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Abstract: A stochastic difference game is considered in which a player wants to minimize the time
spent by a controlled one-dimensional symmetric random walk {Xn, n = 0, 1, . . .} in the continuation
region C := {1, 2, . . .}, and the second player seeks to maximize the survival time in C. The process
starts at X0 = x > 0 and the game ends the first time Xn ≤ 0. An exact expression is derived
for the value function, from which the optimal solution is obtained, and particular problems are
solved explicitly.
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1. Introduction

A deterministic one-dimensional two-player linear-quadratic (nonzero-sum) difference
game can be defined as follows (see, for example, [1]):

Xn+1 = an Xn + bn un + cn vn (1)

for n ∈ {0, 1, . . . , T}, where an, bn and cn are deterministic functions, the control un (respec-
tively, vn) gives the decision of player 1 (respectively, player 2) at time n. Each player has a
general quadratic cost function that he/she tries to minimize.

The difference game can be made stochastic by adding the random variable εn in
Equation (1). The random variables ε0, ε1, . . . are assumed to be independent and identically
distributed.

The final time T can be finite or infinite. Reddy and Zaccour [2] considered a class
of non-cooperative N-player finite-horizon linear-quadratic dynamic games with linear
constraints. Lin [3] studied the Stackelberg strategies in the infinite horizon LQ mean-
field stochastic difference game. Liu et al. [4] used an adaptive dynamic programming
approach to solve the infinite horizon linear quadratic Stackelberg game problem for
unknown stochastic discrete-time systems with multiple decision makers. Ju et al. [5] used
dynamic programming to obtain an optimal linear strategy profile for a class of two-player
finite-horizon linear-quadratic difference games.

In this paper, we consider the one-dimensional controlled Markov chain {Xn, n = 0, 1, . . .}
defined by

Xn+1 = Xn + un − vn + εn for n = 0, 1, . . ., (2)

where εn = ±1 with probability 1/2 and the random variables ε0, ε1, . . . are independent,
so that {Xn, n = 0, 1, . . .} is a (controlled) symmetric random walk. The chain starts at
X0 = x > 0.

We define the first-passage time

T(x) := inf{n > 0 : Xn ≤ 0 | X0 = x > 0}. (3)
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Our aim is to find the controls un ∈ {−1, 0} and vn ∈ {0, 1} that minimize the expected
value of the cost function

J(x) =
T(x)−1

∑
n=0

(u2
n − v2

n + λ), (4)

where λ is a positive constant. This parameter gives the penalty incurred for survival in
the continuation region C := {1, 2, . . .}. It is needed to obtain a well-defined problem.
Indeed, if we set λ = 0, then the optimal solution for the first (respectively, second) player
is trivially to choose un ≡ 0 (respectively, vn ≡ 1).

Thus, there are two optimizers. The first one, using un, would like the Markov chain
to hit the origin as soon as possible. Therefore, he/she would like to choose un = −1, but
this generates a cost. On the other hand, the second optimizer wants the Markov chain to
remain positive as long as possible. Hence, he/she would prefer to choose vn = 0, which
however generates no costs. Both optimizers, and especially the second one, must also take
into account the value of the constant λ.

Remark 1. We could, in theory, assume that the parameter λ is negative. Then, it is mainly the
first optimizer who would need to consider the value of λ. See, however, Remark 3.

The main difference between the current paper and the related ones found in the
literature is the fact that, in our case, the final time is neither finite or infinite; it is rather a
random variable.

The above problem is a particular homing problem, in which a stochastic process is
controlled until a certain event occurs. This type of problem was introduced by Whittle ([6]
p. 289) for n-dimensional diffusion processes. He also considered the case when we take
the risk-sensitivity of the optimizer into account; see [7], as well as [8,9].

The author has written numerous papers on homing problems. In [10,11], these
problems where extended to the case of discrete-time Markov chains, whereas in [12] the
case of autoregressive processes was treated; see also [13].

In [10,11], the authors considered a problem related to the one defined above, but with
only one optimizer. Thus, they treated a stochastic optimal control problem, whereas the
problem in the current paper is a stochastic difference game.

To solve our problem, we will use dynamic programming. Let F(x) be the value
function defined by

F(x) = min
(un, vn)

n = 0, . . . , T(x)− 1

E[J(x)]. (5)

In the next section, the dynamic programming equation satisfied by the function F(x)
will be derived.

