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Abstract

:

We built and investigated analytically and numerically a differential game model of Cournot oligopoly with consideration of pollution for the general case and the case of symmetrical agents. We conducted a comparative analysis of selfish agents’ behavior (a differential game in normal form), their hierarchical organization (differential Stackelberg games), and cooperation (optimal control problem) using individual and collective indices of relative efficiency. The same analysis wasperformed for the models with the green effect when players chose both output volumes and environmental protection efforts. We used the Pontryagin maximum principle for analytical investigation and the method of qualitatively representative scenarios in simulation modeling for numerical calculations. This method allows for reducing the number of computer simulations, providing sufficient precision. As a result of the comparative analysis, systems of collective and individual preferences were obtained.
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1. Introduction


A widespread approach to the analysis of game-theoretic models (particularly, differential games) consists in the comparison of results obtained in the cases of selfish players’behavior (differential games in normal form), their hierarchical organization (Stackelberg games), and cooperation (a differential game is reduced to the optimal control problem). For example, a successful illustration of this approach is presented by Zhang et al. [1]. A variant of the approach is described in Ougolnitsky [2]. Basing on Basar and Zhu [3], Cairns and Martinet [4], and some other papers, we proposed in [2] a system of individual and collective indices of the comparative (relative) efficiency for quantitative evaluation of the different ways of organization of economic agents.



A convenient model for the comparative analysis of the different ways of organization of economic agents is Cournot oligopoly (see Maskin and Tirole [5], Geras’kin [6,7], and Algazin and Algazina [8,9]). For example, Xiao et al. [10,11] studied Cournot duopoly with bounded rationality and investigated the equilibria. Raoufinia et al. [12] analyzed open-loop and closed-loop solutions in a Cournot duopoly game with advertising. Al-Khedhairi [13] considered non-trivial Cournot duopoly based on fractal differential equations. Julien [14] investigated Cournot oligopoly with several Stackelberg leaders and followers. A comparison of Cournot and Stackelberg equilibria performed by Zouhar and Zouharova [15].



Together with a standard setup of the oligopoly model that describes a competition of several firms ina market of homogeneous goods, it is interesting to consider the so-called green effect. Usually, the green effect is concerned with supply chains (see Azevedo et al. [16], Fahimnia et al. [17], and Sharma and Jain [18]). It is assumed in this case that the participants of a supply chain invest inthe environmental protection in the processes of production and transportation. The incurred costs are compensated by the willingness of environmentally minded consumers to pay more for products with a green label.



However, the studies of Cournot oligopoly do not include a systematic comparative analysis of the relative profit from the point of view of the whole society and different firms. Besides, the environmental externalities of economic activity and possible environmental protection efforts are not considered.



Thus, the main idea of this paper consists in a comparison of the different ways of organization of economic agents, such as competition, cooperation, and hierarchical control, for differential Cournot oligopoly with pollution dynamics and differential Cournot oligopoly with the green effect. The specific aim consists in building preference systems based on individual and collective indices of relative efficiency.



The contribution of this paper and its novelty areas follows:




	-

	
A differential game-theoretic model of Cournot oligopoly with consideration of pollution for the general case and the case of symmetrical agents is built and investigated analytically and numerically.




	-

	
A comparative analysis of selfish agents’ behavior (a differential game in normal form), their hierarchical organization (differential Stackelberg games), and cooperation (optimal control problem) using individual and collective indices of relative efficiency is conducted.




	-

	
We performed the same analysis for the models with the green effect when players chose both output volumes and environmental protection efforts.




	-

	
We constructed systems of collective and individual preferences.









In Section 2, we characterize the materials and methods of the investigation. In Section 3, we build and investigate a differential game model of Cournot oligopoly for the selfish behavior of players, their hierarchical organization, and cooperation. The case of symmetrical players and the general case are considered. We applied the Pontryagin maximum principle for analytical investigation and simulation modeling for numerical calculations. We used a system of individual and collective indices of relative efficiency for the quantitative comparison of the obtained results. In Section 4, similar work is performed for the modelswith the green effect when players invest in environmental protection. Section 5 concludes the paper.




2. Materials and Methods


The main analytical instrument of the investigation is the well-known Pontryagin maximum principle [19]. For numerical calculations, we used an original method of qualitatively representative scenarios in simulation modeling [20]. The idea consists in choosing a relatively small number of control scenarios that providea sufficiently precise description of the dynamics of the controlled system. For the substantiation of sufficiency, two conditions are used, namely the conditions of internal and external stability. Suppose an initial set of scenarios is chosen. It is internally stable if for any two scenarios from this set, the respective payoffs of the players differ essentially. It is externally stable if for any feasible scenario that does not belong to this set, we can find a scenario from this set such that the respective payoffs of the players are close. The value of precision of such approximations is chosen empirically and should not exceed 10% from the typical values of payoffs.



For quantitative comparative evaluation of the different ways of organization of economic agents (information structures of the respective game-theoretic models) from the point of view of both the whole society and separate agents, we introduced a system of relative efficiency indices [2], namely:




	-

	
collective indices of relative efficiency;











  S C  I  N E   =     ∑   i = 1  n   J i  N E      J C    ;     S C  I  S T   =     ∑   i = 1  n   J i  S T      J C    ;   S C  I  i S T   =     ∑   i = 1  n   J i  i S T      J C     











The values    J i  S T      and     J i  I S T     determine the payoffs of the i-th player in the Stackelberg and inverse Stackelberg games, respectively, when the   i  -th player is the leader. Any player can become the leader; in our examples, it is the first player.



	-

	
individual indices of relative efficiency.








    K i  N E   =     min   x ∈ N E    J i  N E    ( x )     J C  / n   ;    K i  S T   =    J i  S T      J C  / n   ;      K i  I S T   =    J i  I S T      J C  / n     









The payoffs are supposed to be non-negative.



We proposed a mathematical model that is a dynamic version of Cournot oligopoly with consideration of environmental pollution. The main approach to its identification is an expert estimate using available real data. There were five main parameters in the model: (1) the concentration of pollutants in the environment in the initial moment of time, (2) a coefficient of the pollutants’ emission during production, (3) a coefficient of decay of the pollutants in the environment, (4) a maximal output for any firm, and (5) a cost coefficient for each firm. For the numerical identification of their values, we used the following reasonings. As a pollutant, we can consider carbon monoxide (CO). It is toxic, and its admissible concentration in production premises is 20 mg/m3 during a working day or 50 mg/m3 during an hour or 100 mg/m3 during 30 min. Based on this, the concentration of pollutants in the environment in the initial moment of time varied from 1 to 50 mg/m3. The coefficient of the pollutants’ emission during production depends on the production volume. For example, a coke chemical plant emits annually about 2000 tons of carbon monoxide. Based on this, the value of pollutants’ emission varied from 0.1 to 30 tons per year; the maximal output for any firm varied from 5 to 70,000 tons per year, and the cost coefficient for each firm varied from 1 to 50. The decay of many pollutants is slow; for example, carbon monoxide decays only in the presence of a catalyst. Thus, we varied the coefficient of decay of the pollutants from 0.1 to 30 kg per year. In addition, discounting was considering in the model, and a discount factor was taken to be equal to 0.004 that corresponds to moderate inflation. The modeling was conducted at an interval of 1200 days.




3. Differential Game Model of Cournot Oligopoly with Consideration of Pollution


Let us consider a dynamic version of Cournot oligopoly with consideration of environmental pollution and the linear equation of dynamics:


   J i  =   ∫  0 T   e  − r t    α 1   (  a −  c i  −  x ¯   ( t )   )   x i   ( t )  d t −  e  − r T    α 2  y  ( T )  → m a x    



(1)






                              0 ≤  x i   ( t )  ,   ∀ t ∈  [  0 , T  ]  ,     i = 1 , … , n   ;  



(2)






    d y   d t   =   ∑   i = 1  n   k i   x i   ( t )  − m y  ( t )  ,       y  ( 0 )  =  y 0  .  



