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Abstract: Market power in water markets can be modeled as simultaneous quantity competition on
a river structure and analyzed by applying social equilibrium. In an example of a duopoly water
market, we argue that the lack of backward induction logic implies that the upstream supplier
foregoes profitable strategic manipulation of water to the downstream supplier. To incorporate
backward induction, we propose the Stackelberg social equilibrium concept. We prove the existence
of Stackelberg social equilibrium in duopoly water markets with an upstream–downstream river
structure and derive it in the example of a duopoly market.
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1. Introduction

Market power is an important source of friction in water markets. Ansink and Houba
(2012) [1] propose and analyze quantity competition among water suppliers along rivers
with multiple sources and a single sink. Water suppliers can extract and sell river water,
being constrained by the river flow and connected to water users via a water delivery
infrastructure.1 They derive sufficient conditions for the existence of a social equilibrium
(SE), as proposed in Debreu (1952) [6], and apply it to several examples.2 SE is more general
than Nash equilibrium because it can also deal with situations in which unilateral changes
of one agent’s strategy could make the strategies selected by others infeasible, as in, e.g.,
many river basins. In SE, each agent takes the others’ strategies as given and the strategy
profile has to be feasible.

We make several contributions in this study. First, we will show that the SE of a
duopoly water market in Example 4.3 of Ansink and Houba (2012) [1] with quantity
competition à la Cournot is blind to the possibility of strategic manipulation of water
releases by an upstream agent to the downstream agent, which we elaborate on in the next
paragraph. For now, such strategic water releases implicitly introduce the notion of a first
and second mover in the game. In order to analyze sequential moves, we argue that SE
needs to be extended with the logic of backward induction à la Stackelberg. Our second
contribution is to propose the concept of Stackelberg social equilibrium (SSE) for general
duopoly water markets with an upstream and downstream agent. We demonstrate the
existence of SSE for this class of games under the same set of assumptions that are sufficient
for the existence of SE. As a final contribution, we derive the SSE in Example 4.3 of Ansink
and Houba (2012) [1] and compare it to the SE in this reference. Although conceptually
straightforward, these derivations are non-trivial.

In our motivating example, we focus on an extreme case in Example 4.3 of Ansink
and Houba (2012) [1], which is illustrative of the generic argument we want to make. We
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consider a river consisting of a single source that is fully controlled by upstream, while
downstream fully relies on water released by upstream. The chosen profit functions are
such that for each supplier an amount of fifty percent of available resources is the best
response if it presumes the other would bring fifty percent of available resources to the
market. Then, each supplier extracting fifty percent of upstream’s water source is both
feasible and has SE. The reason why it has SE is that this concept, as applied in Ansink and
Houba (2012) [1], is defined in terms of simultaneous extractions that are feasible and form
the best response to the other’s extraction. In this particular SE, however, upstream passes
half of its water source onto downstream, enabling downstream to bring it to the market,
while upstream might also have brought it to the market and increased its own profits in
our motivating example. The remedy is to realize that extractions are sequential, the release
of water to downstream is observable, and the logic of backward induction applies.

The presence of observable water releases by upstream defines downstream’s strategy
as a function of upstream’s water extraction rather than a single amount. We can apply SE
in Example 4.3 of Ansink and Houba (2012) [1] immediately to strategies in terms of an
amount of extraction by upstream, and extraction as a function of upstream’s extraction
for downstream. However, this does not incorporate backward induction automatically.
The latter is the reason why we explicitly incorporate backward induction into a modified
equilibrium concept that we call the Stackelberg social equilibrium, for obvious reasons.3

The rest of this note is organized as follows. In Section 2, we establish notation and
define both SE and SSE. We provide a more detailed discussion of our motivating example
in Section 3. In Section 4, we demonstrate the existence of a SSE and derive it for Example
4.3 of Ansink and Houba (2012) [1]. We draw some conclusions in Section 5.

2. Duopoly Water Markets

Our notation simplifies the notation of Ansink and Houba (2012) [1]. The river is
divided into an upstream (U) and downstream (D) stretch. Each stretch is equipped with
the endowment of a water source, where we denote the water volumes of upstream and
downstream as eU > 0, respectively, eD ≥ 0.

