Players do not explicitly care about the 

welfare of their opponents, though as always it can in theory be incorporated into their preferences. 

This is an extremely powerful and all-encompassing structure, but because of this there is very little in 

the way of a common backbone from which to deduce or to explain results observed across a variety 

of different games. Rabin [23] specializes this idea by introducing a fairness equilibrium, a more 

inherent concept which begins with a kindness function between the two players. Because of the 

special nature of the equilibrium concept, his results depend on the absolute level of the base payoffs 

and apply only to two-person games. Nevertheless, he is able to draw several fairly general 

conclusions. Sally [24] has a similar but somewhat more extended approach, building on the 

“psychological distance” between players. He develops the sympathetic equilibrium concept, and finds 

that it is sometimes possible to choose cooperation in the one-shot Prisoner’s Dilemma. As in Rabin’s 

paper, reciprocity is the starting point and again, essentially because of reciprocity, it is unclear how to 

extend the results to more than two players. 

Returning to the traditional equilibrium concepts, Bergstrom [25,26] and Hori [27] are perhaps 

closest to the present paper. Bergstrom presents a general model in which a player’s utility is an 

increasing transformation of his own payoff and the other players’ utilities. Instead of taking limits of 

this process (as will be clear in the model below), he uses a fixed-point approach, which can easily 

violate monotonicity. Thus, although he is able to explain cooperation in the Prisoner’s Dilemma, his 

approach leads to some rather counter-intuitive conclusions in other situations. For instance, lovers 

may prefer less of a mutually enjoyable good to more, since otherwise their joint utility would spiral 

out of control. Hori is able to prove slightly stronger results than in the synergistic model, but only in 

the case of a linear formulation and assuming nonnegative altruism. Finally, Wolpert et al. [28] 

formalize Schelling’s insight that it may be rational to commit to being irrational, and in particular that 

publicly choosing an altruistic “persona” may allow self-interested players to cooperate more often. 

Note that we are not pursuing a specifically behavioral approach, since all players in the synergistic 

model are fully rational with standard preferences over final utility (and we use standard equilibrium 

concepts), but we are interested in some of the same questions. 

3. Model 

One way to introduce an altruism-like aspect in a formal game-theoretic model is to add a positive 

constant to payoffs following a “good” action, such as contributing in a public goods game or 
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cooperating in the Prisoner’s Dilemma. This “warm glow” effect is plausible in some circumstances, 

but does not capture the positive or negative benefits that a player may receive depending on the 

welfare of his or her opponents1. These can be captured most simply be adding a proportion of the 

opponents’ payoffs to that of the player in question. This approach, however, has an inherent 

inconsistency: if the benefit, for instance, arises not just from doing good, but instead from being glad 

that a fellow player is happy, then it should be the other player’s utility and not payoff that matters2. 

That is, rational players will be farsighted and will think through more than one step of the process. In 

general, then, final utilities will be a function of one’s own payoff and of the [final] utilities of the 

other players. 

It is not unreasonable to ask why utilities should not be a function of own utility and others’ 

utilities. The short answer is that this too is inconsistent: preferences are utilities, they are not over 

utilities. As an example, consider an altruistic player with an indifferent (i.e. entirely self-concerned) 

opponent. The opponent will necessarily always have final utility equal to base payoff. If the altruist 

has utility equal to a weighted average between own payoff and the other’s utility, her final utility will 

lie somewhere in between the two original payoffs. If, however, her utility is a weighted average 

between own utility and the other’s utility, her final utility must equal that of her opponent no matter 

what her original payoff. In fact, it is not uncommon under these assumptions that the final utilities of 

both players will depend only on their altruism types and will be wholly independent of their original 

payoffs, an undesirable feature3. 

