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Abstract

In this paper, we study the multidimensional claims problem and introduce the eating
algorithm to this problem. It is shown that a solution is efficient if and only if it is the
outcome of the eating algorithm with a profile of specific eating functions. Moreover, we
adapt three classical solutions, i.e., the constrained equal awards rule, constrained equal
losses rule, and proportional rule, to the current setting and show that they are special
cases of the eating algorithm with specific eating functions.

Keywords: multidimensional claims problem; efficiency; eating algorithm

JEL Classification: D63; D74

1. Introduction

A claims problem refers to the task of allocating a given amount among a group of
claimants. A rule needs to select an allocation for each problem, no matter what the amount
to be allocated is, how many claimants there are, and what their claims are. A fundamental
paper in the literature in this area is by O’Neill (1982). Two excellent surveys include those
by Thomson (2003, 2015).

We extend the classical claims problem to a multidimensional setting. Specifically,
instead of one amount, there are finitely many goods to be allocated, each with a fixed
capacity. A package refers to a combination of various goods. It is worth noting that, for
specific applications, not all combinations are feasible. Consider for instance a passenger
train with two intermediate stops. There are three different goods, each with a capacity
equal to the number of seats on the train. A package hence refers to a ticket, which is a
combination of different goods. It is evident that there are in total six feasible packages.!
Each claimant requests an amount of a package, and the task of the mechanism designer is
to allocate packages to them. For the aforementioned example, the task is to determine the
number of different tickets for sale regarding a predicted demand. Another example can
be found in Acosta et al. (2022), where a government aims to reduce various pollutants,
but each pollutant may affect multiple environmental issues (like climate change and air
quality). The government sets emission limits for each issue. Each pollutant “claims” a
share of the allowed emissions based on the amount being emitted. The challenge is to
allocate limited emissions across pollutants, considering that the same pollutant affects
multiple issues.

We introduce the eating algorithm for the current multidimensional problem and
show that an allocation is efficient if and only if it is the outcome of the eating algorithm
with some specified eating functions (Theorem 1). The eating algorithm can be viewed
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as a concrete embodiment of the greedy idea in computer science. One can refer to chap-
ter 15 of Cormen et al. (2022) for applications of the greedy idea to various problems.
Regarding economic studies, it has been used to solve the random allocation problem
(Bogomolnaia & Moulin, 2001). Moreover, it has been shown that the outcomes of the
eating algorithm with specific eating functions characterize efficient random allocations.
From this perspective, our Theorem 1 can be seen as another success in line with the ideas
of Bogomolnaia and Moulin (2001).

Next, we adapt the classical rules in the literature regarding the claims problem to
the current multidimensional setting. In particular, we provide formal definitions of the
constrained equal awards rule, constrained equal losses rule, and constrained proportional
rule. Moreover, we show that all these rules are special cases of the eating algorithm with
specific eating functions. Put otherwise, the outcomes of these rules can be generated by
the eating algorithm with carefully chosen eating functions.

2. Model

Let G be a set of finitely many goods, with |G| > 2. Each good a € G has a fixed
capacity, denoted ¢, € ]R++.2 We collect capacities in a vector, denote it c € ]RSE +,and call
it the capacity vector. A package consists of certain amounts of various goods. Specifically,
a package is denoted by a vector P € RS;F such that Y, P, > 0.% The collection of feasible
packages is denoted by P. The demand on package P € P is denoted dp € R. The vector
d € RY, collects these demands and is called a demand vector.

An allocation problem is described by a couple of one capacity vector and one demand
vector, i.e., (c,d) € RS; 4 X ]RZ’F. To avoid triviality, we assume that, for each problem (c,d),
there exists at least one good a € G such that ) pcp dp - P, > c,. This implies that scarcity
exists and that the allocation problem is not trivial. Faced with a problem, the mechanism
designer needs to specify an allocation, i.e., a vector x € R”, where xp denotes the size
of package P that is allocated. A rule is a function 7 : R, x R? — R7 that selects one
allocation for each problem.

We provide a specific problem below.

