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Computing Stackelberg Equilibrium for Cancer Treatment
Sam Ganzfried

Ganzfried Research, Miami Beach, FL 33139, USA; sam.ganzfried@gmail.com

Abstract: Recent work by Kleshnina et al. has presented a Stackelberg evolutionary game model in
which the Stackelberg equilibrium strategy for the leading player corresponds to the optimal cancer
treatment. We present an approach that is able to quickly and accurately solve the model presented
in that work.
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1. Introduction and Problem Formulation

In this section we review the Stackelberg evolutionary game dynamic model of cancer
evolution previously studied [1]. There are two players: a follower and a leader. The leader
is a physician who selects amounts of two different drugs to use for therapy, m1 and m2.
The follower is a cancer population consisting of three cell types: 0-type denotes a cell that
does not develop resistance to either drug, 1-type cells are resistant to just drug 1, and
2-type cells are resistant to just drug 2. The follower selects a population size for each type,
denoted x0, x1, x2, as well as a trait for each type, denoted u0, u1, u2. It is assumed that each
of these variables are nonnegative, with the ui ∈ [0, 1]. It is also assumed that they are all
implicitly functions of time t. Note that u0 does not appear anywhere in the analysis so can
be ignored.

For each cell type i, there is a fitness function Gi(ui, m, x) that the follower is trying to
maximize. We assume that the dynamics of the population x are governed by

ẋ = G(t)x.

In order to ensure that we are in equilibrium of the ecological dynamics we must have
that ẋi = 0 for i = 0, 1, 2. Thus, the follower is selecting u1 that maximizes G1, u2 that
maximizes G2, and x0, x1, x2 that ensure equilibrium of the ecological dynamics. The leader,
knowing that the follower will subsequently select their actions in this way, selects m1, m2
to maximize a quality of life function Q(m, u, x).

Thus, we can formulate the problem of determining the optimal strategies for both
players as follows:

maxm∗ ,u∗ ,x∗ Q(m∗, u∗, x∗)
s.t. ẋ∗i = 0 for i = 0, 1, 2

u∗
i ∈ arg maxui

Gi(ui, m∗, x∗) for i = 1, 2
m∗ ≥ 0, x∗ ≥ 0, 0 ≤ u∗ ≤ 1

(1)

This general model is instantiated by the following functional forms for the fitness
functions G0, G1, G2 and quality of life function Q. Note that the model presentation is
slightly different between the paper [1] and the implementation in the code repository [2].
We will be using the model presented in the code.

G0 = rmax

(
1 − α00x0 + α01x1 + α02x2

K

)
− d − m1

k1
− m2

k2
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G1 = rmaxe−g1u1

(
1 − α10x0 + α11x1 + α12x2

K

)
− d − m1

b1u1 + k1
− m2

k2

G2 = rmaxe−g2u2

(
1 − α20x0 + α21x1 + α22x2

K

)
− d − m1

k1
− m2

b2u2 + k2

Q = Qmax − c
(

x0 + x1 + x2

K

)2
− w1m2

1 − w2m2
2 − r1u2

1 − r2u2
2

The model has several parameters, whose interpretations are summarized in Table 1.
Note that in the code additional parameters a0, a1, a2, a3 are defined, withα00 α01 α02

α10 α11 α12
α20 α21 α22

 =

a0 a1 a1
a2 a0 a3
a2 a3 a0


Table 1. Interpretations of model parameters.

Parameter Interpretation

rmax Max cell growth rate
gi Cost of resistance strategy (cell type) i
αij Interaction coefficient between cell types i and j
K Carrying capacity
d Natural death rate
ki Innate resistance that may be present before drug exposure
bi Benefit of the evolved resistance trait in reducing therapy efficacy

Qmax Quality of life of a healthy patient
wi Toxicity of drug i
ri Effect of resistance rate of cell type i
c Weight for impact of tumor burden vs. drug toxicities and resistance rates

2. Prior Approach

In this section we present the approach described in Github repository created by
the authors [2]. They first solve for expressions for xi in terms of ui, mi such that the
condition for equilibrium of the ecological dynamics is satisfied. This involves solving a
system of three equations Gixi = 0 with unknowns x1, x2, x3. They calculate the following
analytical solution:

x∗0 =
K(X01 + X02 + X03)

rmax(a0 − a3)(a2
0 − 2a1a2 + a0a3)