One final matter that should be clarified before proceeding to the formal model is the interpretation 

of the base payoffs. They are already objects in utility space, so they should not be thought of as 

monetary payoffs or profits. Rather, they can be considered to be the utility resulting from that 

outcome if it were in a one-person setting, or in a setting where the effects of that outcome on other 

players are unknown. Alternately, they are the utilities of thoughtless players, to whom it has not yet 

occurred that there are other players or what implications that might entail. We assume, as ever, that 

they already include any positive feelings from simply doing good or being fair, or on the flip side any 

negative feelings directly arising from an act of, say, betrayal. What they do not include are preference 

changes due to the realized utility of one’s opponents in a particular outcome of the game4. 
We are given a game G with I players and payoffs iv . A synergism type for a player i is an 

element i  drawn from a type-space  . In effect, this type will describe the relative weights that the 

player puts on his own and his opponents’ utilities; see Proposition 3 below for the prototypical 

formulation. Denote the vector of synergism types for the I players by . Let f be a real-valued 

function taking as arguments I real numbers (interpreted as welfare measures for oneself and one’s 
opponents, respectively) and as parameters the elements of  . Hence RR If : . So f is the 

same for all players, but each has a separate synergism type. The base payoff for player i is 0
ii uv  . 

Following the motivation above, we define );,();,( 01
iiiiiii uvfvvfu     and in general 

                                                           
1  Throughout the paper “opponent” will be used interchangeably with “other player”, whether or not the particular 
relationship happens to be adversarial. 
2 One caveat is that this may not apply as fully in a corporate setting. 
3 The author has worked considerably with this alternate model and is more than willing to share the results of these 
pursuits with anyone who is interested. 
4 Note that we are assuming, as we must, the possibility of interpersonal comparison of cardinal utility. 
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);,( 1
i

n
ii

n
i uvfu 

 . At each suppositional round, players recalculate their opponents’ utility levels and 

then adjust their view of their own utility in response, continuing ad infinitum. Finally, let 
n
i

n
iiii uvvu


  lim);,(  . Of course this may not exist  

in general. 

 

Definition: Given  , a function RR If :  is a synergistic utility function if 

(i) f is everywhere both continuous and strictly increasing in its first argument 

(ii) f is everywhere both continuous and either strictly increasing, decreasing, or constant in each of 

its other real arguments 
(iii) there exists E  such that for all vectors v in IR , 1E );( vf v  

(iv) for all  , 0);( 0f  

(v) for all   and all v in IR , );( vu  exists (as defined above) 

In words, then, requirement (i) states that utility must be increasing in one’s own payoff. 

Requirement (ii) asks that utility, if it is affected by someone else’s payoff, always be affected in the 

same direction. This could be weakened, but imposes no untoward restrictions5. Requirement (iii) 

imposes that there exist a traditional game-theoretic type, i.e. one who has utility equal to own payoff 

regardless of the other players in the game6. Requirement (iv) is a moderately weak normalization that 

rules out adding arbitrary constants to the utility: you can’t get something for nothing. And finally, 

requirement (v) insures that utilities exist in all cases and are well-defined. 

 

Definition: If G is a game with payoffs iv , then we say (G, f, ) is a game with synergistic utility (a 

synergistic game) if it is identical to G except that utility is given by );,( iiiii vvuu 
  for all i, and f 

is a synergistic utility function 

Proposition 1: If (G, f, ) is a synergistic game, then );,( iiii uvfu   for all i 

The proposition says that the limit utilities, which necessarily exist, satisfy a fixed-point property. 

The proof follows straightforwardly from the definitions and the continuity of f. One can imagine 

defining synergistic utilities directly as solutions to the fixed-point equation, but this has several 

factors against it. First, the motivation for synergistic utilities, that players update their own welfare by 

taking into account the welfare of the other players, leads directly to the limit process. Secondly, the 

fixed-point solution may exist even if the limit does not7. For example, suppose that we have two 
altruistic players of the same type; in particular we assume ii uvf  2  for both8. If 121  vv  then 

the limit diverges, as would be expected (utilities go to infinity as each player gets happier and happier 

                                                           
5 Note, however, that it does not allow sufficient flexibility for very much reciprocity. This is by design: we see how much 
can be accomplished in as simple a setting as possible. 
6 E stands for economist or egotist, as the reader prefers. 
 
7 In general, of course, there may be several fixed-point solutions, while there is necessarily at most one limit point. This is 
another reason to choose the limit definition, although in synergistic games as defined multiplicity won’t be a problem. 
8 Note that since f is simply a function of bound variables, whether we write the other players’ welfares as v or u is a matter 
of clarity and convenience only. 
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contemplating the situation). The fixed-point solution, on the other hand, yields 121  uu , which 

appears unreasonable. Thus the limit is central to the definition, but Proposition 1 may provide a short-

cut in explicit calculations. 