(3)







Here,    {  1 , 2 , … , n  }    is a set of firms (agents, players) competing in the manner of Cournot oligopoly in a market of homogeneous goods;     J i    is the   i  -th player’s profit in time   T  ;    x ¯   ( t )  =   ∑   i = 1  n   x i   ( t )   ;     x i    is the output volume of the   i  -th firm (its strategy); the expression in parentheses in Formula (1) determines the price for the produced good, depending on the demand that is conversely proportional to the total output volume;    α 1    and    α 2    are dimensioned coefficients that provide the fitness of dimension (for simplicity, they are assumed to be equal to 1);   y ( t )   is the volume of pollutants in the environment (a state variable);    k i    is the coefficient of emission in the production of the   i  -th firm;   a   is the demand parameter;     c i    is the cost coefficient of the i-th firm;   m   is the coefficient of pollution decay;   r   is the discount factor; and   T   is the length of the game. The agents’ interaction is described by their strategies and the final value of the state variable in the moment of time   T  .



In the case of symmetrical agent   s   (  k  i ,   = k ;    c  i ,   = c ;  x  i ,   = x ) ,     the model in Formulas (1)–(3) takes the form


  J =   ∫  0 T   e  − r t    (  a − c − n x  ( t )   )  x  ( t )  d t −  e  − r T   y  ( T )  →   m a x  



(4)






  0 ≤ x  ( t )  ,   ∀ t ∈  [  0 , T  ]  ,  



(5)






    d y   d t   = k n x − m y  ( t )  ,       y  ( 0 )  =  y 0  .  



(6)







We supposed that all players use open-loop piecewise continuous strategies. The agents may be selfish, so we have a differential game in normal form with Nash equilibrium as its solution. In addition, the agents may cooperate, so the game is reduced to the optimal control problem. Finally, a hierarchical organization is possible that is formalized by differential Stackelberg and inverse Stackelberg games [21,22].



Let us first consider a selfish behavior of the agents and investigate the symmetrical model in Formulas (4)–(6) using the Pontryagin maximum principle [19]. The Hamilton function for each player has the form


  H  (  x , u , λ  )  =  (  a − c − n x  ( t )   )  x  ( t )  + λ  (  k n x  ( t )  − m y  ( t )   )  ,  








where   λ  ( t )    is a conjugate variable. We obtain


    ∂ H   ∂ x   = a − c − 2 n x + k n λ = 0  








and


         x  N E   =   a − c + k n λ   2 n     .        



(7)







Here,      ∂ 2  H     ∂  x 2    = − 2 n < 0  . Therefore, the found value    x  N E     maximizes the Hamilton function if   a − c + k n λ > 0  , or the value belongs to the domain of feasible strategies, Formula (5). Otherwise, the point of maximum coincides with the lower bound of the set of feasible strategies of the agent. A conjugate variable is determined from the boundary value problem


     ∂ λ   ∂ t   = r λ  ( t )  −   ∂ H   ∂ y   =  (  r + m  )  λ  ( t )   ;   λ  ( T )  = − 1 .  











Then,


   λ i  N E   =  λ  N E    ( t )  =  e  −  (  r + m  )   (  T − t  )    ,  



(8)




and Formula (7) is a maximizer of the Hamilton function if   a − c − k n  e  −  (  r + m  )   (  T − t  )    > 0  .



Thus, we obtain


   x  N E   = m a x  (  0 ,  (    − k  e  −  (  r + m  )   (  T − t  )     2  +  (  a − c  )  /  (  2 n  )   )   )   



(9)






    If    a − c − k n  e  −  (  r + m  )   (  T − t  )    > 0     f o r   ∀ t > 0 ,     then    x  N E    ( t )  =   a − c   2 n   −  k 2   e  −  (  r + m  )   (  T − t  )        y  N E    ( t )  =  y 0   e  − m t   +   k  (  a − c  )    2 m    (  1 −  e  − m t    )  −    k 2  n   2  (  r + 2 m  )     (   e  −  (  r + m  )   (  T − t  )    −  e  − m t −  (  r + m  )  T    )      J  N E   =      (  a − c  )   2    4 n r    (  1 −  e  − r T    )  −    k 2  n   4  (  r + 2 m  )     (   e  − r T   −  e  − 2  (  r + m  )  T    )    











These calculations show that Nash equilibrium exists and is unique.



Using Formulas (8) and (9), we conducted numerical calculations for different input data sets in the case of symmetrical agents. We realized about 100 numerical calculations. We varied the following parameters: n from 2 to 40,  a  from 5 to 70  , c   from 1 to 50,   m   from 0.1 to 30,   k   from 0.1 to 30, and    y 0    from 1 to 50. The input data are presented in Table 1, and the agents’ payoffs for the input data from Table 1 for   T    = 1200 and r = 0.001 are presented in Table 2. Here and elsewhere, NE stands for Nash equilibrium,   C   for cooperative solution, and   S T   and   I S T   for Stackelberg and inverse Stackelberg games, respectively.



In the case of arbitrary agents, the Hamilton function for the  i -th player is


   H i   (   x i   ( t )  ,  u i   ( t )  ,  λ i   ( t )   )  =  (  a −  c i  −  x ¯   ( t )   )   x i   ( t )  +  λ i   ( t )   (    ∑   i = 1  n   k i   x i   ( t )  − m  ( t )  y  ( t )   )   








Then,


    ∂  H i    ∂  x i    = a −  c i  −   ∑   j = 1  n   x j  −  x i  + k  λ i  = 0 ;     i = 1 , 2 , … , n  



(10)




and      ∂ 2   H i    ∂  x 2    = − 2 n < 0  . Therefore, the solutions of Formula (10) maximize the Hamilton function if they belong to the sets of feasible strategies. For conjugate variables, Formula (8) is applied.



Solving the system of equations in Formula (10), we obtain


   x i  N E   = m a x  (  0 ,  (  −  k i   e  −  (  r + m  )   (  T − t  )    + a − n  c i  +   ∑   j = 1 ; j ≠ i  n   c j   )  /  (  n + 1  )   )    ;     i = 1 , 2 , … , n .                              



(11)







Let us consider the case   −  k i   e  −  (  r + m  )   (  T − t  )    + a − n  c i  +   ∑   j = 1 ; j ≠ i  n   c j  > 0 ;   ∀ t > 0  .



Substitute Formula (11) in the equation of dynamics and solve it by the method of variation of parameters:


   y  N E   =  y 0   e  − m t   +   1 −  e  − m t      (  n + 1  )  m     ∑   i = 1  n   k i   (  a − n  c i  +   ∑   j = 1 ; j ≠ i  n   c j   )  −    k i 2  n    (  n + 1  )   (  r + 2 m  )     (   e  −  (  r + m  )   (  T − t  )    −  e  − m t −  (  r + m  )  T    )   











Then


       J i  N E   =  (  a − n  c i  +   ∑  j = 1 ; j ≠ i  n    c j   )    a −  c i     (  n + 1  )  r    (  1 −  e  − r T    )  −    k i   (  a −  c i   )     (  n + 1  )  m    (   e  − r T   −  e  −  (  r + m  )  T    )  +          k i       (  n + 1  )   2  m     ∑  j = 1  n    (  a − n  c i  +   ∑  k = 1 ; j ≠ k  n    c k   )   (   e  − r T   −  e  −  (  r + m  )  T    )  +        1     (  n + 1  )   2     (   e  − 2  (  r + m  )  T   −  e  − r T    )    ∑  j = 1  n    k j   (     k i    r + 2 m   −  1 m   (  a − n  c i  +   ∑  k = 1 ; i ≠ k  n    c k   )   )  −        (  a − n  c i  +   ∑  k = 1 ; i ≠ k  n    c k   )   1     (  n + 1  )   2  r    (  1 −  e  − r T    )    ∑  j = 1  n    (  a − n  c j  +   ∑  k = 1 ; j ≠ k  n    c k   )  −  e  − r T    y  N E    ( T )  .      











The input data are presented in Table 3, and the results for three arbitrary agents at   T = 1200    and   r  = 0.001   for the input data from the Table 3 are presented in Table 4.