2. Dynamic Programming

In theory, we must determine the optimal value of (un, vn) for n = 0, 1, . . . , T(x)− 1.
However, using dynamic programming, the problem is reduced to finding the optimal
solution at the initial time n = 0 only.
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Indeed, we can write, making use of Bellman’s principle of optimality, that

F(x) := min
(un, vn)

n = 0, . . . , T(x)− 1

E

[
T(x)−1

∑
n=0

(u2
n − v2

n + λ)

]

= min
(un, vn)

n = 0, . . . , T(x)− 1

{
u2

0 − v2
0 + λ + E

[
T(x)−1

∑
n=1

(u2
n − v2

n + λ)

]}

= min
(u0,v0)

{
u2

0 − v2
0 + λ + E[F(x + u0 − v0 + ε0)]

}
. (6)

We can now state the following proposition.

Proposition 1. The value function F(x) satisfies the dynamic programming equation

F(x) = min
(u0,v0)

{
u2

0 − v2
0 + λ +

1
2
[F(x + u0 − v0 − 1) + F(x + u0 − v0 + 1)]

}
. (7)

The equation is subject to the boundary condition

F(x) = 0 if x ≤ 0. (8)

Remark 2. The usefulness of the value function is that it enables us to determine the optimal
controls u∗(0) and v∗(0).

Since (u0, v0) ∈ {(−1, 0), (−1, 1), (0, 0), (0, 1)}, we deduce from Equation (7) that

F(x) = min
{

1 + λ +
1
2
[F(x− 2) + F(x)], λ +

1
2
[F(x− 3) + F(x− 1)],

λ +
1
2
[F(x− 1) + F(x + 1)],−1 + λ +

1
2
[F(x− 2) + F(x)]

}
. (9)

Now, let T0(x) be the random variable that corresponds to T(x) when un = vn ≡ 0.
Using the well-known results on the gambler’s ruin problem (see, for instance, ([14] p. 349),
we can state that

E[T0(x)] = ∞ for any x > 0. (10)

Hence, we would also have

E[J(x)] = ∞ for any x > 0. (11)

Since the objective is to minimize the expected value of J(x), we must conclude that the
optimal solution is not (u0, v0) = (0, 0).

Remark 3. (i) We deduce from what precedes that we cannot choose a value of the parameter λ in
the interval (−∞, 0), otherwise we obtain an infinite expected reward by choosing un = vn ≡ 0.

(ii) If λ = 0, then there is no penalty (or reward) for survival in the continuation region
{1, 2, . . .}. The optimal solution is obviously u∗n ≡ 0. As will be seen below, the optimal value of vn
is 1 for any value of λ ≥ 0.

(iii) If we define

T(x) := inf{n > 0 : Xn ≤ 0 or Xn ≥ d | X0 = x > 0}, (12)
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then, when un = vn ≡ 0, we find that (see, again, ([14] p. 349))

E[T0(x)] = x (d− x) for 0 ≤ x ≤ d, (13)

so that
E[J(x)] = λ x (d− x) for 0 ≤ x ≤ d. (14)

Therefore, we could take λ < 0 in that case.

(iv) If P[εn = 1] ≡ p and P[εn = −1] ≡ q and T(x) is defined as in (12), then (see ([14]
p. 348))

E[T0(x)] =
x

q− p
− d

q− p
1− (q/p)x

1− (q/p)d for 0 ≤ x ≤ d (15)

and

lim
d→∞

E[T0(x)] =

{
∞ if p ≥ 1/2,
x

q−p if p < 1/2. (16)

Thus, we could consider the case when λ < 0 if p < 1/2.

Next, notice that (u0, v0) = (−1, 0) and (u0, v0) = (0, 1) yield the same expected
value of X1. However, the choice (u0, v0) = (−1, 0) generates a cost of 1, while with
(u0, v0) = (0,−1) a reward of 1 is obtained. Hence, taking (u0, v0) = (0, 1) is surely a better
decision than choosing (u0, v0) = (−1, 0). Thus, we must determine whether the optimal
solution is (u0, v0) = (−1, 1) or (0, 1).

Proposition 2. We deduce from what precedes that the second optimizer should choose vn ≡ 1,
independently of the value of un.

Remark 4. The optimal choice for un will depend on the value of the parameter λ, which, as
mentioned above, gives the penalty incurred for survival in the continuation region.