Proposition 2: In a synergistic game, utilities iu  are continuous in payoffs v 

Proof: Let IRv  have associated synergistic utilities IRu . Take any sequence 
1}{ nnv  such that 

vv 
 n

n
lim . We wish to show that uu 

 n
n
lim . If not, there exists 0  such that 

 
1}{),( nnB uu  . From the definition of synergistic utility, m

m
uu


 lim  and hence there exists M 

such that 2),( md uu  for all Mm  . But since f is continuous, we know that 11 lim n
n

uu


 , and 

iterating 22 lim n
n

uu


 , … so that in particular M
n

n

M uu


 lim . Thus we can choose N with the property 

that 2),( M
n

Md uu  for all Nn  . But now   22),(),(),( uuuuuu MMM
N

M
N ddd , implying 

),( uu BM
N  . This is a contradiction, and so we’re done. 

Proposition 2 gives us another general property of synergistic utility functions, but this is about as 

much as can be said in complete generality. It may be helpful at this point, in part to clarify the 

definitions, to consider some examples of potential synergistic utility functions. We say potential 

because for the moment we ignore condition (v), and we leave   unspecified. The most obvious is 
probably the linear formulation 




ij

j
j

i ubavf . Here ),( ba  and IR . On the other hand, 

2)( ii ubavf   is impermissible, for instance, because it violates (ii). The effect of an increase in the 

other player’s utility on one’s own should be independent of the absolute levels involved. Thus, 
3)( ii ubavf   is once again acceptable. Cobb-Douglas formulations, more common in 

macroeconomics, look like b
i

a
i uvf )()(   and require that “consumptions” be non-negative. 

However, upon taking logs, this is equivalent to the original linear form9. All of the above satisfy 

condition (iii) by choosing a=1 and b=0, and satisfy condition (i) if a>0. Examples of applications of 

these utility functions to particular games, along with an additional nonlinear formulation, are given in 

Section 4. 
To apply the theory in a specific situation, one must choose an appropriate ),( f  pair and show 

that this pair yields a synergistic utility function. We do this now for the two-player linear case, though 

it is easy to extend it to more players. 

 

Proposition 3: Let )1,1(),0(   and ),( ba . Then iiii buavuvf  );,(   is a synergistic  

utility function. 

Proof: We have the recursive equations 1
21111
 nn ubvau  and 1

12222
 nn ubvau , or 



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9 Note that we cannot then independently choose the cardinalization for taking expected utilities. 
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We may write this as 1 nn uu M , and hence 0uu nn M , where   121
0 vvu . Then 

multiplying out the powers of M  yields 















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m bbvabvabb
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M

. 

But by assumption 121 bb  so 






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











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1

1
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vabva

vabva

bb
n

n
M
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Now n
i

n
u


lim  is simply the ith row of the 3rd column of the matrix above so it too exists (and in fact 

this gives an explicit formula for it). Naturally, this is the same solution one would find from solving 

the system of two fixed-point equations. It is clear that conditions (i)-(iv) also hold. 

Note that the perverse example mentioned earlier, which had 2b , is not allowed in this scenario. 

Nonlinear synergistic utility functions will have their own requirements for  10. Turning to another 

question that can be answered given a specific synergistic utility function, it is well-known that 

positive linear transformations of any player’s payoffs leave the strategic structure (i.e. the preferences 

over final outcomes) of a game unaffected. This result carries over to synergistic games as much as 

possible (it is clear that multiplying only one player’s payoffs by some constant may substantively 

change utilities in an interdependent setting). 

Proposition 4: In a linear synergistic game, preferences over outcomes are unaffected if 

(a) all player’s payoffs are multiplied by the same positive constant, or 

(b) any or all players have a constant added to their payoffs 

Proof:  (a) Since f is linear in iv  (or in fact more generally whenever f is homogeneous of degree one 

in iv ), utilities all along the limiting sequence, and hence also final utilities, will also be multiplied by 

this constant. So then, by the standard result, preferences remain the same. 

(b) Adding a constant to one player’s payoffs affects all players, but only to the extent of adding some 

constant to each of their payoffs. Although this constant may be different for each player, it is the same 

for a given player across his or her outcomes. This is clear from the explicit formulas found in the 

proof of Proposition 3. But now, once again, the standard result applies. 