When all agents cooperate we obtain an optimal control problem:


   J c  =   ∑   i = 1  n    ∫  0 T   e  − r t    (  a −  c i  −   ∑   j = 1  n   x j   ( t )   )   x i   ( t )  d t − n  e  − r T   y  ( T )  → m a x  



(12)






  0 ≤  x i   ( t )  ,   ∀ t ∈  [  0 , T  ]  ,     i = 1 , … , n   ;       d  y c    d t   =   ∑   i = 1  n   k i   x i   ( t )  − m  y c   ( t )  ,        y c   ( 0 )  =  y 0   











In the symmetrical case   (  k i  = k ;    c i  = c ; i = 1 , 2 , .. , n ) ,   the problem takes the form


       J c  =   ∫ 0 T    e  − r t    (  a − c − x  ( t )   )  x  ( t )  d t − n  e  − r T   y  ( T )  → m a x       0 ≤ x  ( t )  ,   ∀ t ∈  [  0 , T  ]  ,         d  y C    d t   = k x  ( t )  − m  y C   ( t )  ;    y C   ( 0 )  =  y 0  ;     x  ( t )  =   ∑  i = 1  n    x i   ( t )  .      











Similarto the case considered earlier, we obtain    λ C   ( t )  = − n  e  −  (  r + m  )   (  T − t  )     :


   x c   ( t )  = m a x  (  0 ,  (    − k n  e  −  (  r + m  )   (  T − t  )     2  +   a − c  2   )   )   











If   − k  e  −  (  r + m  )   (  T − t  )    + a − c > 0 ;   ∀ t > 0  , then


       x C   ( t )  =   a − c  2  −   k n  2   e  −  (  r + m  )   (  T − t  )           y C   ( t )  =  y 0   e  − m t   +   k  (  a − c  )    2 m    (  1 −  e  − m t    )  −    k 2  n   2  (  r + 2 m  )     (   e  −  (  r + m  )   (  T − t  )    −  e  − m t −  (  r + m  )  T    )         J C  =      (  a − c  )   2    4 r    (  1 −  e  − r T    )  −    k 2   n 2    4  (  r + 2 m  )     (   e  − r T   −  e  − 2  (  r + m  )  T    )  − y  ( T )   e  − r T        











In Table 2, in the third and fourth columns, the results of calculations in the case of cooperation for the input data from Table 1 are presented.



When arbitrary agents cooperated, the solution was found numerically [23,24] using the method of qualitatively representative scenarios in simulation modeling [20]. The initial sets of qualitatively representative scenarios were taken as sets that consisted of three elements: 0, a big number (10,000 as a specific example), and their average value. All elements of the initial set were checked for completeness and redundancy [20], and it was reduced or extended with new elements by necessity. The calculation results are presented in Table 4.



Now, let us consider the case of hierarchical relations between agents in two versions of the information structure. In a Stackelberg game, one of the agents (e.g., the first one) becomes the leader (she). She chooses and reports to the other agents (followers) her open-loop strategy    x 1   ( t )   .



The followers play a differential game in normal form. The best response of the followers to the leader’s strategy is defined as Nash equilibrium in this game. We solved   n − 1   optimal control problems (1)–(3) for   i = 1 , 2 , … , n  . A solution of each problem was found using the Pontryagin maximum principle, similar to Formulas (10) and (11), and had the form


   x i *   ( t )  = m a x  (  0 ,  x i 0  −    x 1   n   )    ;     i = 2 , 3 , … , n  



(13)




where   i = 2 , 3 , … , n  ;


   x i 0   ( t )  =  1 n   (  a +   ∑   j = 2 ; j ≠ i  n   c j   (  n − 1  )   k i  −  (  n − 1  )   c i   )  +  1 n   (  −   ∑   j = 2 ; j ≠ i  n   k j  +  (  n − 1  )   k i   )   e  −  (  r + m  )   (  T − t  )    .  











Substitute Formula (13) into Formulas (1) and (3) and solve the problem in Formulas (1) and (3) using the Pontryagin maximum principle for   i = 1  . An optimal strategy of the first player has the form


   x 1 *   ( t )  = m a x  (  0 ,  x 1 0   )    ,      



(14)




where


         x 1 0   ( t )  =  a 2  −  n 2   c 1  +  1 2   e  −  (  r + m  )   (  T − t  )      ∑  i = 2  n    (    ∑  j = 2 ; j ≠ i  n    k j  −  (  n − 1  )   k i   )  −        1 2    ∑  i = 2  n    (    ∑  j = 2 ; j ≠ i  n    c j  −  (  n − 1  )   c i   )  −    k 1  n  2   e  −  (  r + m  )   (  T − t  )         











Thus, in Stackelberg equilibrium, the first player (leader) chooses her strategy, Formula (14). Given the leader’s strategy, other players choose their strategies according to Formula (13). Given all players’ strategies, the state variable is determined using the solution of Formula (3) and the payoffs are determined using Formula (1).



In an inverse Stackelberg game [21,22] based on the model in Formulas (1)–(3), the leader reports to each follower her strategy, with feedback on their control


   x  1 i  0   ( t )  =  {       x  1 i  R   ( t )  ,       i f    x i   ( t )  =  x i R   ( t )  ,     i = 2 , 3 , … , n        x  1 i  P   ( t )  ,           o t h e r w i s e   .                                          











If a follower refuses to cooperate with the leader, then she punishes the follower using the punishment strategy    x  1 i  P  =  (   x  12  P  ,  x  13  P  , … ,  x  1 n  P   )   , which according to Formula (13) has the form    (  i = 2 , 3 , … , n  )  .  


   x  1 i  P   ( t )  = arg   min    x  1 i   ≥ 0    (   (   (  n − 1  )   k i  −   ∑   j = 2 ; j ≠ i  n   k j   )   e  −  (  r + m  )   (  T − t  )    −  x  1 i   + a −   ∑   j = 2 ; j ≠ i  n   c j  −  (  n − 1  )   c  1 i    )   











Then, a guaranteed result of the  i -th follower is equal to


   L i  =   m a x      {   x j  N E    }    j = 2  n     J i  (    {   x  1 k  P   }    k = 2  n  ,  x 2  ,  x 3  , … ,  x n  ) =  J i  (    {   x  1 k  P   }    k = 2  n  , 0 , 0 , … , 0 ) =  e  − r T   y  ( T )  =  e  − r T    (   y 0  +  k 1  T  x  1 i  P   ( T )   )   











If the followers cooperate with the leader, then she chooses a reward strategy    x  1 i  R  =  (   x  12  R  ,  x  13  R  , … ,  x  1 n  R   )  .   The reward strategies    (   x  12  R  ,  x  13  R  , … ,  x  1 n  R   )    are found as solutions of the optimal control problem


   J 1  =   ∫  0 T   e  − r t    (  a −  c 1  −  x ¯   ( t )   )   x 1   ( t )  d t −  e  − r T   y  ( T )  →   m a x      {   x i   ( t )   }    i = 1  n     



(15)






  0 ≤  x i   ( t )  ,   ∀ t ∈  [  0 , T  ]  ,   i = 1 , 2 , … , n ;  










    d y   d t   =   ∑   i = 1  n   k i   x i   ( t )  − m y  ( t )  ,       y  ( 0 )  =  y 0   










   J i  =   ∫  0 T   e  − r t    (  a −  c i  −  x ¯   ( t )   )   x i   ( t )  d t −  e  − r T   y  ( T )  >  L i  ;     i = 2 , 3 , … , n .  



(16)







A solution of the problem in Formulas (15) and (16) was found numerically with computer simulation. The condition in Formula (16) provides that a reward is always more profitable for the followers than punishment. The payoffs of all players in the Stackelberg and inverse Stackelberg games are presented in Table 4.



The values of individual and collective indices of relative efficiency for different information structures are given in Table 5. In the last row of Table 5, the average values of the collective and individual efficiency indices on the set of simulation experiments are presented. Thus, we obtained the following preference systems:



society:   C ≻ N E ≻ I S T ≻ S T  ;



agent-leader:    I S T ≻ S T ≻ C ≻ N E  ;



agent-follower:    C ≻ N E ≻ S T ≻ I S T  .