It follows from Proposition 2 that Equation (9) can be simplified to

F(x) = min
{

λ +
1
2
[F(x− 3) + F(x− 1)],−1 + λ +

1
2
[F(x− 2) + F(x)]

}
. (17)

Proposition 3. The value function F(x) satisfies the non-linear third-order difference equation

2 F2(x)− F(x) [6λ− 4 + F(x− 1) + 2 F(x− 2) + F(x− 3)]

+F(x− 2) [F(x− 1) + F(x− 3) + 2λ] + 2(λ− 1) [F(x− 1) + F(x− 3)]

+4λ (λ− 1) = 0 (18)

for x = 1, 2, . . . The boundary condition is

F(x) = 0 if x ≤ 0. (19)

Proof. Making use of the formula

min{a, b} = a + b− |a− b|
2

, (20)

we deduce from Equation (17) that

2 F(x)−
{
−1 + 2λ +

1
2
[F(x) + F(x− 1) + F(x− 2) + F(x− 3)]

}

= −
∣∣∣∣1 +

1
2
[F(x− 1) + F(x− 3)− F(x)− F(x− 2)]

∣∣∣∣. (21)
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By squaring both sides of the above equation and simplifying, we obtain Equation (18).

Solving a boundary value problem for a non-linear difference equation of order 3 is
not easy. Instead of trying to solve Equation (18) directly, we will proceed as in [10].

3. Optimal Choice for un

We must determine whether the first optimizer should take u0 = −1 or u0 = 0. The
control variable un (as well as vn) is actually a function of Xn.

Suppose that we set un(Xn) ≡ −1. Then, denoting the function F(x) by Φ(x),
Equation (17) implies that

Φ(x) = λ +
1
2
[Φ(x− 3) + Φ(x− 1)], (22)

that we rewrite as follows:

2Φ(y + 3)−Φ(y + 2)−Φ(y) = 2λ, (23)

where y := x− 3. The equation is valid for y ∈ {−2,−1, . . .} and is subject to the boundary
condition

Φ(y) = 0 if y ≤ −3. (24)

Making use of the mathematical software program Maple, we find that the solution of
Equation (23) that satisfies the boundary conditions Φ(−3) = Φ(−4) = Φ(−5) = 0 is

Φ(y) =
λ

112


210 + 56y + (i

√
7− 7)

(
i
√

7− 1
4

)y

− (i
√

7 + 7)

(
i
√

7− 1
2

)−y

 (25)

for y ≥ −3, so that

Φ(x) =
λ

112


42 + 56 x− (i

√
7 + 21)

(
i
√

7− 1
4

)x

+ (i
√

7− 21)

(
i
√

7− 1
2

)−x

 (26)

for x ≥ 0.

Remark 5. (i) The function Φ(x) is real, even if it contains the imaginary constant i.

(ii) Because Equation (23) is a third-order linear difference equation, we need three boundary
conditions to solve it uniquely. Therefore, we used Equation (24) for y = −3,−4 and −5.

Next, let us denote the function F(x) by Ψ(x) if we set un(Xn) ≡ 0. We then deduce
from Equation (17) that the function Ψ(x) satisfies the second-order difference equation

Ψ(x) = −1 + λ +
1
2
[Φ(x− 2) + Φ(x)]. (27)

The unique solution that is such that Ψ(0) = Ψ(−1) = 0 is

Ψ(x) = (−1 + λ)

[
x− (−1)x

2
+

1
2

]
for x ≥ 0. (28)

Every time the value of Xn changes, the (first) optimizer must make a new decision. It
then follows from Equation (17) that we can express the value function F(x) in terms of
Φ(x) and Ψ(x) as in the following proposition.
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Proposition 4. The value function F(x) is given by

F(x) = min
{

λ +
1
2
[min{Φ(x− 3), Ψ(x− 3)}+ min{Φ(x− 1), Ψ(x− 1)}],

−1 + λ +
1
2
[min{Φ(x− 2), Ψ(x− 2)}+ min{Φ(x), Ψ(x)}]

}
(29)

for x =∈ {0, 1, . . .}.

To determine the value function, and hence the optimal value of u0 (= u0(x)), we can
compare the two expressions

G(x) := λ +
1
2
[min{Φ(x− 3), Ψ(x− 3)}+ min{Φ(x− 1), Ψ(x− 1)}] (30)

and
H(x) := −1 + λ +

1
2
[min{Φ(x− 2), Ψ(x− 2)}+ min{Φ(x), Ψ(x)}]. (31)

That is, we can write that
F(x) = min{G(x), H(x)}. (32)

Remark 6. We must set Ψ(−2) = 0 when we compute the function G(x) (and F(x)).