Although this result does not hold in general for all synergistic games, it will hold in other 

particular settings. We now turn our attention to illustrating the theory with a spectrum of examples. 

                                                           
10 For example, we might imagine that more generally one would require the derivative of f with respect to opponent’s 
utility to be bounded by 1. 
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4. Examples 

The proof of the pudding lies in the taste, and the believability of synergistic utilities lies in its 

potential applications. For the time being, we confine ourselves to the linear synergistic utility function 
analyzed above, ii buavf  . We first define three types of players to give some idea of the range of 

possibilities. Although unnecessary, it is convenient to choose them such that 1 ba ; this keeps the 

magnitude of the utilities directly comparable to those of the base payoffs11. The first type is the one 
required by part (iii) of the definition, )0,1(E  . This type always has final utility equal to base 

payoff regardless of the other players. The second type is an altruist, denoted by S for socialist: 
),( 2

1
2
1

S  . This type approximately treats the two players equally. Finally, we define an unfriendly 

type: ),( 3
2

3
1

J  . In the game theory literature, this general type has been called spiteful, but that is 

perhaps too strong a condemnation for these preferences. Rather, this player simply enjoys doing 

better than his or her opponent; the notation is thus Jones, for “keeping up with the Joneses”12. Note 

that since we apply the theory to single games, it is possible to switch types over time or in differing 

situations or against different players. The model does not require them to be intrinsic. Also, it is fairly 

easy to see how to come up with multi-player analogues for these types. 

 

 

 

 

 

The basic Prisoner’s Dilemma can be written as: 

 

Here C stands for cooperate and D for defect, as usual. Of course the unique Nash Equilibrium is 

(D,D). If two type E’s (economists) play against one another, the payoffs remain as they started and 

the game is unchanged. So the unique NE is also the same. We next consider an economist player 1 

opposing a Jones player 2. E’s utilities are the same as ever, while J’s may then be calculated using f 

(it takes only one step in this case). We arrive at the following game form: 

 
                                                           
11 Most of the previous literature has instead chosen (in its own context) a = 1. 
 
12 A similar Jones type appears in the macroeconomics consumption literature, so this is conceivably an example of micro 
keeping up with the macro Joneses. 

C D

C 0,0 -9,7

D 3,-5 -6,2

type J

type E

C D

C 0,0 -9,3

D 3,-9 -6,-6

Player 2

Player 1
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The unique NE is again for both players to defect. What is interesting, however, is that this outcome is 

no longer Pareto inefficient, as it was previously. The economist is so unhappy that it makes the Jones 

player happy. This depends, of course, on the exact payoff structure and type of player 2, but holds 

over a wide class. Consider next a socialist player 1 against a Jones type: 

 

This game now has two pure NE, in both of which type J defects (unsurprisingly it turns out that types 

E and J always defect). Type S is completely indifferent, and is thus willing to cooperate. Of course 

this is knife-edge; types near to S will be pushed in one direction or the other, some of them always 

cooperating. The (C,D) equilibrium is [weakly] Pareto efficient in this case. We now change player 2 

to a type S  

as well: 

 

Cooperation is a dominant strategy here for both players; it is also the optimal outcome in the game. 

This is the stereotype of altruistic cooperation in the Prisoner’s Dilemma. The final combination of 

players that we consider is when player 1 is a type E once more: 

 

The unique and strict NE is (D,C). The surprising observation here is that it requires less inherent 

altruism to cooperate with a type E than with a type S13. This result can be explained by noting that 

defection hurts a type E opponent more than it does a type S opponent (who is consoled by the fact that 

one’s own payoff has been improved). Hence a type S will have a stronger incentive not to defect 

when playing against a type E. Recall that we have tried to put aside any issues of reciprocity. 