Example 1. Consider a passenger train traveling from Shanghai to Beijing, with intermediate stops
at Nanjing and Jinan. In our language, there are three different goods G = {SN,N]J, JB}, where
SN represents a seat from Shanghai to Nanjing, N| a seat from Nanjing to [inan, and |B a seat
from Jinan to Beijing. Suppose there are in total 1000 seats on the train. The capacity vector is hence
¢ = (1000, 1000,1000) € RS, . The set P consists of 6 feasible packages as follows.

SN NJ JB
Pl= (1 0 0 )
PP= (1 1 0 )
P=( 1 1 1)
PP= (0 1 0 )
P= ( 0 1 1 )
pé (0 0 1)

Consider for instance that the mechanism designer has predicted, according to historical data,
a demand vector as follows. The problem is hence described by (c,d), and the task of the mechanism
designer is to determine an allocation vector.

pt pz p3 p+ p5 pb
d= ( 450 200 450 100 800 500 )
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Throughout the paper, we impose two properties on desirable rules. The first is feasi-
bility, requiring (i) for each package, the amount allocated cannot exceed its demand; and
(ii) for each good, the amount allocated cannot exceed its capacity.* We assume throughout
the paper that a rule must be feasible.

Definition 1. An allocation vector x € R is feasible at problem (c,d) if x < d and, for each
a € G, Y pep xp - Pa < cq. Aruleis feasible if it selects at each problem a feasible allocation vector.

The second property is efficiency, requiring that no package’s allocation can be in-
creased without decreasing another’s.

Definition 2. An allocation vector x € RY, is efficient at problem (c,d) if there is no allocation
vector y € RY such that y is feasible at (c,d) and y > x. A rule is efficient if it selects at each
problem an efficient allocation vector.

The multidimensional claims problems defined in the current paper can be seen as
the classical claims problem extended in two directions. First, there are multiple feasibility
constraints, each of which corresponds to each good. Second, the definition of feasibility is
not that the summation of allocations is less than or equal to a fixed amount but concerns a
structured combination.

3. Three Classical Allocation Rules

We introduce three classical rules to the current setting. We first provide formal
definitions of them and then apply them to the problem in Example 1 as an illustration.
The constrained equal awards rule below follows the idea of equal division.

Definition 3. The constrained equal awards rule (CEA) selects an allocation for each problem (c, d)
by the algorithm as follows.

e Initialization: d% = dp,x% = 0,VP € P.
e Stepk=1,...

A= sup{/\ ERy: ¥ xlffl P+ ¥ min{)\,dll‘fl} -P, < ¢y, Va e G}
PeP PeP
Xk = 257 4 min{AK, 51}

0, ifda € Gs.t. P, > 0and Zx’lg-Pa:ca

k
dP pPeP

d’l‘fl — min{)\k,dll‘,_l}, otherwise
e Termination condition: dll‘, =0,VPeP.

Instead of equally allocating the awards, the constrained equal losses rule below
follows the idea of equalizing losses.

Definition 4. The constrained equal losses rule (CEL) selects an allocation for each problem (c,d)
by the algorithm as follows.

e Initialization: d% = dp,x% = 0,VP € P.

e Stepk=1,...
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Ak = inf{A eRy: Y a1 P+ ¥ max{0,d5 ! — A} Py <, Vae G}
PeP PeP
k= xll‘,_1 + max{0, dll‘,_l — Ak
0, ifda € Gs.t. P, > 0and Zx’IS-Pa:ca
d’;, = PcP

dll‘,_l — max{0, d]l‘,_1 — )k }, otherwise
e Termination condition: dll‘, =0,VPeP.
The constrained proportional rule below allocates the goods proportional to demands.

Definition 5. The constrained proportional rule (CP) selects an allocation x for each problem (c, d)
by the algorithm as follows.

e  Initialization: d% =dp, x% =0,VP € P.

e Stepk=1,...

M=supdleRy: ¥ 251 P+ mi A1V P, < e Va € G
= sup L x5 ; mm{): 1 - A dp }oPy<cgVae
PeP pep Sp

k—1
ko— k-1 . dp k gk—1
X =xy "t +min{ —L—— - AX,d
p P {ZPEPd}fv ! TP }

0, ifdast. P, >0and Y x’l‘,~Pﬂ:cﬂ
dllg = . peP

d’l‘fl - min{% Ak d’l‘fl}, otherwise
PeP “p

o Termination condition: d’lg =0,VPeP.