Each stretch is home to a water supplier, which we also label either U or D. Water
suppliers extract water and both deliver it to the water market, which is denoted W. Water
supplier U is restricted to accessing the upstream source exclusively, where it can extract
a quantity of water denoted as yU ∈ [0, eU ] for delivering it at the water market. Unused
water eU − yU ≥ 0 flows downstream, where it augments the downstream’s water source,
converting it into a total of eD + eU − yU ≥ eD. Downstream water supplier D can extract
yD ∈ [0, eD + eU − yU ] of water for the water market. Figure 1 illustrates these sources and
water flows.
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Figure 1. Water suppliers U and D along a river extract and deliver water to water market W.

Water market W is modeled by a representative consumer who has a continuously
differentiable, strictly concave benefit function b(yD + yU) such that benefit is impossible to
attain without water and a positive marginal benefit for no or small amounts of water use,
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i.e., b(0) = 0 and b′(0) > 0. The determination of the willingness to pay for the combined
quantity yD + yU involves calculating the derivative of the benefit function. In quantity
competition models, the willingness to pay is equal to the market-clearing price, which
we denote as the price function p(yD + yU) rather than b′(yD + yU). Water scarcity arises
when there is an inadequate combination of resources to achieve maximum benefit. As a
result, water scarcity occurs when the willingness to pay, assuming full utilization of all
sources, is positive. In our setting, scarcity is present for relatively small combined amounts
eD + eU . For the quadratic benefit function given by 2(yD + yU)− (yD + yU)

2, we obtain
the linear price function p(yD + yU) = 2− 2(yD + yU) and water scarcity if eD + eU < 1.

The profit maximization objective applies to both suppliers. Supplier i = U, D
generates revenue p(yD + yU)yi. Additionally, the cost function associated with extract-
ing and marketing the quantity yi is assumed to be non-decreasing and convex, repre-
sented by Ci(yi). Hence, the profit function for supplier i is expressed as πi(yU , yD) =
p(yD + yU)yi − Ci(yi).

The strategy profile given by the pair
(
y∗U , y∗D

)
forms a SE if

y∗D ∈ [0, eD + eU − y∗U ],

πU(y∗U , y∗D) ≥ πU(yU , y∗D) for all yU ∈ [0, eU ],

πD(y∗U , y∗D) ≥ πD(y∗U , yD) for all yD ∈ [0, eD + eU − y∗U ].

It is important to note that the observable flow of water, which is given by
eU − yU , from upstream to downstream introduces the concept of time and sequential
moves implicitly into the model. However, in our context, the social equilibrium concept
remains independent of these notions and can be considered as a concept of simultaneous
extractions.

In contrast, a Stackelberg approach recognizes that the observable flow of water is ulti-
mately determined by upstream’s extraction, indicating a dynamic game. Consequently, as
players in this dynamic setting, upstream moves first, followed by downstream. As a result,
downstream’s strategy becomes a function that maps the combined resources available to
downstream into an achievable extraction level. Formally, a strategy of downstream is a
function RD : [eD, eD + eU ]→ [0, eD + eU ]. A strategy profile is given by the pair (yU , RD),
where upstream chooses extraction yU and downstream the strategy RD. The strategy
profile

(
y∗U , R∗D

)
forms a SSE if

R∗D(yU) ∈ [0, eD + eU − yU ] for all yU ∈ [0, eU ],

with the profit maximization of upstream given by

πU(y∗U , R∗D(y
∗
U)) ≥ πU(yU , R∗D(yU)) for all yU ∈ [0, eU ],

and with the profit maximization of downstream in every contingency given by

for all yU ∈ [0, eU ] : πD(yU , R∗D(yU)) ≥ πD(yU , yD) for all yD ∈ [0, eD + eU ].

Any SSE in our setting can be characterized by applying backward induction.

3. Motivating Example

Our first contribution shows that the equilibrium characterization of Example 4.3 in
Ansink and Houba (2012) [1] can be counterintuitive. First, we will briefly discuss their
model and results.

In their Example 4.3, the market price function is given by 2(1− yD − yU), where
there are no extraction costs and there is water scarcity, i.e., eD + eU < 1. The application
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of SE yields best-response functions for each supplier, denoted as Ri, i = U, D, which are
given by

RU(yD) = max
{

1
2 (1− yD), eU

}
, RD(yU) = max

{
1
2 (1− yU), eD + eU − yU

}
.