As expected, cooperation is always preferable for the whole society and for followers. However, for the leader, the information structure of the inverse Stackelberg game is the most profitable as a rule. That is why the struggle for leadership arises often.




4. A Model with Consideration of the Green Effect


Now, the model takes the form


   J i  =   ∫  0 T   (   e  − r t    (  a −  c i  −  x ¯   ( t )  + α  g ¯   ( t )   )   x i   ( t )  −  β i   g i 2   ( t )   )  d t −  e  − r T   y  ( T )  → m a x  



(17)






  0 ≤  x i   ( t )  ,   0 ≤  g i   ( t )  , ∀ t ∈  [  0 , T  ]  ,     i = 1 , … , n   ;  



(18)






    d y   d t   =   ∑   i = 1  n   (   k i   x i   ( t )  −  γ i   g i   ( t )   )  − m y  ( t )  ,       y  ( 0 )  =  y 0   



(19)




where    g i   ( t )    characterizes green efforts of the   i  -th firm,   α   is the coefficient of demand increasing due to the green effect,    β i    is the green effort coefficient, and    γ i    is the coefficient of additional decreasing of the pollution due to green efforts.



In the case of symmetrical agents, the model takes the form


  J =   ∫  0 T   (   e  − r t    (  a − c − n x  ( t )  + α n g  ( t )   )  x  ( t )  − β  g 2   ( t )   )  d t −  e  − r T   y  ( T )  → m a x  



(20)






  0 ≤ x  ( t )  ,   0 ≤ g  ( t )  , ∀ t ∈  [  0 , T  ]  ,        



(21)






    d y   d t   = n ( k x  ( t )  − γ g  ( t )  − m y  ( t )  ,       y  ( 0 )  =  y 0   



(22)







The agents’ strategies contain two control actions (functions    x i   ( t )    and    g i   ( t )   ). The Hamilton function for each player in the symmetrical model in Formulas (20)–(22) has the form


  H  (  x , g , y , λ  )  =  (  a − c − n x  ( t )  + α n g  ( t )   )  x  ( t )  − β  g 2   ( t )  + λ  (  n  (  k x  ( t )  − γ g  ( t )   )  − m y  ( t )   )  .  











We obtain


    ∂ H   ∂ x   = a − c − 2 n x + α n g + λ n k = 0 ;     ∂ H   ∂ g   = a n x − 2 β g − γ n λ = 0 .  











So, if   4 n β −  α 2   n 2    ≠ 0  , then


   g 0   ( t )  =   α n  x 0  − γ n λ   2 β   ;      x 0   ( t )  =    (  a − c  )  2 β − γ  n 2  α λ + 2 β λ k n     4 n β −  α 2   n 2     



(23)







If   4 n β −  α 2   n 2  = 0   and   γ n λ ≠ 2 β  (  a − c + λ k n    )   , then the maximum is attained on the bound of the set of feasible controls (at least one of the optimal controls is not internal).



If   4 n β −  α 2   n 2  = 0   and   γ n λ = 2 β  (  a − c + λ k n  )   , then    g 0   ( t )  =   α n  x 0  − γ n λ   2 β   ;    x 0   ( t )    is an arbitrary function that belongs to the set of feasible strategies, for example,    x 0   ( t )  ≡ 0   ∀ t ≥ 0  . Denote


  A =    (  a − c  )  2 β     4 n β −  α 2   n 2    ;   B =   − γ  n 2  α λ + 2 β λ k n     4 n β −  α 2   n 2    ;     C =   α n A   2 β   ; D =   α n β − γ n   2 β    











Given   λ  ( t )  = −  e  −  (  r + m  )   (  T − t  )    ,   if   4 n β −  α 2   n 2  ≠ 0  , then


   x 0   ( t )  = A −  e  −  (  r + m  )   (  T − t  )    B ;    g 0   ( t )  = C −  e  −  (  r + m  )   (  T − t  )    D .      











Notice that      ∂ 2  H   ∂  x 2    = − 2 n ;      ∂ 2  H   ∂  g 2    = − 2 β ;    ∂ 2  H   ∂ x ∂ g   = α n  .



Therefore, the found value is a maximizer if a sufficient condition   Δ = 4 n β −  α 2   n 2  > 0   is true and the value belongs to the set of feasible strategies, i.e., for   ∀ t ≥ 0  ;   A ≥  e  −  (  r + m  )   (  T − t  )    B ;   C ≥  e  −  (  r + m  )   (  T − t  )    D  . If at least one of the inequalities


  A ≥  e  −  (  r + m  )   (  T − t  )    B ;   C ≥  e  −  (  r + m  )   (  T − t  )    D ;   4 n β −  α 2   n 2  > 0  



(24)




is false, then in dependence on the input model parameters, the maximum is obtained in one of the boundary points


    (  0 ,   γ m   2 β    e  −  (  r + m  )   (  T − t  )     )      or    (    a − c − n k  e  −  (  r + m  )   (  T − t  )      2 n   , 0  )    











Thus,


   (   x *  ,  g *   )  =  {       (   x 0  ,  g 0   )            i f     A ≥  e  −  (  r + m  )   (  T − t  )    B ;   C ≥  e  −  (  r + m  )   (  T − t  )    D ;   4 n β −  α 2   n 2  > 0          (  0 ,   γ m   2 β    e  −  (  r + m  )   (  T − t  )     )    o r    (    a − c − n k  e  −  (  r + m  )   (  T − t  )      2 n   , 0  )                o t h e r w i s e .        



(25)







The state variable was calculated using the method of parameter variation. Given the inequalities in Formula (18), it is explained by the formula


  y  ( t )  =  y 0   e  − m t   +  E m   (  1 −  e  − m t    )  −  F  r + 2 m    (   e  −  (  r + m  )   (  T − t  )    −  e  − m t −  (  r + m  )  T    )   








when   E = n k A − γ n C ; F = n k B − γ n D .   The payoffs are equal to


  J =  G r   (  1 −  e  − r T    )  −  H m   (   e  − r T   −  e  −  (  r + m  )  T    )  +  I  r + 2 m    (   e  − r T   −  e  − 2  (  r + m  )  T    )  + y  ( T )   e  − r T   ,  








where


   G =  (  a − c − n A + α n C  )  − β  D 2  ;   H =  (  a − c − n A + α n C  )  B + A  (  α n D − n B  )  − 2 β C D ;          I = B  (  − n B + α n D  )  − β  D 2  .   











In the case of cooperation, the model takes the form


   J =   ∑   i = 1  n   J i  =   ∑   i = 1  n    ∫  0 T   (   (  a −  c i  −  x ¯   ( t )  + α  g ¯   ( t )   )   x i   ( t )  − β  g i 2   ( t )   )  d t − n  e  − r T   y  ( T )  → m a x    0 ≤  x i   ( t )  ,   0 ≤  g i   ( t )  , ∀ t ∈  [  0 , T  ]  ,   i = 1 , 2 , , , , n .          d y   d t   =   ∑   i = 1  n   (   k i   x i   ( t )  −  γ i   g i   ( t )   )  − m y  ( t )  ,       y  ( 0 )  =  y 0    











The maximum is obtained by the values


  x  ( t )  =  (   x 1   ( t )  ,  x 2   ( t )  , … ,  x n   ( t )   )  ;   g  ( t )  =  (   g 1   ( t )  ,  g 2   ( t )  , … ,  g n   ( t )   )   











Nash equilibrium was calculated numerically using computer simulation [22,23]. The input data are given in Table 6, and the results for symmetrical agents with consideration of the green effect are presented in Table 7 for the input data from Table 6.



In the case of arbitrary agents (model in Formulas (17)–(19)), the Nash equilibria for selfish behavior and cooperative solutions were calculated numerically using computer simulation. In Table 8 the input data are given, and in Table 9 the results for three arbitrary agents at   T = 1200   and   r = 0.001   for the input data from Table 8 are presented.



Now consider a hierarchical setup with consideration of the green effect. Let a specific agent (principal) maximize the functional


   J 0  =   ∫  0 T   e  − r t    (   (  a −  x ¯   ( t )  + α  g ¯   ( t )   )   x ¯   ( t )  −   ∑   i = 1  n   (   c i   x i   ( t )  +  β i   g i 2   ( t )   )   )  d t − n  e  − r T   y  ( T )  → m a x  








by controls    g i   ( t )  ; i = 1 , 2 , … , n  .