In the next section, we will present the results obtained with different values of the
parameter λ to see the effect of this parameter on the optimal control u∗0(x).

4. Numerical Examples

Assume first that λ = 1/2. Table 1 gives the value function F(x), Φ(x), Ψ(x), G(x),
H(x) and the optimal control u∗0(x) for x = 1, 2, . . . , 10. We see that the optimal control is
always u∗0 = 0, which could have been expected because the penalty for survival in the
continuation region C := {1, 2, . . .} is not large enough to incite the first optimizer to use
u0 = −1 in order to leave C as rapidly as possible.

Table 1. Functions F(x), Φ(x), Ψ(x), G(x) and H(x), and optimal control u∗0(x) for x = 1, 2, . . . , 10
when λ = 1/2.

x F(x) Φ(x) Ψ(x) G(x) H(x) u∗
0 (x)

1 −1 0.5 −1 0.5 −1 0
2 −1 0.75 −1 0 −1 0
3 −2 0.875 −2 0 −2 0
4 −2 1.1875 −2 −1 −2 0
5 −3 1.4687 −3 −1 −3 0
6 −3 1.6719 −3 −2 −3 0
7 −4 1.9297 −4 −2 −4 0
8 −4 2.1992 −4 −3 −4 0
9 −5 2.4355 −5 −3 −5 0

10 −5 2.6826 −5 −4 −5 0

Next, we take λ = 1. This case is rather special, because the function Ψ(x) becomes
Ψ(x) ≡ 0. Again, u∗0(x) ≡ 0; see Table 2.
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Table 2. Functions F(x), Φ(x), Ψ(x), G(x) and H(x), and optimal control u∗0(x) for x = 1, 2, . . . , 10
when λ = 1.

x F(x) Φ(x) Ψ(x) G(x) H(x) u∗
0 (x)

1 0 1 0 1 0 0
2 0 1.5 0 1 0 0
3 0 1.75 0 1 0 0
4 0 2.375 0 1 0 0
5 0 2.937 0 1 0 0
6 0 3.344 0 1 0 0
7 0 3.859 0 1 0 0
8 0 4.398 0 1 0 0
9 0 4.871 0 1 0 0

10 0 5.365 0 1 0 0

In Table 3, λ = 2. This time, u∗0(x) is not a constant: u∗0(1) = −1 or 0 and then
u∗0(x) = −1 for x odd and u∗0(x) = 0 for x even.

Table 3. Functions F(x), Φ(x), Ψ(x), G(x) and H(x), and optimal control u∗0(x) for x = 1, 2, . . . , 10
when λ = 2.

x F(x) Φ(x) Ψ(x) G(x) H(x) u∗
0 (x)

1 2 2 2 2 2 −1 or 0
2 2 3 2 3 2 0
3 3 3.5 4 3 3.75 −1
4 4 4.75 4 4.75 4 0
5 5 5.875 6 5 5.687 −1
6 6 6.687 6 6.687 6 0
7 7 7.719 8 7 7.797 −1
8 8 8.797 8 8.797 8 0
9 9 9.742 10 9 9.730 −1

10 10 10.730 10 10.730 10 0

Finally, λ = 10 in Table 4 and the optimal control is u∗0(x) ≡ −1, which is not
surprising because the constant λ is large.

Table 4. Functions F(x), Φ(x), Ψ(x), G(x) and H(x), and optimal control u∗0(x) for x = 1, 2, . . . , 10
when λ = 10.

x F(x) Φ(x) Ψ(x) G(x) H(x) u∗
0 (x)

1 10 10 18 10 14 −1
2 15 15 18 15 16.5 −1
3 17.5 17.5 36 17.5 22.75 −1
4 23.75 23.75 36 23.75 28.375 −1
5 29.375 29.375 54 29.375 32.437 −1
6 33.437 33.437 54 33.437 37.594 −1
7 38.594 38.594 72 38.594 42.984 −1
8 43.984 43.984 72 43.984 47.711 −1
9 48.711 48.711 90 48.711 52.652 −1