,

where X01, X02, X03 denote the following quantities:

X01 =
(

a2
0 − a2

3

)(
−d − m1

k1
− m2

k2 + rmax

)

X02 = a1(a3 − a0)eg1u1

(
−d − m2

k2
+ e−g1u1 rmax −

m1

k1 + b1u1

)
X03 = a1(a3 − a0)eg2u2

(
−d − m1

k1
+ e−g2u2 rmax −

m2

k2 + b2u2

)

x∗1 =
K(X11 + X12 + X13)

rmax(a0 − a3)(a2
0 − 2a1a2 + a0a3)

X11 = a2(a3 − a0)

(
−d − m1

k1
− m2

k2
+ rmax

)
X12 = (a2

0 − a1a2)eg1u1

(
−d − m2

k2
+ e−g1u1 rmax −

m1

k1 + b1u1

)
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X13 = (a1a2 − a0a3)eg2u2

(
−d − m1

k1
+ e−g2u2 rmax −

m2

k2 + b2u2

)

x∗2 =
K(X21 + X22 + X23)

rmax(a0 − a3)(a2
0 − 2a1a2 + a0a3)

X21 = a2(a3 − a0)

(
−d − m1

k1
− m2

k2
+ rmax

)
X22 = (a1a2 − a0a3)eg1u1

(
−d − m2

k2
+ e−g1u1 rmax −

m1

k1 + b1u1

)
X23 = (a2

0 − a1a2)eg2u2

(
−d − m1

k1
+ e−g2u2 rmax −

m2

k2 + b2u2

)
While it is not given in the model formulation, the code assumes that m1 and m2 fall

in the interval [m, m], with m = 0, m = 1. They discretize the space so that m1 and m2 are
multiples of h = 0.1, and iterate over all combinations, of which there are 1

h2 . For each
combination of values they calculate the optimal values of u1, u2 as follows. They assume
that the optimal value of u1 is where ∂G1

∂u1
= 0, and the optimal value of u2 is where ∂G2

∂u2
= 0.

They calculate the following expressions for the partial derivatives:

∂G1

∂u1
= −g1rmaxe−g1u1

(
1 − α10x0 + α11x1 + α12x2

K

)
+

m1b1

(k1 + b1u1)2

∂G2

∂u2
= −g2rmaxe−g2u2

(
1 − α10x0 + α11x1 + α12x2

K

)
+

m2b2

(k2 + b2u2)2

To find values of u1, u2 for which these derivatives equal zero, they perform an
optimization to minimize the quantity

∣∣∣ ∂G1
∂u1

∣∣∣+ ∣∣∣ ∂G2
∂u2

∣∣∣. They perform this optimization in
Matlab using the fminsearchbnd function, using bounds 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1. Note
that the above expressions for x∗i which are in terms of mi and ui are substituted into the
expressions for ∂Gi

∂ui
, so that ui is the only variable in the objective. This procedure results

in optimal values u∗
1(m1, m2), u∗

2(m1, m2) for each combination of values for (m1, m2). The
values for x∗0 , x∗1 , x∗2 are determined by these values.

Finally, they iterate over all 1
h2 of these combinations of values to determine which

one maximizes the value of Q. This determines the optimal values of m∗
1 , m∗

2 for the leader,
which in turn determine the optimal strategies for the follower. The overall procedure is
summarized in Algorithm 1.

Algorithm 1 Prior approach

for m1 = 0 to 1 by increments of h do
for m2 = 0 to 1 by increments of h do

Calculate values of u1, u2 that minimize
∣∣∣ ∂G1

∂u1

∣∣∣+ ∣∣∣ ∂G2
∂u2

∣∣∣, where 0 ≤ ui ≤ 1 and the
xi satisfy the equations for the equilibrium of the ecological dynamics.

end for
end for
Calculate the values for (m1, m2) out of the 1

h2 possibilities for which the corresponding
optimal variables maximize the value of Q.

3. Limitations of Prior Approach

The prior approach has several significant limitations. The first is that it does not check
that the calculated values for x∗i for given values of ui and mi are biologically sensible.
Since the xi correspond to populations, they must be nonnegative.