Example 2. Consider the problem described in Example 1. The allocation vectors chosen by three
classical rules are as follows.
ptp2 ps pt p5 pb

CEA(c,d) = ( 450 200 333% 100 3331 3331 )
CEL(c,d)= ( 450 175 200 75 550 250 )
CP(c,d)= ( 450 19010 2571 9572 4571 2855 )

For realistic applications, the above allocations can be rounded to integers. For illus-
tration, we present in Appendix A the calculations of CEA allocation.

The model in the current paper is continuous in the sense that the capacities, demands,
and allocations can take any real numbers, whereas Liu and Xu (2024) provide a model
in which discrete objects need to be packaged to be bundles for allocation. The similarity
between two models is that both of them study the allocation of combinations of different
goods. The differences include two points. The first is that the model in the current paper
is continuous, as mentioned, while the model in Liu and Xu (2024) is discrete, where the
number of goods can take only integers. The second is that the current paper focuses on
efficient allocations, while Liu and Xu (2024) focuses on how to package different objects in
a consistent way.

4. Eating Rule and the Results

We first provide the formal definition of the eating algorithm and then the relevant results.

Definition 6. Given a problem (c,d) and, for each package P € P, a speed function sp : [0,1] — Ry
such that fol sp(v)dv = dp, the eating rule determines an allocation, denoted E°(c,d), by the
algorithm as follows.
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o Initialization: ° = 0; P° =P; G = G; ) =0, VP € P.
o Stepk=1,...
kK o— k-1 k-1
ts =supte |0, ]’pr P+ Y ftklsp v) - Pydv < ¢, 9,Va€G
pepk-1
£ Eminaeck,lta
_ tk . _
x’IS _ k Ly [ik-1sp(v)dv, ifP e pk-1
]1(3 b otherwise

Gk =G N\{ae Gk 1|k =4
Pk ={PePlacGVast P, >0}

e Termination condition: P* = Q.

Theorem 1. Given any problem (c,d), an allocation x is efficient if and only if there is a profile of
speed functions (sp)pep such that ES(c,d) = x.

Proof. We prove sufficiency by contradiction. Suppose x = E*(c, d) is not efficient at (c,d).
Then, there is another allocation x” # x and a package P* € P such that dp- > x},. > xp-
and x% > xp for all P # P*. By definition of allocations, Va € G such that P; > 0,
we have Y pep xp - Py < Lpep Xp - PH < ¢;. Let k be the step in eating algorithm where
P* € Pk 1\73k It is evident that fo sp(v)dv < xp for all P € P. Hence, tk < tk for all
a € G such that P; > 0. Given this, dp+ > xp- and fo sp+(v)dv = dp+ imply <1,
f & 5p«(v)dv > 0, and, hence, tk < tk forall a € G such that P} > 0. Consequently, we have
P* e Pk. contradiction!
We now prove necessity. Thus, let x be efficient at (c,d). Define ? = {P € P : 3a € G sit.
>0, and Y pepxp- Py = ca}. Consider the profile of speed functions as follows.

— 2xp, €10,1/2
VP e P sp(v) = o velo1/2)
Z(dp — xp), v € [1/2, 1]
VP € P\P sp(v) =dp,v € [0,1]
By definition of the problems, P # @. Hence, there are two steps in the eating
algorithm with t! = 1/2 and #* = 1. By definition of P, VP € P, fl/z (v)dv = xp.

Consequently, E%(c,d) = xp forall P € P. For P € P\P, itis evident that E$(c,d) = sp,
which completes the proof. [

Theorem 2. Given any problem (c,d), we have three equalities as follows.’

1.  CEA(c,d) = E®(c,d), where VP € P,

max d, v € [0,dp/max d]
sp(v) =

0, ve (dp/?’ﬂﬂXd,l]'
2. CEL(c,d) = E°(c,d), where VP € P,

(0) 0, ve[0,1—dp/maxd)
sp(v) = .
3 maxd, v € [1—dp/maxd,1]

3. CP(c,d) = E*(c,d), where VP € P, sp(v) =dp,v € [0,1].

In the above eating speed functions, max d = maxpcpdp.
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The proof is direct and purely mechanical. We hence omit the formal proof but provide
only an explanation as follows. For CEA, the idea is equal division, subject to the constraint
that the allocation of no package exceeds its demand. Hence, to represent it as a specific
eating procedure, we need only to equalize the eating speed of all packages, subject to the
constraint that the eating procedure of each specific package ends when the amount eaten
reaches dp. For CEL, the eating procedure is symmetric as its idea is to equalize losses.
Finally, for CP, the idea is to divide proportionally to demands. Hence, it is evident that we
ought to let the eating speed equal the demand.