Turning next to an example of a continuous game, we consider Cournot duopoly. In the simplest 
case with linear unit demand and zero marginal cost, price qp  1 , where q is the total quantity 

produced. Payoffs are simply net profits, so )1( qqv ii  . The unique Nash Equilibrium with standard 

(i.e. type E) players is for both to produce at 3
1iq . It is plausible, however, to model the firms as 

                                                           
13 Contrast this once again with the quote from Rotemberg (1994) in Section 2. 
 

C D

C 0,0 -9,-3

D 3,-3 -6,-6

type S

type E

C D

C 0,0 -3,3

D 0,-3 -3,0

type J

type S

C D

C 0,0 -5,-1

D -1,-5 -6,-6

type S

type S
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type J. Perhaps it is a small market so that profits themselves are not important but beating the rival 

firm is critical for advertising. Or perhaps the managers are paid with yardstick competition incentives, 

so again what is important is to do better than the other firm. The symmetric equilibrium in this case is 
that both produce 7

3iq . In the end of course neither firm actually does any better than the other, but 

each is willing to overproduce (“sacrificing” profits) in order to try to do so. Note also that this is 

much closer to the zero profit outcome of Bertrand competition, and in fact it converges to that 

outcome as the firms get more and more extreme in the Jones direction. 

Experimental game theory has included extensive work not only with the Prisoner’s Dilemma but 

also with other games such as ultimatum, dictator, centipede, and public goods games. As in the case 

of the Prisoner’s Dilemma, the results are often quite disparate from those predicted by standard 

theories. For instance, no positive quantity should ever be rejected in an ultimatum game, yet this is 

often observed in experiments. This outcome can be explained using synergistic utilities: types similar 

to Jones will reject all offers up to some level (which will depend on the exact type chosen and on the 

type of the opponent). Of course altruism alone, without some sort of negative analogue, can never 

rationalize these rejections. Recall that it is possible to extend the theory to include reciprocity if 

desired, so a player’s type need not be constant. As has been documented previously (see Section 2), 

altruism can explain extended play in a centipede game or contribution in a public goods game. The 

point is that a simple theory, such as synergistic utilities, is sufficient to do this. 

In the so-called dictator game, player one simply decides how to divide an amount of money 

(typically around $10 in experiments) between him- or herself and an often anonymous opponent. 

Player two has no action other than to accept the split as dictated. Traditional equilibrium concepts 

predict that player one should keep the entire amount, and previous models of altruism have not altered 

this prediction. For instance, continuing with the types as defined above, if an altruistic type S opposes 

another type S, the optimal action is still to give nothing away. No linear model can predict an interior 

solution, although in practice this is what the data clearly support. We turn, then, to a nonlinear 

synergistic utility function. For simplicity we assume that player two is a type E, so that as always 

22 vu  . For player one, we assume the altruistic formulation 211 uvu  . In this case the optimal 

allocation is an even split, i.e. $5 for each player. This outcome is occasionally, though rarely, 

observed in experiments. If we assume instead the slightly less magnanimous utility 

212
1

12
1

1 uvvu  , then we find 54.8$1 v . In fact this agrees remarkably well with the observed 

average division. Naturally, this is meant only to illustrate the potential applicability of the theory, in 

addition to the fact that nonlinear functions do not simply provide generality but in fact may be 

necessary in practice. 

5. Topics 

Despite the fact that the game structure remains the same in synergistic games (only the payoffs 

have changed), there are several topics that take on new meaning in this context. For instance, 

cooperative games with transferable utility will be difficult to analyze since some players may actually 

prefer a smaller total surplus to divide (think of the type J above). As another example, evolutionary 

game theory has been a popular subject of study recently. In the present setting, it is possible to discuss 

the evolutionary strengths not just of different strategies but also of different synergistic types. What is 
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unclear, however, is what to use as a measure of reproductive fitness. One could argue that players 

with the highest welfare (final utility) will be the most productive and successful. On the other hand, it 

may be that the determination of success is made by physical rather than mental well-being, so that 

base payoffs (food or money leading to direct consumption) should enter the calculation of the 

dynamics. A player might be happy that his or her fellows do well, but this does not necessarily grant 

an increased chance of survival. The appropriate measure may depend on the particular situation. In 

the Prisoner’s Dilemma example of Section 4, note that altruistic players, type S in the notation there, 

fare relatively poorly under  

either system. 

A related consideration, though more in the mode of full rationality, is the idea of segregation. 

Since players are of different types, they may prefer to play against one type of opponent rather than 

another, and thus selectively associate. Of course, they may not have the opportunity to make this 

choice, but if they do then it has long-term welfare (and hence possibly evolutionary) implications. 