The first expression under each maximum refers to partial extraction and the second
one to full extraction, which ensures feasible water extractions by each supplier. Solving
all four cases, labeled (1)–(4), yields the SE extractions and their conditions as derived in
Ansink and Houba (2012) [1], which we state here for convenience:4

yU = eU , yD = eD, if 2eU + eD < 1 and eU + 2eD < 1, (1)

yU = eU , yD = 1
2 (1− eU), if eU <

1
3

and eU + 2eD ≥ 1, (2)

yU = 1− eU − eD, yD = 2eU + 2eD − 1, if 2eU + eD ≥ 1 and eU + eD <
2
3

, (3)

yU =
1
3

, yD =
1
3

, if eU ≥
1
3

and eU + eD ≥
2
3

. (4)

In all cases, SE water extraction is at most 2
3 . The full extraction of aggregate resources

occurs in cases (1) and (3). Case (3) corresponds to the low upstream holding of partial
extraction and the release of water downstream. Then, downstream fully extracts all of the
combined resources. Moreover, in case (4), upstream releases water to downstream, and
downstream partially extracts its available resources.

In our discussion, we will zoom in on cases (3) and (4) in more detail and simplify the
situation to the extreme case in which upstream can be regarded as the monopolist of water
in order to dramatize our argument, i.e., eD = 0. Then, downstream fully relies on water
released by upstream and can only extract water if upstream allows it to do so. For ease of
discussion, we pick the number eU = 2

3 representing the boundary case of (3) and (4) with
full extraction yU = yD = 1

3 of available water. Furthermore, inflow to downstream is 1
3 ,

the market price is 2
3 , and each supplier makes a profit of 2

9 .
To verify that this is an SE: given belief yD = 1

3 , supplier U solves maxyU∈[0, 2
3 ]

2
( 2

3 − yU
)
yU with maximum yU = 1

3 and profit 2
9 . Similar, given inflow 1

3 and belief
yU = 1

3 , supplier D solves maxyD∈[0, 1
3 ]

2yD
( 2

3 − yD
)

with maximum yD = 1
3 and profit 2

9 .
In other words, given the equilibrium beliefs of equal extraction it is the best response for
each supplier to extract half of the resource.

However, the SE outcome lacks the principle of backward induction. Upstream
neglects that it controls inflow at downstream and that upstream can hold downstream
at any level of inflow and even deprive downstream of water. If instead upstream would
extract all of the available water, then downstream could not extract and supply a drop of
water, while the market price would remain at 2

3 and upstream’s profit would be doubled
at 4

9 . Clearly, the latter outcome in which upstream acts as a (ruthless) profit-maximizing
monopolist seems a more intuitive outcome of strategic manipulation.

As an alternative solution concept, we propose SSE with upstream as the Stackelberg
leader. This equilibrium concept introduces the backward induction logic. In our motivat-
ing example, the follower’s reaction function is given by 2

3 − yU for yU ≥ 1
3 , and then the

leader’s profit function is given by the increasing linear function 2
3 yU on

[
1
3 , 2

3

]
with full

extraction eU = 2
3 as the boundary solution and maximal profit of 4

9 , which is twice the
SE profit. Hence, the analyses for cases (3) and (4) become similar, and the SSE outcome
captures the strategic aspect of depriving downstream from water.

4. Stackelberg Social Equilibrium

A Stackelberg approach recognizes that the observable flow of water induces a dy-
namic setting in which upstream moves first, followed by downstream. As a consequence,
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downstream’s strategy becomes a function, and this changes the application of social equi-
librium, which we have called Stackelberg social equilibrium in Section 2. In this section,
we address two issues. First, we establish the existence of SSE in our setting under the
same technical conditions under which SE exists in Ansink and Houba (2012) [1]. Second,
we apply this concept to Example 4.3 of Ansink and Houba (2012) to derive the SSE.

A social equilibrium exists if all profit functions are strictly concave, as shown in
Ansink and Houba (2012).5 Our next result establishes the existence of SSE under the same
condition and provides a characterization.