Instead, we consider the problem in Example 1 and provide in Appendix B the
verification of the equivalence with respect to CEA.

5. Conclusions

We model the multidimensional claims problem and show that the eating algorithm
characterizes efficiency. Moreover, three classical rules, adapted to the current setting, are
evident special cases of the eating algorithm. However, compared to the literature on the
classical claims problem, an interesting problem not addressed here involves characteriza-
tions of these rules.®
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Appendix A. Calculations Related to Example 2

We calculate the CEA allocation for illustration.
To determine Al, one needs to find the largest A with which all the following three
inequalities hold.

SN: 04 min{A,450} -1+ min{A,200} - 1+ min{A, 450} - 1
+min{A,100} - 0+ min{A,800} - 0+ min{A,500} - 0 < 1000

NJ: 0+ min{A,450} -0+ min{A,200} - 1 + min{A,450} - 1
+min{A,100} - 1 + min{A,800} - 1 + min{A,500} - 0 < 1000

JB: 04 min{A,450} -0+ min{A,200} - 0 + min{A,450} - 1
+min{A,100} - 0+ min{A,800} - 1+ min{A,500} - 1 < 1000

One can find that A! = 333%, with which the inequality with respect to JB holds with
equality and the other two hold with strict inequality. This A! provides x! and d! in the
table as follows.

ptp2 p3 pt p Pt
— 1 1 1 1
xl= ( 333} 200 3333 100 3333 333 )

dl= (1163 0 0 0 0 0 )
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To determine A2, one needs to find the largest A with which all the following three
inequalities hold.

SN : 8663 +min{A, 1163} -1+ min{A,0} - 1 +min{A,0} - 1
+min{A,0} -0+ min{A,0} -0+ min{A,0} -0 < 1000

NJ: 9663 +min{A, 1163} -0+ min{A,0} - 1+ min{A,0} - 1
+min{A,0} - 14+ min{A,0} - 14+ min{A,0} -0 < 1000

JB: 1000 +min{A, 1163} - 0+ min{A,0} - 04 min{A,0} - 1
+min{A,0} -0+ min{A,0} - 14 min{A,0} -1 < 1000

It can be verified that A> = oo, yielding x? and d? as follows. To determine A? = oo,
note that /B has been exhausted in the first step; hence, the allocations of P3, P5, and P®
cannot increase. Note also that the allocations of P? and P* have reached their demand.
Hence, only P! can be increased in the second step. However, since there is no binding
constraint specific to it, A can be arbitrarily large.

pt pz2 p* pt p> pb
x>= ( 450 200 3331 100 3331 3331 )

2= ( 0 0 0 0 0 0 )

Since d3 = 0 for all packages P, the termination condition is invoked and hence the
algorithm terminates. The final outcome is CEA(c,d) = x? above.

For CEL and CP, we present only tables as follows. Detailed calculations can be
provided upon request.

CEL calculations: CEL(c,d) = x*
pt p> ps pt p> pé

Al =250
x!'= (200 0 200 0 550 250 )
dl= (250 200 0 100 0 0 )
A? =25
x>= ( 400 175 200 75 550 250 )
= (5 0 0 0 0 0 )

x*= ( 450 175 200 75 550 250 )
= ( 0 o0 0 0 0 0 )

CP calculations: CP(c,d) = x*
ptpz p> pt p> pb

AL — 1000
=77
xT— ( 00 800 1800 400 3200 2000 )
= 7 7 7 7 7 7
1_ 1350 600 300
= ( = 5 0 7 0 0 )
22 — 800

7
x2 _ ( 3000 4000 1800 2000 3200 2000 )
- 7 21 7 21 7 7
2 _ 150
2= ( % o o o0 0 0 )
A% — 10

=)

80

[«

2000

W)
]
(=)
(=)
NI
Q)
(=)
[«
~—

o
o \%
N—

7
= (450 AP
(

v
d® = 0 0 0 0
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Appendix B. Verification with Respect to Theorem 2

Consider the problem in Example 1 and the speed functions in the first bullet of
Theorem 2. We create as follows 6 eating functions, one for each package.