10 53.652 53.652 90 53.652 57.818 −1

4.1. Critical Value of λ

For a fixed x, we can determine the critical value of λ, that is, the value of λ for which
G(x) = H(x). For instance, we see in Figure 1 that G(1) = H(1) when λ = 2. For λ ∈ (0, 2),
u∗0(1) = 0, while u∗0(1) = −1 for λ > 2.
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Table 4. Functions F(x), Φ(x), Ψ(x), G(x) and H(x), and optimal control u∗
0(x) for x = 1, 2, . . . , 10

when λ = 10

x F(x) Φ(x) Ψ(x) G(x) H(x) u∗
0(x)

1 10 10 18 10 14 −1
2 15 15 18 15 16.5 −1
3 17.5 17.5 36 17.5 22.75 −1
4 23.75 23.75 36 23.75 28.375 −1
5 29.375 29.375 54 29.375 32.437 −1
6 33.437 33.437 54 33.437 37.594 −1
7 38.594 38.594 72 38.594 42.984 −1
8 43.984 43.984 72 43.984 47.711 −1
9 48.711 48.711 90 48.711 52.652 −1

10 53.652 53.652 90 53.652 57.818 −1

Figure 1. Functions G(1) (solid line) and H(1) when λ ∈ [1.95, 2.05].

Because F(1) can take any real value, it is not obvious to decide which sign to choose 163

in the above equation. If we look at the value of F(1) in Tables 1 to 4, we see that we must 164

in fact choose the minus sign, so that 165

F(1) =
{

2(λ − 1) if λ ∈ (0, 2],
λ if λ ≥ 2.

(35)

Next, we could use the above expression for F(1) in Eq. (18) to determine the value 166

of F(2), and so forth. It is clear that this technique is tedious. Moreover, without having 167

computed the value of F(x) as we did above, determining the right sign to choose in the 168

expression for F(x) that corresponds to the one in Eq. (35) is not straightforward. 169

From what precedes, we may conclude that the method used in this paper to compute 170

the value function explicitly is of interest in itself and could be used to solve boundary 171

value problems for non-linear difference equations, if we can express the function of interest 172

as a particular value function in a stochastic control problem. 173

To conclude, we will check that the values of the function F(x) given in Table 1 174

are such that Eq. (18), together with the boundary condition (19), is indeed satisfied for 175

x = 1, 2, . . . , 10 when λ = 1/2. 176

First, we saw in Eq. (35) that F(1) = −1 is a solution of the equation if λ = 1/2. Next, 177

since F(2) is also equal to −1, we must have 178

2(−1)2 − (−1) [6(1/2)− 4 + (−1) + 0 + 0] + 0 + 2 [(1/2)− 1] [(−1) + 0]

+4(1/2) [(1/2)− 1] = 0, (36)

Figure 1. Functions G(1) (solid line) and H(1) when λ ∈ [1.95, 2.05].

Similarly, G(10) and H(10) are both approximately equal to 11.576 when λ ≈ 2.1576;
see Figure 2.
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Figure 2. Functions G(10) (solid line) and H(10) when λ ∈ [2.157, 2.158].

which is indeed correct. 179

The value of F(3) in Table 1 is −2. We must check that 180

2(−2)2 − (−2) [6(1/2)− 4 + (−1) + 2(−1) + 0] + (−1) [(−1) + 0 + 2(1/2)]

+2 [(1/2)− 1] [(−1) + 0] + 4(1/2) [(1/2)− 1] = 0. (37)

Again, the result is correct. We can proceed in the same way to check the remaining results. 181

For x = 10, we obtain that 182

2(−5)2 − (−5) [6(1/2)− 4 + (−5) + 2(−4) + (−4)] + (−4) [(−5) + (−4) + 2(1/2)]

+2 [(1/2)− 1] [(−5) + (−4)] + 4(1/2) [(1/2)− 1] = 0. (38)

5. Conclusion 183

Homing problems are generally considered for diffusion processes. The author and 184

Kounta [9] extended these problems to the discrete-time case. In [8], the author improved 185

the results found in [9] by finding an explicit expression for the value function. 186

In the current paper, a homing problem with two optimizers has been defined and 187

solved explicitly. The problem can be interpreted as a stochastic difference game, as one 188

optimizer is trying to minimize the time spent by the controlled stochastic process in the 189

continuation region C, while the second one seeks to maximize the survival time in C. 190

In Section 2, the equation satisfied by the value function has been derived. This 191

equation is a non-linear third-order difference equation, which is obviously very difficult 192

to solve explicitly. 193

The technique that we have used in the paper enables us to obtain an exact expression 194

for the solution of a boundary value problem for a non-linear difference equation. This 195

result is of interest in itself. 196

For the sake of simplicity, we have considered a symmetric random walk, and it has 197

been assumed that the control variables can take only two values. We could of course 198

generalize the results that have been presented in the paper. However, if there are many 199

possible values for the control variables, obtaining an explicit solution to the homing 200

problem considered can be quite tedious. 201
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Figure 2. Functions G(10) (solid line) and H(10) when λ ∈ [2.157, 2.158].