Theorem 1. If the profit function of supplier i = U, D is strictly concave in yi, then a SSE(
y∗U , R∗D

)
exists in which

R∗D(yU) = arg max
eD∈[0,eD+eU−yU ]

p(yD + yU)yD − CD(yD)

is a continuous function and y∗U ∈ [0, eU ] maximizes the continuous function πU(yU , R∗D(yU)).

Proof. The strict concavity of downstream’s profit function is sufficient to ensure that
downstream’s maximization problem is a strictly convex program. By the Maximum
Theorem, a single maximum exists, and it is a continuous function of all parameters, in
particular yU . Therefore, the function R∗D is continuous in yU ∈ [0, eU ]. After substitution,
upstream’s profit function πU(yU , R∗D(yU)) is continuous in yU on the compact interval
[0, eU ]. Hence, a profit maximum y∗U exists. The pair

(
y∗U , R∗D

)
forms an SSE.

We conclude this section with a demonstration of how to apply this result.

The Stackelberg Social Equilibrium of Example 4.3 of Ansink and Houba (2012)

Here, we revisit Example 4.3 of Ansink and Houba (2012) [1] and characterize the SSE.
The functional forms are stated in Section 3, and all technical details are deferred to the
Appendix A.

We solve for the SSE by applying backward induction. The follower’s profit-maximization
problem is the same as in the SE for which the reaction function R∗D(yU) =

min
{

1
2 (1− yU), eD + eU − yU

}
has been derived. The first expression under the mini-

mum corresponds to the partial extraction of all combined resources by downstream,
whereas the second expression expresses full extraction. It gives rise to three cases in
upstream’s profit-maximization problem:

1. The profit-maximizing quantity for downstream coincides with the upper bound
on water extraction, i.e., R∗D(yU) = eD + eU − yU . Then, upstream’s profit function
πU(yU , R∗D(yU)) = 2(1− eD − eU)yU is linear and increasing, and full extraction by
upstream is profit maximizing.

2. The profit-maximizing quantity for downstream lies below the upper bound on water
extraction, i.e., R∗D(yU) =

1
2 (1− yU) < eD + eU− yU . Then, upstream’s profit function

is πU(yU , R∗D(yU)) = (1− yU)yU . Then, either 1
2 extraction by upstream is profit

maximizing whenever feasible, i.e., eU ≥ 1
2 , or full extraction is profit maximizing if

constrained, i.e., eU ≤ 1
2 .

3. Downstream will adopt the best response below the upper bound for low levels of
extraction by upstream, while downstream chooses this upper bound for high levels
of extraction by upstream. In this case, upstream’s profit-maximizing extraction is a
mix of the first two cases, either full extraction or 1

2 extraction.

Recall that the SE distinguishes the four distinct cases (1)–(4), where cases (3) and (4)
correspond to upstream, which foregoes the ability to strategically manipulate its water
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release to downstream. In SSE there are only three cases, which we label (5)–(7). Their SSE
extractions along the equilibrium path and their conditions are given by

yU = eU , yD = eD, if 2eD + eU ≤ 1 and eD + eU ≤ 3
4 , (5)

yU = eU , yD = 1
2 (1− eU), if 2eD + eU ≥ 1 and eU ≤ 1

2 , (6)

yU = 1
2 , yD = 1

4 , if eD + eU ≥ 3
4 and eU ≥ 1

2 . (7)

Our cases (5) and (6) produce SSE extractions that are similar to the SE extractions
of (1), respectively, (2). Partial SSE extractions by both suppliers are labeled case (7), and
these differ from the SE extractions of case (4), which is similar to the classic result in
the economics literature for Stackelberg and Cournot equilibrium. Furthermore, the SE
extractions of case (3) are impossible in SSE. Additionally, the three SSE cases’ conditions
differ from the four of SE. We forego a detailed analysis of the overlap of the areas under
the conditions of SSE and SE.

In all cases, SSE water extraction is at most 3
4 , and this upper bound is larger than the

upper bound of 2
3 in SE. This suggests an increase in aggregate extraction, which would

be a deterioration of environmental issues such as river conservation. The reason for the
increase in aggregate extraction is that by strategically releasing one unit of water less to
downstream, the latter responds by reducing its extraction with one unit in case of full
extraction and a half unit in case of partial extraction, resulting in a non-negative aggregate
increase.