800, v
sp1(v) = {0 .

800, v € [0,450/800] 800, © € [0,100/800]
Spal0
0, v € (450/800, 1] 0, v € (100/800, 1]

800 800 0,5 800
sP5<)={ , v € [0,800/800] spe(v>={800' v € [0,500,/800]

[0, 450/800] (0) 800, © € [0,200/800]
Sp2(0) =
(450/800,1] 0, o€ (200/800,1]

m m

0, o e (800/800,1] 0, ©e(500/800,1]

To determine the end of the first step !, one needs to find the following three.

téNEsup{tE [0,1]‘0+/t51)]( 1dv+/ sp2(v 1dv+/ sp3(v) - 1dv
+/ 5pa (0 Odv+/ 5ps (0 0dv+/ 5po(0) - 0do < 1000}

t}\,] Esup{te [0,1]‘0—5—/ sp1(v) Odv+/ sp2(v 1dv—|—/ spa(v) - 1dv
+/ 5pa (0 1dv+/ 5ps (0 1dv+/ 5po(0) - 0do < 1000}

t]B _sup{te [0,1] ‘0+/ sp1(v Odv+/ sp2(v Odv—i—/ sp3(v) - 1dv

+/ spa (0 Odv—i—/ 5ps (0 1dv+/ 5ps (0 1dv§1000}

Itis easy to find t5y = 400/800, t}; = 350/800 = 0.4375, and ¢}, = 3333 /800 ~ 0.4167.
Hence, 1 = 333% /800, with which we have

= spi(0) - 1do=3331 2L, = [1 spa(0) - 1dv = 200
xll,3 = fot sps(v) - 1do = 3333 Xy = fotl spa(v) - 1dv =100
X5 = fotl sps(v) - 1do = 333%  xl, = fotl sps(0) - 1do = 3331
G' = {SN,NJ}
Pl = {PL, P2, p4}

It is evident that the first step of the eating algorithm is the same as the first step of
CEA. We omit the following steps to save space.

Notes

For more details, please refer to Example 1.

By convention, R denotes the set of real numbers, R the set of non-negative real numbers, and R | the set of positive
real numbers.

Throughout the paper, goods are denoted by lowercase English letters and packages uppercase letters.

By convention, for two vectors of same size, x = (x;) ; and y = (y;)!_;, x > y means x; > y; for all i; x > y means x; > y; for all
iand x; > y; for some i; x > y means x; > y; for all 7.

®  For the demand vector d, maxd = max{dp : P € P}.

6 Relevant characterizations in the classical setting can be found in the surveys Thomson (2003, 2015) and the papers cited therein.



Games 2025, 16, 51 90f9

References

Acosta, R. K., Algaba, E., & Sanchez-Soriano, J. (2022). Multi-issue bankruptcy problems with crossed claims. Annals of Operations
Research, 318(2), 749-772. [CrossRef]

Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem. Journal of Economic Theory, 100(2), 295-328.
[CrossRef]

Cormen, T. H,, Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms (4th ed.). MIT Press.

Liu, P, & Xu, S. (2024). Packaging for allocation. Economics Letters, 243, 111932. [CrossRef]

O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2(4), 345-371. [CrossRef]

Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey. Mathematical Social
Sciences, 45(3), 249-297. [CrossRef]

Thomson, W. (2015). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update. Mathematical Social
Sciences, 74, 41-59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1007/s10479-021-04470-w
http://dx.doi.org/10.1006/jeth.2000.2710
http://dx.doi.org/10.1016/j.econlet.2024.111932
http://dx.doi.org/10.1016/0165-4896(82)90029-4
http://dx.doi.org/10.1016/S0165-4896(02)00070-7
http://dx.doi.org/10.1016/j.mathsocsci.2014.09.002

	Introduction
	Model
	Three Classical Allocation Rules
	Eating Rule and the Results
	Conclusions
	Calculations Related to Example 2
	Verification with Respect to Theorem 2
	References