The other agents’ payoff functionals retain the form Formula (17), but now, the maximization is conducted only by the controls    x i   ( t )   . The equation of dynamics has the form Formula (19). Control constraints are of the form Formula (18) again.



In the Stackelberg game, similarto the preceding case, we obtained the solution in the game of agents in the form of Formula (25).



In Table 10, the values of the indices of collective and individual relative efficiency with consideration of the green effect are presented. The last row of Table 10 contains the average values of the respective indices. The indices of individual efficiency were calculated only for the case of cooperation.



In this case, we obtained the same preference system for the whole society and the followers:


  C ≻ N E ≻ S T ≻ I S T .  











This preference system remains the same as the system without consideration of the green effect. However, the consideration of the green effect makes the agents’ interests more diverse, and the whole economic system becomes less (for some input data sets, essentially less) compatible. In this case, for the whole society, cooperation is much better than other ways of organization.




5. Conclusions


The proposed system of individual and collective indices of the relative efficiency of the ways of organization [2] was used for the analysis of differential game-theoretic models of Cournot oligopoly with consideration of the green effect and without it. For calculation of the indices, we applied averaging on the set of simulation experiments. The numerical calculations showed that the introduced indices allow for evaluation of the average efficiency of different ways of organization (information structures) and for practical recommendations on improving system compatibility.



The preference systems for the whole society and separate agents are contradictory. Cooperation is more profitable for the society and followers. However, the leader prefers a hierarchy in the form of an inverse Stackelberg game that advocates for struggle for leadership. Moreover, for non-symmetrical agents, cooperation may be either more profitable than selfish behavior or vice versa (Table 10, column 3). Notice also that the consideration of the green effect makes cooperation much more profitable (up to 50%) for the whole society and followers.



In the future, we plan to study static and dynamic game-theoretic models of Cournot oligopoly in the form of characteristic function. In addition, the models with a network structure both in normal form and in the form of a characteristic function will be considered. At last, model identification will be precisely performed.







Author Contributions


Conceptualization, review, methodology, and formal analysis and investigation G.O.; investigation, A.U. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Zhang, W.; Zhao, S.; Wan, X. Research on Industrial Digital Transformation Strategies Based on Differential Games. Appl. Math. Model. 2021, 98, 90–108. [Google Scholar] [CrossRef]

	



Ougolnitsky, G.A. An Approach to Compare Organizational Modes of Active Agents and Control Methods. Control Sci. 2022, 3, 24–33. [Google Scholar]

	



Basar, T.; Zhu, Q. Prices of Anarchy, Information, and Cooperation in Differential Games. J. Dyn. Games Appl. 2011, 1, 50–73. [Google Scholar] [CrossRef]

	



Cairns, R.D.; Martinet, V. An environmental-economic measure of sustainable development. Eur. Econ. Rev. 2014, 69, 4–17. [Google Scholar] [CrossRef]

	



Maskin, E.; Tirole, J. A Theory of Dynamic Oligopoly, III. Cournot Competition. Eur. Econ. Rev. 1987, 31, 947–968. [Google Scholar] [CrossRef]

	



Geras’kin, M.I. The Properties of Conjectural Variations in the Nonlinear Stackelberg Oligopoly Model. Autom. Remote Control 2020, 6, 1051–1072. [Google Scholar] [CrossRef]

	



Geras’kin, M.I. Approximate Calculation of Equilibria in the Nonlinear Stackelberg Oligopoly Model: A Linearization Based Approach. Autom. Remote Control 2020, 9, 1659–1678. [Google Scholar] [CrossRef]

	



Algazin, G.I.; Algazina, Y.G. Reflexion Reflexive Dynamics in the Cournot Oligopoly under Uncertainty. Autom. Remote Control 2020, 81, 287–301. [Google Scholar] [CrossRef]

	



Algazin, G.I.; Algazina, Y.G. Reflexion Processes and Equilibrium in an Oligopoly Model with a Leader. Autom. Remote Control 2020, 7, 1258–1270. [Google Scholar] [CrossRef]

	



Xiao, Y.; Peng, Y.; Lu, Q.; Wu, X. Dynamic investigations in a Stackelberg model with differentiated products and bounded rationality. J. Comput. Appl. Math. 2022, 414, 114409. [Google Scholar] [CrossRef]

	



Peng, Y.; Xiao, Y.; Lu, Q.; Wu, X.; Zhao, Y. Chaotic dynamics in Cournot duopoly model with bounded rationality based on relative profit delegation maximization. Phys. A Stat. Mech. Its Appl. 2020, 560, 125174. [Google Scholar] [CrossRef]

	



Raoufinia, M.; Baradaran, V.; Shahjerdi, R. A dynamic differential duopoly game with sticky price and advertizing: Open-loop and closed-loop solutions. Kybernetes 2019, 48, 586–611. [Google Scholar] [CrossRef]

	



Al-Khedhairi, A. Dynamical Study of Competition Cournot-like Duopoly Games Incorporating Fractional Order Derivatives and Seasonal Influences. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 339–359. [Google Scholar] [CrossRef]

	



Julien, L.A. On noncooperative oligopoly equilibrium in the multiple leader-follower game. Eur. J. Oper. Res. 2017, 256, 650–662. [Google Scholar] [CrossRef]

	



Zouhar, J.; Zouharova, M. Stackelberg versus Cournot duopoly with asymmetric costs: Primary markups, entry deterrence, and a comparison of social welfare and industry profits. Econ. Theory Bull. 2020, 8, 89–96. [Google Scholar] [CrossRef]

	



Azevedo, S.G.; Carvalho, H.; Machado, V.C. The influence of green practices on supply chain performance: A case study approach. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 850–871. [Google Scholar] [CrossRef]

	



Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]

	



Sharma, A.; Jain, D. Game-Theoretic Analysis of Green Supply Chain Under Cost-Sharing Contract with Fairness Concern. Int. Game Theory Rev. 2021, 2, 205–217. [Google Scholar] [CrossRef]

	



Pontryagin, L.S.; Boltayanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Wiley: Hoboken, NJ, USA, 1962. [Google Scholar]

	



Ougolnitsky, G.A.; Usov, A.B. Computer Simulations as a Solution Method for Differential Games. In Computer Simulations: Advances in Research and Applications; Pfeffer, M.D., Bachmaier, E., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2018; pp. 63–106. [Google Scholar]

	



Olsder, G.Y. Phenomena in Inverse Stackelberg Games, Part 2: Dynamic Problems. J. Optim. Theory Appl. 2009, 143, 601–618. [Google Scholar] [CrossRef]

	



Gorelov, M.A.; Kononenko, A.F. Dynamic models of conflicts. III. Hierarchical games. Autom. Remote Control 2015, 76, 264–277. [Google Scholar] [CrossRef]

	



Ugol’nitskii, G.A.; Usov, A.B. Equilibria in models of hierarchically organized dynamic systems with regard to sustainable development conditions. Autom. Remote Control 2014, 6, 1055–1068. [Google Scholar] [CrossRef]

	



Ougolnitsky, G.A.; Usov, A.B. Solution algorithms for differential models of hierarchical control systems. Autom. Remote Control 2016, 5, 872–880. [Google Scholar] [CrossRef]








[image: Table] 





Table 1. Input data in the case of symmetrical agents.






Table 1. Input data in the case of symmetrical agents.