Another limitation is that the coarse discretization of values for mi means that only a
small number of possibilities are considered. This also means that the running time will
potentially be large, since we must perform 1

h2 separate optimizations.
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Another significant limitation is that it is assumed that Gi is maximized when ∂Gi
∂ui

= 0,
and the boundary cases when it is maximized at ui = 0 or 1 are ignored.

A final limitation is that the procedure invokes the fminsearch algorithm in Matlab,
which is not even guaranteed to find a local minimum, let alone a global minimum.

4. New Approach

We now describe our new approach that addresses the limitations of the prior approach.
We will formulate a single quadratic program that corresponds to the full optimization
problem and solve it using Gurobi’s nonconvex MIQCP solver which has a guarantee of
global optimality (subject to numerical precision).

First we have the main decision variables xi, ui, mi with xi ≥ 0, mi ≥ 0, 0 ≤ ui ≤ 1.
The objective function Q is a quadratic function of these variables. Next we encode the
conditions for equilibrium of the ecological dynamics. We must define several auxiliary
variables to do this.

First define ηi = giui, and τi = eηi for i = 1, 2. For the latter, we use Gurobi’s
addGenConstrExp function that uses a piecewise linear approximation for the exponential
function. We set these variables to be nonnegative. To provide tighter upper bounds we
can set ηi ≤ gi, τi ≤ egi , since ui ≤ 1. We next define the auxiliary variable γi =

mi
ki+bui

. We
can do this by including the quadratic constraint kiγi + buiγi − mi = 0 for i = 1, 2. Using
these variables we can now encode the conditions for equilibrium of ecological dynamics
using constraints that are quadratic in the variables.

Next we must encode the conditions that ui is a maximizer of Gi. To do this we define
several additional auxiliary variables. We define σi = e−giui by adding in the constraint
σiτi = 1. Next we define βi =

1
(ki+biui)2 . We can do this by including the quadratic constraint

βi − b2
i u2

i − 2kibiui − k2
i = 0. Finally we define ωi =

mi
(ki+biui)2 by including the quadratic

constraint ωiβi − mi = 0. Using these variables, we can now encode the expressions for ∂Gi
∂ui

that are quadratic in the variables.
Recall that we are trying to select ui ∈ [0, 1] to maximize Gi, for i = 1, 2. We can do

this by introducing two Lagrange multipliers λi1 ≥ 0, λi2 ≥ 0. Then the KKT optimality
condition is equivalent to the following three constraints:

∂Gi
∂ui

(ui) + λi1 − λi2 = 0

λi1(ui − 0) = 0

λi2(ui − 1) = 0

These constraints are all quadratic in the variables and ensure that we find ui ∈ [0, 1]
that maximizes Gi regardless of whether it is at the boundary or at an interior solution with
the derivative equal to zero.

Our full formulation is given below. Here the Xij correspond to the same quantities as
before and are just defined to simplify presentation, not as new variables.
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maxm,u,x Qmax − c(x2
0+x2

1+x2
2+2x0x1+2x0x2+2x1x2)

K2 − w1m2
1 − w2m2

2 − r1u2
1 − r2u2

2

s.t. x0 = K(X01+X02+X03)

rmax(a0−a3)(a2
0−2a1a2+a0a3)

X01 =
(
a2

0 − a2
3
)(

−d − m1
k1

− m2
k2

+ rmax

)
X02 = a1(a3 − a0)

(
−τ1d − τ1m2

k2
+ rmax − τ1γ1

)
X03 = a1(a3 − a0)

(
−τ2d − τ2m1

k1
+ rmax − τ2γ2

)
x1 = K(X11+X12+X13)

rmax(a0−a3)(a2
0−2a1a2+a0a3)

X11 = a2(a3 − a0)
(
−d − m1

k1
− m2

k2
+ rmax

)
X12 = (a2

0 − a1a2)
(
−τ1d − τ1m2

k2
+ rmax − τ1γ1

)
X13 = (a1a2 − a0a3)

(
−τ2d − τ2m1

k1
+ rmax − τ2γ2

)
x2 = K(X21+X22+X23)

rmax(a0−a3)(a2
0−2a1a2+a0a3)