4.2. Solution of the Non-Linear Difference Equation

As we mentioned in Section 2, solving the non-linear third-order difference Equation (18),
subject to the boundary condition (19), is not an easy task.

We can try to solve Equation (18) recursively. First, making use of the boundary
condition (19), we can write that

F2(1)− F(1) (3λ− 2) + 2λ (λ− 1) = 0. (33)

It follows that

F(1) =
1
2

{
(3λ− 2)±

[√
(3λ− 2)2 − 8 [λ (λ− 1)]

]}

=
1
2

{
(3λ− 2)±

√
λ2 − 4λ + 4

}

=
1
2
{(3λ− 2)± |λ− 2|}. (34)



Games 2023, 14, 68 9 of 10

Because F(1) can take any real value, it is not obvious to decide which sign to choose
in the above equation. If we look at the value of F(1) in Tables 1–4, we see that we must in
fact choose the minus sign, so that

F(1) =
{

2(λ− 1) if λ ∈ (0, 2],
λ if λ ≥ 2.

(35)

Next, we could use the above expression for F(1) in Equation (18) to determine the
value of F(2), and so forth. It is clear that this technique is tedious. Moreover, without
having computed the value of F(x) as we did above, determining the right sign to choose in
the expression for F(x) that corresponds to the one in Equation (35) is not straightforward.

From what precedes, we may conclude that the method used in this paper to compute
the value function explicitly is of interest in itself and could be used to solve boundary
value problems for non-linear difference equations, if we can express the function of interest
as a particular value function in a stochastic control problem.

To conclude, we will check that the values of the function F(x) given in Table 1 are
such that Equation (18), together with the boundary condition (19), is indeed satisfied for
x = 1, 2, . . . , 10 when λ = 1/2.

First, we saw in Equation (35) that F(1) = −1 is a solution of the equation if λ = 1/2.
Next, since F(2) is also equal to −1, we must have

2(−1)2 − (−1) [6(1/2)− 4 + (−1) + 0 + 0] + 0 + 2 [(1/2)− 1] [(−1) + 0]

+4(1/2) [(1/2)− 1] = 0, (36)

which is indeed correct.
The value of F(3) in Table 1 is −2. We must check that

2(−2)2 − (−2) [6(1/2)− 4 + (−1) + 2(−1) + 0] + (−1) [(−1) + 0 + 2(1/2)]

+2 [(1/2)− 1] [(−1) + 0] + 4(1/2) [(1/2)− 1] = 0. (37)

Again, the result is correct. We can proceed in the same way to check the remaining results.
For x = 10, we obtain that

2(−5)2 − (−5) [6(1/2)− 4 + (−5) + 2(−4) + (−4)] + (−4) [(−5) + (−4) + 2(1/2)]

+2 [(1/2)− 1] [(−5) + (−4)] + 4(1/2) [(1/2)− 1] = 0. (38)

5. Conclusions

Homing problems are generally considered for diffusion processes. The author and
Kounta [11] extended these problems to the discrete-time case. In [10], the author improved
the results found in [11] by finding an explicit expression for the value function.

In the current paper, a homing problem with two optimizers has been defined and
solved explicitly. The problem can be interpreted as a stochastic difference game, as one
optimizer is trying to minimize the time spent by the controlled stochastic process in the
continuation region C, while the second one seeks to maximize the survival time in C.

In Section 2, the equation satisfied by the value function has been derived. This
equation is a non-linear third-order difference equation, which is obviously very difficult
to solve explicitly.

The technique that we have used in the paper enables us to obtain an exact expression
for the solution of a boundary value problem for a non-linear difference equation. This
result is of interest in itself.

For the sake of simplicity, we have considered a symmetric random walk, and it has
been assumed that the control variables can take only two values. We could of course
generalize the results that have been presented in the paper. However, if there are many
possible values for the control variables, obtaining an explicit solution to the homing
problem considered can be quite tedious.
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