	Example
	   n   
	   a   
	   c   
	   k   
	   m   
	     y 0     





	1
	5
	30
	15
	1
	2
	10



	2
	5
	20
	15
	1
	2
	10



	3
	5
	17
	15
	1
	2
	10



	4
	5
	10
	15
	1
	2
	10



	5
	5
	40
	15
	1
	2
	10



	6
	10
	20
	15
	1
	2
	10



	7
	5
	20
	5
	1
	2
	10



	8
	5
	20
	15
	5
	2
	10



	9
	5
	20
	15
	0.2
	2
	10



	10
	5
	20
	15
	1
	1
	10



	11
	5
	20
	15
	1
	5
	10



	12
	5
	20
	15
	1
	2
	30



	13
	5
	20
	15
	1
	2
	2



	14
	5
	20
	15
	1
	10
	10



	15
	5
	20
	15
	5
	2
	2



	16
	5
	20
	15
	5
	5
	10



	17
	5
	20
	15
	1
	1
	5



	18
	2
	20
	15
	1
	2
	10



	19
	20
	20
	15
	1
	2
	10



	20
	2
	30
	15
	1
	2
	10



	21
	2
	20
	5
	1
	2
	10



	22
	2
	20
	15
	1
	10
	10



	23
	2
	20
	15
	1
	2
	1



	24
	2
	20
	15
	1
	2
	20



	25
	2
	20
	15
	1
	2
	5



	26
	10
	20
	5
	1
	2
	10



	27
	10
	10
	5
	1
	2
	10



	28
	10
	30
	5
	1
	2
	10



	29
	10
	20
	5
	10
	2
	10



	30
	10
	20
	5
	0.2
	2
	10



	31
	10
	20
	5
	1
	2
	1



	32
	10
	20
	5
	1
	2
	20



	33
	10
	20
	5
	1
	2
	3



	34
	10
	30
	15
	1
	2
	10



	35
	10
	20
	15
	3
	2
	10



	36
	10
	20
	5
	1
	6
	15



	37
	10
	20
	1
	5
	2
	10



	38
	10
	20
	10
	10
	2
	10
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Table 2. Payoffs for different information structures for symmetrical agents.






Table 2. Payoffs for different information structures for symmetrical agents.





	
No.

	
    N E    

	
   C   




	
     J *     

	
    y  ( T )     

	
     J c     

	
    y ( T )    






	
1

	
13,403

	
3.85

	
67,015

	
3.85




	
2

	
1476

	
0

	
7380

	
0




	
3

	
223

	
0

	
1115

	
0




	
4

	
1476

	
0

	
7380

	
0




	
5

	
37,274

	
5.6

	
186,372

	
5.6




	
6

	
745

	
3.12

	
7450

	
3.12




	
7

	
13,418

	
3.12

	
67,090

	
3.12




	
8

	
1483

	
0

	
7415

	
0




	
9

	
1491

	
0.22

	
7455

	
0.22




	
10

	
1490

	
1.25

	
7450

	
1.25




	
11

	
1491

	
0.25

	
7455

	
0.25




	
12

	
1491

	
0.63

	
7455

	
0.63




	
13

	
1491

	
0.63

	
7455

	
0.63




	
14

	
1491

	
0.13

	
7455

	
0.13




	
15

	
1483

	
0

	
7415

	
0




	
16

	
1488

	
0

	
7440

	
0




	
17

	
1490

	
1.25

	
7450

	
1.25




	
18

	
3727

	
1

	
7454

	
1




	
19

	
371.5

	
0

	
7430

	
0




	
20

	
33,547

	
3.5

	
67,094

	
3.5




	
21

	
33,547

	
3.5

	
67,094

	
3.5




	
22

	
3728

	
0.2

	
7456

	
0.2




	
23

	
3727

	
1

	
7454

	
1




	
24

	
3727

	
1

	
7454

	
1




	
25

	
3727

	
1

	
7454

	
1




	
26

	
6709

	
2.5

	
67,090

	
2.5




	
27

	
744.9

	
3.1

	
7449

	
3.1




	
28

	
18,637

	
6.1

	
186,370

	
6.1




	
29

	
6648

	
0

	
66,480

	
0




	
30

	
6710

	
0.7

	
67,100

	
0.7




	
31

	
6709

	
2.5

	
67,090

	
2.5




	
32

	
6709

	
2.5

	
67,090

	
2.5




	
33

	
6709

	
2.5

	
67,090

	
2.5




	
34

	
6709

	
2.5

	
67,090

	
2.5




	
35

	
740

	
0

	
7400

	
0




	
36

	
6709

	
0.83

	
67,090

	
0.83




	
37

	
10,750

	
0

	
107,500

	
0




	
38

	
2920

	
0

	
29,200

	
0
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Table 3. Input data in the case of arbitrary agents (  n = 3   ).






Table 3. Input data in the case of arbitrary agents (  n = 3   ).





	Example
	   a   
	     c 1     
	     c 2     
	     c 3     
	     k 1     
	     k 2     
	     k 3     
	m
	y0





	1
	25
	10
	15
	5
	1
	2
	3
	2
	10



	2
	25
	10
	15
	5
	1
	0.5
	3
	2
	10



	3
	25
	1
	15
	3
	1
	1
	3
	2
	10



	4
	25
	1
	15
	3
	1
	5
	3
	2
	10



	5
	25
	20
	15
	5
	1
	1
	5
	2
	10



	6
	30
	5
	15
	20
	1
	1
	5
	2
	10



	7
	25
	10
	5
	15
	1
	2
	3
	2
	10



	8
	25
	5
	15
	10
	5
	4
	1
	2
	10



	9
	25
	5
	15
	10
	0.2
	1
	2
	2
	10



	10
	25
	1
	15
	5
	1
	0.1
	0.3
	1
	10



	11
	25
	20
	15
	10
	1
	0.5
	0.5
	0.5
	10



	12
	25
	5
	15
	1
	1
	0.1
	1
	2
	30



	13
	25
	5
	15
	1
	1
	1
	3
	2
	2



	14
	25
	1
	15
	10
	1
	0.5
	0.1
	0.1
	10



	15
	25
	5
	15
	1
	5
	0.2
	1
	2
	2



	16
	25
	5
	15
	1
	5
	0.5
	1
	5
	10



	17
	25
	5
	15
	1
	1
	4
	2
	1
	5



	18
	18
	10
	15
	5
	1
	4
	3
	2
	10



	19
	30
	10
	1
	5
	1
	4
	4
	2
	10



	20
	25
	1
	15
	5
	1
	0.1
	0.8
	2
	10



	21
	35
	1
	5
	30
	1
	0.1
	0.5
	2
	10



	22
	35
	10
	15
	30
	1
	0.1
	1
	0.1
	10



	23
	45
	30
	15
	20
	1
	2
	3
	2
	1



	24
	45
	30
	15
	20
	1
	2
	0.5
	2
	20



	25
	45
	30
	15
	15
	1
	2
	1
	2
	5



	26
	30
	10
	5
	2
	1
	3
	2
	2
	10



	27
	30
	15
	5
	23
	1
	3
	5
	2
	10



	28
	30
	15
	5
	28
	1
	3
	3
	2
	10



	29
	30
	15
	5
	12
	10
	1
	0.2
	2
	10



	30
	30
	15
	5
	7
	0.2
	1
	0.5
	2
	10



	31
	30
	20
	5
	3
	1
	2
	0.5
	2
	1



	32
	30
	20
	5
	3
	1
	2
	0.1
	2
	20



	33
	30
	10
	5
	2
	1
	0.5
	3
	2
	3



	34
	30
	1
	15
	18
	1
	0.5
	0.2
	2
	10



	35
	30
	1
	15
	20
	3
	0.5
	0.8
	2
	10



	36
	30
	1
	5
	20
	1
	0.5
	1
	6
	15



	37
	30
	5
	1
	20
	5
	2
	1
	2
	10
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Table 4. Payoffs of arbitrary agents for different information structures.






Table 4. Payoffs of arbitrary agents for different information structures.





	
No.