For the special case eD = 0 in which downstream fully relies on water released by
upstream, case (6) is also excluded and downstream fully extracts all water whenever the
source is sufficiently small, i.e., eU ≤ 3

4 . For higher levels, both SSE extractions of upstream
and downstream will be less than full extraction. At the boundary of (5) and (7), we have a
nonrobust case of multiple equilibria.

5. Conclusions

An important source of friction in water markets is market power. Ansink and Houba
(2012) analyze quantity competition among water suppliers along rivers with multiple
sources and a single sink. Water suppliers extract water from the river and sell it to water
users being constrained by the river flow, and they are connected to these users through
a water delivery infrastructure. They define SE in terms of the simultaneous extractions
of water and derive sufficient conditions for existence of SE. They also apply it to several
examples.

In the duopoly water market case, Example 4.3 of Ansink and Houba (2012), we have
argued that the presence of upstream and downstream suggests sequential moves and
observable water releases. Furthermore, we have argued that a lack of backward induction
logic may arise and that the upstream supplier foregoes profitable strategic manipulation
of water to the downstream supplier. From a game theoretical point of view, incorporating
both the notion of backward induction and strategy profiles with sequential moves, we
propose the SSE concept. We prove the existence of SSE in duopoly water markets with an
upstream–downstream river structure.

As a final result, we derive SSE in their Example 4.3. We show that the qualitative logic
of three cases in SE, as derived in Ansink and Houba (2012), remains valid in SSE and that
one of their cases for SE drops out: the criticized boundary case in our motivating example.
The strategic manipulation of upstream’s water release to downstream leads to an upward
pressure on aggregate extraction in SSE, comprising a deterioration of environmental
issues such as river conservation. Our results establish that SSE is worth studying in
water markets.

The concept of SSE in our setting is embedded in backward induction. For the more
general case with multiple suppliers along a river with observable river flow, the direction
of modifying the Markov perfect equilibrium, as defined in Maskin and Tirole (2001) [8],
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with river flow as the state variable seems a viable route forward to investigate sequential
extractions and dynamic reasoning in the general framework of Ansink and Houba (2012).
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Appendix A. Derivation of the SSE of Example 4.3 of Ansink and Houba (2012)

In Stackelberg duopoly models, the follower’s reaction function coincides with Cournot’s
model best response function. This also applies to SE and SSE in the current setting and
allows us to apply the results of Ansink and Houba (2012) [1]:

R∗D(yU) = min
{

max
{

0, 1
2 (1− yU)

}
, eD + eU − yU

}
.

where the second expression under the maximum is D’s optimal water extraction under a
non-binding upper bound on yD, i.e., yD = 1

2 (1− yU), and the last expression is derived
from a binding upper bound on water extraction, i.e., yD = eD + eU − yU . Recall from
Section 2 that water scarcity is defined as p(yD + yU) > 0, which implies eD + eU < 1.
Hence, we also have yU ≤ eU < 1 and a positive second expression under the maximum.
To summarize, R∗D(yU) = min

{
1
2 (1− yU), eD + eU − yU

}
. Then, the minimum occurs for

a binding upper bound⇐⇒ yU ≥ 2eD + 2eU − 1, where the lower bound on yU can either
exceed eU or be negative. The latter explains taking the minimum and maximum in the
following reformulation:

R∗D(yU) =

{
1
2 (1− yU), if yU ∈ [0, min{2eD + 2eU − 1, eU}],
eD + eU − yU , if yU ∈ [max{0, 2eD + 2eU − 1}, eU ].

For later use, we derive

• min{2eD + 2eU − 1, eU} = eU ⇐⇒ 2eD + eU ≥ 1⇐⇒ R∗D(yU) =
1
2 (1− yU).

• max{0, 2eD + 2eU − 1} = 0⇐⇒ eD + eU ≤ 1
2 ⇐⇒ R∗D(yU) = eD + eU − yU .

• Otherwise, we have to deal with two subintervals of [0, eU ].

The Stackelberg leader’s profit function πU(yU , R∗D(yU)) = 2(1− R∗D(yU)− yU) · yU
and upstream’s profit maximization problem can be rewritten as

max
{

max
yU∈[0,min{2eD+2eU−1,eU}]

(1− yU)yU , max
yU∈[max{0,2eD+2eU−1},eU ]

2(1− eD − eU)yU

}
.