X21 = a2(a3 − a0)
(
−d − m1

k1
− m2

k2
+ rmax

)
X22 = (a1a2 − a0a3)

(
−τ1d − τ1m2

k2
+ rmax − τ1γ1

)
X23 = (a2

0 − a1a2)
(
−τ2d − τ2m1

k1
+ rmax − τ2γ2

)
−girmaxσi

(
1 − αi0x0+αi1x1+αi2x2

K

)
+ biωi + λi1 − λi2 = 0 for i = 1, 2

uiλi1 = 0 for i = 1, 2
uiλi2 − λi2 = 0 for i = 1, 2
ηi = giui for i = 1, 2
τi = eηi for i = 1, 2
kiγi + buiγi − mi = 0 for i = 1, 2
σiτi = 1 for i = 1, 2
βi − b2

i u2
i − 2kibiui − k2

i = 0 for i = 1, 2
ωiβi − mi = 0 for i = 1, 2
mi ≥ 0 for i = 1, 2
xi ≥ 0 for i = 1, 2
0 ≤ ui ≤ 1 for i = 1, 2, 3
0 ≤ ηi ≤ gi for i = 1, 2
0 ≤ τi ≤ egi for i = 1, 2
γi ≥ 0 for i = 1, 2
σi ≥ 0 for i = 1, 2
βi ≥ 0 for i = 1, 2
ωi ≥ 0 for i = 1, 2
λij ≥ 0 for i = 1, 2 and j = 1, 2

This formulation addresses the limitations of the prior approach. It ensures that all
quantities are biologically relevant by imposing nonnegativity constraints on corresponding
variables. It allows mi to take on arbitrary nonnegative values, not a small set of discretized
values. It involves solving a single optimization problem instead of 1

h2 separate optimization
problems. It uses KKT conditions to ensure that the values of ui that maximize Gi are found
regardless of whether they are interior or boundary solutions. And the approach guarantees
finding a global optimum since that is guaranteed by Gurobi’s nonconvex MIQCP solver.

5. Experiments

We ran experiments with both approaches on a problem instance using the same
parameter values as the prior approach [2], which are provided in Table 2. All experiments
were done on a single core of a laptop using Windows 11. Experiments with the prior
approach used Matlab version 24.1.0.2689473 (R2024a) Update 6 [3], and experiments with
the new approach were done using Gurobi version 11.03 [4] with Java version 14.0.2. For
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the optimizations in the prior approach, Matlab’s function fminsearchbnd was called using
parameters TolX = 1 × 10−12, MaxFunEvals = 1000. The results are shown in Table 3. We
can see that the prior approach found a solution with a negative value for x∗1 , which is not
biologically sensible. The prior approach took nearly five minutes while our new approach
took less than two seconds.

Table 2. Parameter values used in experiments.

Parameter Value

rmax 0.45
g1 0.5
g2 0.5
a0 1
a1 0.15
a2 0.9
a3 0.9
K 10,000
d 0.01
k1 5
k2 5
b1 10
b2 10

Qmax 1
w1 0.5
w2 0.2
r1 0.4
r2 0.4
c 0.5

Table 3. Experimental results for both approaches.

Prior Approach New Approach

m∗
1 0.4 0.40837

m∗
2 0.5 0.46579

u∗
1 0.19015 0.21361

u∗
2 0.3123 0.28554

x∗0 5634.3774 5749.8474

x∗1 −360.2658 1.3366

x∗2 1316.2683 950.5000

Q∗ 0.59936 0.59780

Running time (seconds) 282.69 1.65

6. Conclusions

We presented a new approach for computing Stackelberg equilibrium strategies in
a Stackelberg evolutionary game dynamic model of cancer evolution previously studied.
Our approach is based on solving a new quadratic program formulation. We noted several
limitations of the approach used by prior work which are addressed by our approach.
When we compared the approaches on a sample instance our approach ran significantly
faster and the prior approach output a solution that is not biologically relevant. As more
complex game-theoretic and optimization models are being formulated for problems in
biology and cancer treatment in particular, it is important to develop efficient algorithms
for accurately solving them. While we focused on one instantiation presented in prior work,
our approach is applicable more generally to computing optimal strategies in Stackelberg
evolutionary games.
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