	
NE

	
ST

	
IST

	
C




	
     J 1     

	
     J 2     

	
     J 1     

	
     J 2     

	
     J 1     

	
     J 2     

	
     J C     






	
1

	
16,769

	
1856

	
25,342

	
1025

	
29,855

	
854

	
110,567




	
2

	
16,765

	
1852

	
24,878

	
1032

	
27,856

	
987

	
110,211




	
3

	
119,277

	
19,073

	
136,565

	
15,456

	
142,878

	
12,378

	
217,345




	
4

	
119,292

	
19,082

	
136,545

	
15,467

	
143,111

	
12,176

	
217,431




	
5

	
16,753

	
1847

	
19,654

	
1187

	
21,878

	
1083

	
33,962




	
6

	
186,388

	
7456

	
192,321

	
4231

	
195,276

	
3765

	
203,477




	
7

	
16,777

	
91,332

	
22,321

	
85,344

	
24,123

	
80,433

	
110,367




	
8

	
91,328

	
1859

	
98,788

	
1098

	
103,287

	
944

	
111,213




	
9

	
91,327

	
1861

	
97,878

	
1112

	
100,433

	
952

	
111,214




	
10

	
131,499

	
14,599

	
138,766

	
11,232

	
145,388

	
9321

	
198,376




	
11

	
7451

	
7454

	
9233

	
6987

	
11,653

	
6012

	
82,943




	
12

	
50,390

	
14,604

	
56,578

	
12,343

	
59,721

	
11,488

	
199,432




	
13

	
50,388

	
14,598

	
56,699

	
12,511

	
61,245

	
11,298

	
199,173




	
14

	
164,603

	
5934

	
171,234

	
3767

	
174,832

	
3077

	
181,326




	
15

	
50,383

	
14,596

	
57,655

	
10,767

	
59,727

	
8999

	
198,234




	
16

	
50,392

	
14,606

	
57,688

	
10,822

	
59,211

	
9122

	
198,321




	
17

	
50,406

	
14,608

	
58,022

	
10,824

	
59,344

	
9211

	
198,411




	
18

	
4773

	
10,733

	
6231

	
9356

	
7113

	
8733

	
74,987




	
19

	
2666

	
131,496

	
3457

	
125,676

	
5234

	
120,924

	
186,333




	
20

	
131,503

	
14,604

	
147,344

	
11,288

	
156,344

	
7455

	
198,211




	
21

	
334,659

	
193,906

	
348,656

	
180,344

	
356,745

	
175,901

	
711,548




	
22

	
186,372

	
67,093

	
202,378

	
55,344

	
213,488

	
53,977

	
322,121




	
23

	
7438

	
186,371

	
8433

	
180,433

	
9123

	
177,843

	
262,321




	
24

	
7443

	
186,371

	
8511

	
180,433

	
9211

	
177,855

	
262,377




	
25

	
16,761

	
150,958

	
19,431

	
144,877

	
21,322

	
140,234

	
320,432




	
26

	
3640

	
54,336

	
5244

	
47,865

	
5867

	
46,904

	
173,231




	
27

	
12,602

	
209,425

	
17,355

	
195,877

	
19,742

	
192,511

	
250,375




	
28

	
24,156

	
250,797

	
31,866

	
241,822

	
35,805

	
238,091

	
363,543




	
29

	
296

	
131,522

	
2033

	
125,649

	
5386

	
124,034

	
147,786




	
30

	
665

	
102,056

	
2345

	
94,545

	
4129

	
93,532

	
169,111




	
31

	
36,074

	
107,647

	
45,233

	
94,565

	
54,005

	
91,714

	
306,342




	
32

	
36,076

	
107,648

	
44,211

	
100,456

	
50,056

	
98,455

	
306,435




	
33

	
3640

	
54,338

	
8343

	
48,234

	
10,273

	
47,431

	
172,768




	
34

	
268,380

	
1186

	
272,345

	
756

	
274,611

	
690

	
276,356




	
35

	
286,560

	
2666

	
294,344

	
1213

	
298,053

	
1054

	
305,421




	
36

	
201,587

	
96,618

	
223,187

	
83,423

	
228,769

	
80,521

	
343,221




	
37

	
96,601

	
201,577

	
103,421

	
192,344

	
113,591

	
185,732

	
344,234
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Table 5. Indices of relative efficiency for different information structures.






Table 5. Indices of relative efficiency for different information structures.