Returning once again to the Prisoner’s Dilemma example of the previous Section, note that while types 

E and S always prefer an altruistic type S opponent, this is not necessarily true of type J players, who 

like to play type E’s (since the latter end up so unhappy). So a plausible scenario is that S types play 

against themselves, while J’s and E’s pair off against one another. This leaves the self-centered 

economist types quite unhappy; their only hope is to run across extremely altruistic players, who will 

actually like to make them happy by cooperating (in effect, happily sacrificing themselves). Recall that 

all players are fully utility maximizing at all times. 

There is no doubt at least some element of reciprocity in almost all human interactions. Synergistic 

utilities, as defined, make no account for this; a player’s degree of altruism is independent of the 

attitudes of the other players. The work of Rabin [23] and Sally [24] depend explicitly on these added 

interactions, and similar constraints can be added to synergistic games. One method would be to 

require that players enter a game with their own individual synergistic type  , but that then all of the 

players play the game using the average   of the group (if   is such that this has meaning). Another 

possibility is to add a reciprocity player, type R, who takes on the   of whomever he or she is playing. 

As always, this is difficult to implement with more than two players. The point is that altruism, 

jealousy, and so on make sense independently of any reciprocity arguments, so the simplest models of 

such behavioral tendencies will not include them as a building block. They may however be necessary 

in order to fully explain either our own introspective assessments or all empirically observed behavior. 

As a first step toward examining how important reciprocity is in influencing other-regarding 

behavior, and as an experimental exploration of synergistic utilities, the following study could be 

implemented 14. In a laboratory setting, first deduce a partial utility function over outcomes at the 

individual level, where agents have no information about anyone else; this is basically u0 in the model 

above. Then allow them to observe the outcomes (underlying payoffs) of others, but without any 

information about the utility functions (indirect preferences) of others; this is u1. Finally, give them 

information about the deduced utility functions for others, which should feed into their own 

preferences synergistically; this is u2. To the extent that their choices change when they learn about 

                                                           
14 Thanks to a referee for suggesting this line of reasoning. 
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utilities rather than simply outcomes, but regardless of how others behave toward them (i.e. reciprocity 

or process utility), this would support the specific model presented here. 

Finally, games with incomplete information take on an added dimension if there is also the 

possibility of synergistic types. There is no reason in general to assume that all players know the type 

of each of their opponents, synergistic or otherwise. Fortunately, the entire game-theoretic apparatus 

developed to analyze this eventuality is still perfectly applicable. In particular, the Bayesian 

equilibrium concepts apply just as well here. As synergistic types are certainly payoff relevant, 

signaling will be an important component to playing extensive-form synergistic games. It may or may 

not be beneficial for a player in a given situation to reveal his or her synergistic type (consider, for 

instance, the discussion of segregation above). In fact, incomplete information aspects of synergistic 

games seem to be perhaps the most fruitful line for future theoretical research using this model. 

6. Conclusion 

Game theorists assume that the payoffs in a game indicate true preferences, which is to say that they 

already take into account welfare interactions between the players. But often in real-life situations, the 

only information available is about base payoffs, e.g. profits for firms or monetary payoffs in an 

experimental setting. It is useful to have a specific model of altruism and other emotional aspects in 

order to link these payoffs to the ultimate utilities in a game. The concept of synergistic utilities 

attempts this, by providing a simple framework in which to address these concerns in various applied 

contexts. Each player’s utility is a function of his or her own payoff and of the other players’ utilities. 

Standard equilibrium concepts are sufficient, and since the process is a transformation of payoffs only, 

the theory can be applied to arbitrary games, with any number of players. One special case, a linear 

formulation, was given and analyzed in more detail. Examples, such as how both cooperation in the 

Prisoner’s Dilemma and positive gifts in the dictator game can be rationalized, followed. 

The main distinction between the present work and previous literature lies in the simplicity of 

synergistic games. There is nothing new imposed on the game structure or analysis, since the only 

change made is in the numerical values of the payoffs. Nor is an idea of reciprocity inherent or 

necessary to the model. Nevertheless, many observed behaviors can be explained within this paradigm. 

Note in particular that standard theories have done exceptionally well in predicting behavior in market 

situations. In these games, by definition, a player cannot influence the payoff of anyone else in the 

game (or at least is of this impression). Hence a player with synergistic utility will behave exactly as a 

standard player would, a robustness check on the theory. Surely there will be more such checks to 

come. 
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