We distinguish the three cases identified above.

eD + eU ≤ 1
2 : In this case, upstream solves maxyU∈[0,eU ] 2(1− eD − eU)yU . The linear func-

tion increases because of water scarcity, i.e., eD + eU < 1. Hence, we obtain
boundary solution yU = eU and upstream’s profit 2(1− eD − eU)eU > 0.
Furthermore, RD(eU) = eD and 2(1− eD − eU)eD ≥ 0 is downstream’s
profit.
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2eD + eU ≥ 1: Here, upstream solves maxyU∈[0,eU ](1− yU)yU . The maximum is given by

yU = min
{

eU , 1
2

}
, which implies two subcases. If eU ≤ 1

2 , then yU = eU

yields upstream’s profit (1− eU)eU . Furthermore, RD(eU) =
1
2 (1− eU), and

(1− eU)eD ≥ 0 is downstream’s profit. Similarly, if eU ≥ 1
2 then yU = 1

2 ,

upstream’s profit is 1
4 , RD

(
1
2

)
= 1

4 , and downstream’s profit is 1
8 .

eD + eU > 1
2 : and 2eD + eU < 1 : Then, 2eD + 2eU − 1 ∈ (0, eU), and it partitions the inter-

val [0, eU ] into two subintervals. Both the linear and quadratic optimization
under the maximum of upstream’s optimization problem should be con-
sidered. One difference with the previous cases is that maxyU∈[0,2eD+2eU−1]

(1− yU)yU has yU = min
{

2eD + 2eU − 1, 1
2

}
as its maximum. Note that

2eD + 2eU − 1 < 1
2 ⇐⇒ eD + eU < 3

4 . After modifying previous argu-
ments, we obtain: If eD + eU < 3

4 , then yU = 2eD + 2eU − 1 ∈ (0, eU)
generates profit 2(1− eD − eU)(2eD + 2eU − 1) > 0 for upstream and yD =
RD(2eD + 2eU − 1) = 1− eD − eU > 0 (because of water scarcity) with posi-
tive profit 2(1− eD − eU)

2 for downstream. If eD + eU ≥ 3
4 , then previous

results imply yU = 1
2 generates profit 1

4 for upstream and yD = RD

(
1
2

)
= 1

4

generates profit 1
8 for downstream. Finally, the substitution of previous

results yields the following upstream’s maximal profit{
max{2(1− eD − eU)(2eD + 2eU − 1), 2(1− eD − eU)eU}, if eD + eU < 3

4 ,

max
{

1
4 , 2(1− eD − eU)eU

}
, if eD + eU ≥ 3

4 .

Because 2eD + eU < 1 in this third main case and 1− eD− eUeU ≤ (1− eU)eU
≤ 1

4 , we obtain the maximal profit{
2(1− eD − eU)eU , if eD + eU < 3

4 ,
1
4 , if eD + eU ≥ 3

4 ,

and equilibrium path yU = eU and yD = eD if eD + eU < 3
4 , while yU = 1

2
and yD = 1

4 if eD + eU ≥ 3
4 .

Summarizing the conditions of all cases, we have three important lines: 2eD + eU = 1,
eD + eU = 3

4 and eU = 1
2 . In (eU , eD)-space; these lines intersect at eU = 1

2 and eD = 1
4 .

Notes
1 From a theoretical point of view, there are a variety of studies related to water markets, i.e., Ambec and Ehler (2008) [2];

Chakravorty et al. (2009) [3]; Holland (2006) [4]; and an empirical application of Ansink and Houba (2012) [1] and Tomori et al.
(2021) [5].

2 For background and further details of social equilibrium, see, e.g., Dasgupta and Maskin (2015) [7].
3 There is an interesting analogy with the classic Stackelberg model. In that model, the leader setting the Cournot equilibrium

quantity and the follower’s (constant) strategy to produce the Cournot equilibrium quantity irrespective of the leader’s quantity
forms a Nash equilibrium. Obviously, this Nash equilibrium lacks backward induction and involves non-credible threats made
by the follower. And it is the reason that the economic literature analyzes Stackelberg equilibrium instead.

4 The below-represented equations correspond to the equations (A)–(D) in [1].
5 This reference also discusses in detail how these conditions restrict both benefit and cost functions.
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