	
Example

	
    N E    

	
    S T    

	
    I S T    




	
    S C I    

	
     K 1  N E   /  K 2  N E   /  K 3  N E      

	
SCI

	
     K 1  S T   /  K 2  S T   /  K 3  S T      

	
SCI

	
     K 1  I S T   /  K 2  I S T   /  K 3  I S T      






	
1

	
0.99

	
0.45/0.05/2.48

	
0.94

	
0.69/0.03/2.1

	
0.91

	
0.81/0.02/1.9




	
2

	
0.99

	
0 45/0.05/2.48

	
0.93

	
0.68/0.03/2.09

	
0.91

	
0.76/0.03/1.95




	
3

	
0.98

	
1.64/0.26/1.05

	
0.98

	
1.89/0.21/0.85

	
0.97

	
1.97/0.17/0.78




	
4

	
0.98

	
1.64/0.26/1.05

	
0.98

	
1.88/0.21/0.84

	
0.97

	
1.97/0.17/0.76




	
5

	
0.99

	
1.48/0.16/1.33

	
0.95

	
1.73/0.1/1.0

	
0.95

	
1.93/0.1/0.81




	
6

	
0.98

	
2.74/0.1/0.1

	
0.99

	
2.84/0.06/0.06

	
0.99

	
2.88/0.06/0.06




	
7

	
0.99

	
0.46/2.48/0.05

	
0.98

	
0.6/2.32/0.03

	
0.96

	
0.7/2.19/0.03




	
8

	
0.98

	
2.48/0.05/0.46

	
0.99

	
2.67/0.03/0.03

	
0.99

	
2.79/0.03/0.03




	
9

	
0.98

	
2.48/0.05/0.46

	
0.99

	
2.67/0.03/0.03

	
0.99

	
2.79/0.03/0.03




	
10

	
0.99

	
1.99/0.22/0.76

	
0.98

	
2.1/0.17/0.69

	
0.98

	
2.2/0.14/0.58




	
11

	
0.98

	
0.27/0.27/2.43

	
0.92

	
0.33/0.25/2.18

	
0.89

	
0.42/0.22/2.04




	
12

	
0.98

	
0.76/0.22/1.99

	
0.96

	
0.83/0.19/1.86

	
0.93

	
0.84/0.11/1.24




	
13

	
0.98

	
0.76/0.22/1.99

	
0.96

	
0.83/0.19/1.86

	
0.93

	
0.84/0.11/1.24




	
14

	
0.98

	
2.72/0.1/0.15

	
0.99

	
2.83/0.06/0.1

	
0.99

	
2.79/0.05/0.07




	
15

	
0.99

	
0.76/0.22/1.99

	
0.98

	
0.87/0.16/1.9

	
0.96

	
0.9/0.14/1.84




	
16

	
0.99

	
0.76/0.22/1.99

	
0.98

	
0.87/0.16/1.9

	
0.96

	
0.9/0.14/1.84




	
17

	
0.99

	
0.76/0.22/1.99

	
0.98

	
0.87/0.16/1.9

	
0.96

	
0.9/0.14/1.84




	
18

	
0.98

	
0.19/0.43/2.3

	
0.94

	
0.25/0.37/2.19

	
0.89

	
0.28/0.35/2.02




	
19

	
0.99

	
0.04/2.11/0.81

	
0.95

	
0.06/2.02/0.76

	
0.92

	
0.08/1.95/0.73




	
20

	
0.99

	
1.99/0.22/0.75

	
0.97

	
2.22/0.17/0.53

	
0.98

	
2.36/0.13/0.47




	
21

	
0.99

	
1.41/0.82/0.75

	
0.98

	
1.47/0.76/0.7

	
0.97

	
1.5/0.76/0.67




	
22

	
0.99

	
1.74/0.62/0.62

	
0.98

	
1.89/0.52/0.53

	
0.99

	
1.99/0.5/0.49




	
23

	
0.98

	
0.09/2.13/0.77

	
0.95

	
0.1/2.1/0.7

	
0.94

	
0.1/2.0/0.68




	
24

	
0.98

	
0.09/2.13/0.77

	
0.95

	
0.1/2.1/0.7

	
0.94

	
0.1/2.0/0.68




	
25

	
0.99

	
0.16/1.41/1.41

	
0.97

	
0.18/1.36/1.37

	
0.94

	
0.2/1.31/1.32




	
26

	
0.99

	
0.06/0.94/1.96

	
0.9

	
0.09/0.83/1.78

	
0.87

	
0.1/0.81/1.71




	
27

	
0.94

	
0.15/2.51/0.32

	
0.94

	
0.2/2.35/0.27

	
0.94

	
0.24/2.3/0.26




	
28

	
0.99

	
0.2/2.06/0.71

	
0.97

	
0.26/2.0/0.66

	
0.97

	
0.3/1.97/0.65




	
29

	
0.98

	
0.01/2.67/0.29

	
0.94

	
0.04/2.55/0.24

	
0.95

	
0.11/2.52/0.22




	
30

	
0.98

	
0.01/1.81/1.11

	
0.91

	
0.04/1.68/1.02

	
0.91

	
0.07/1.66/1.00




	
31

	
0.98

	
0.35/1.01/1.54

	
0.94

	
0.44/0.92/1.47

	
0.95

	
0.53/0.9/1.42




	
32

	
0.99

	
0.35/1.05/1.54

	
0.94

	
0.43/0.98/1.42

	
0.95

	
0.49/0.96/1.4




	
33

	
0.99

	
0.06/0.94/1.96

	
0.94

	
0.14/0.84/1.85

	
0.94

	
0.18/0.82/1.81




	
34

	
0.99

	
2.91/0.01/0.05

	
0.99

	
2.96/0.01/0.01

	
0.99

	
2.98/0.01/0.01




	
35

	
0.98

	
2.87/0.02/0.14

	
0.99

	
2.89/0.01/0.06

	
0.99

	
2.93/0.01/0.05




	

	
0.99

	
1/0.87/1.09

	
0.96

	
1.11/0.8/0.96

	
0.97

	
1.17/0.77/0.96
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Table 6. Input data for symmetrical agents with consideration of the green effect.






Table 6. Input data for symmetrical agents with consideration of the green effect.





	Example
	   n   
	   a   
	   c   
	   k   
	   m   
	     y 0     
	   α   
	β
	γ





	1
	5
	30
	15
	1
	2
	10
	0.01
	1
	0.1



	2
	5
	20
	15
	1
	2
	10
	0.01
	1
	0.1



	3
	5
	17
	15
	1
	2
	10
	0.01
	1
	0.1



	4
	5
	10
	15
	1
	2
	10
	0.01
	1
	0.1



	5
	5
	40
	15
	1
	2
	10
	0.01
	1
	0.1



	6
	10
	20
	15
	1
	2
	10
	0.01
	1
	0.1



	7
	5
	20
	5
	1
	2
	10
	0.01
	1
	0.1



	8
	5
	30
	15
	1
	2
	10
	0.001
	1
	0.1



	9
	5
	30
	15
	1
	2
	10
	0.5
	1
	0.1



	10
	5
	30
	15
	1
	2
	10
	0.5
	2
	0.1



	11
	5
	30
	15
	1
	2
	10
	0.5
	10
	0.1



	12
	5
	30
	15
	1
	2
	10
	0.5
	5
	0.01



	13
	5
	30
	15
	1
	2
	10
	0.5
	5
	0.5



	14
	5
	30
	15
	1
	2
	10
	0.5
	1
	0.5



	15
	5
	20
	15
	5
	2
	2
	0.5
	1
	0.5



	16
	5
	20
	15
	5
	2
	2
	0.5
	0.5
	0.5



	17
	5
	20
	15
	5
	2
	2
	0.5
	1
	0.5



	18
	5
	20
	15
	5
	2
	2
	0.1
	1
	0.5



	19
	20
	20
	15
	1
	2
	10
	0.1
	1
	0.1



	20
	2
	30
	15
	1
	2
	10
	0.1
	1
	0.1



	21
	2
	20
	5
	1
	2
	10
	0.1
	1
	0.1



	22
	2
	20
	15
	1
	10
	10
	0.1
	1
	0.1



	23
	2
	20
	15
	1
	2
	1
	0.1
	1
	0.1



	24
	2
	20
	15
	1
	2
	20
	0.1
	1
	0.1



	25
	2
	20
	15
	1
	2
	20
	0.5
	1
	0.1



	26
	2
	20
	15
	1
	2
	20
	0.1
	0.5
	0.1



	27
	2
	20
	15
	1
	2
	20
	0.1
	1
	0.5



	28
	2
	20
	15
	1
	2
	20
	0.5
	1
	0.5



	29
	2
	20
	15
	1
	2
	20
	0.3
	0.5
	0.1



	30
	2
	20
	15
	1
	2
	20
	0.8
	1
	0.3



	31
	10
	20
	5
	1
	2
	1
	0.1
	1
	0.1



	32
	10
	20
	5
	1
	2
	20
	0.1
	1
	0.1



	33
	10
	20
	5
	1
	2
	3
	0.1
	1
	0.1



	34
	10
	30
	15
	1
	2
	10
	0.1
	1
	0.1



	35
	10
	20
	15
	3
	2
	10
	0.1
	1
	0.1



	36
	10
	20
	5
	1
	6
	15
	0.4
	1
	0.3
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Table 7. Payoffs for different information structures for symmetrical agents with consideration of the green effect.






Table 7. Payoffs for different information structures for symmetrical agents with consideration of the green effect.





	
No.

	
    N E    

	
   C   




	
   J   

	
    y  ( T )     

	
   J   

	
    y  ( T )     






	
1

	
13,417

	
3.1

	
69,012

	
3.3




	
2

	
1490

	
0.6

	
7611

	
1




	
3

	
238

	
0

	
1195

	
0




	
4

	
1491

	
0

	
7567

	
0




	
5

	
37,275

	
5.6

	
189,455

	
5.6




	
6

	
745

	
0

	
7570

	
0




	
7

	
13,418

	
3.1

	
670,845

	
3.1




	
8

	
13,416

	
3.1

	
670,922

	
3.1




	
9

	
19,515

	
4

	
99,011

	
4.5




	
10

	
15,901

	
3.5

	
80,112

	
3.7




	
11

	
13,849

	
3.2

	
70,238

	
2.8




	
12

	
14,310

	
3.3

	
71,987

	
3.7




	
13

	
14,310

	
2.8

	
71,987

	
3.4




	
14

	
19,517

	
1.1

	
98,389

	
1.5




	
15

	
2160

	
0

	
11,100

	
0




	
16

	
3964

	
0

	
199,10

	
0




	
17

	
2160

	
0

	
11,100

	
0




	
18

	
1502

	
0

	
7732

	
0




	
19

	
391

	
0

	
7911

	
0




	
20

	
33,713

	
3.5

	
68,322

	
3.5




	
21

	
33,716

	
0.7

	
68,324

	
1.1




	
22

	
3746

	
0.2

	
7623

	
0.4




	
23

	
3745

	
1

	
7623

	
1.4




	
24

	
3745

	
1

	
7623

	
1.3




	
25

	
1459

	
1.1

	
3027

	
1.4




	
26

	
3764

	
1

	
7655

	
1.2




	
27

	
3745

	
0.8

	
7623

	
1.3




	
28

	
4259

	
0.8

	
8915

	
1.3




	
29

	
4095

	
1

	
8312

	
1.3




	
30

	
5480

	
1.1

	
11,011

	
1.2




	
31

	
6879

	
2.4

	
69,114

	
2.6




	
32

	
6879

	
2.4

	
69,114

	
2.6




	
33

	
6879

	
2.4

	
69,114

	
2.6




	
34

	
6879

	
2.4

	
69,114

	
2.6




	
35

	
759

	
0

	
7701

	
0




	
36

	
11,182

	
0.3

	
113,532

	
0.5
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Table 8. Input data for three arbitrary agents with consideration of the green effect.
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	No.
	   a   
	     c 1     
	     c 2     
	     c 3     
	     k 1     
	     k 2     
	     k 3     
	   m   
	     y 0     
	     β 1     
	     β 2     
	     β 3     
	     γ 1     
	     γ 2     
	     γ 3     
	   α   





	1
	30
	12
	5
	10
	1
	1
	5
	2
	10
	1
	5
	2
	0.01
	0.5
	0.1
	0.01



	2
	20
	3
	7
	5
	5
	1
	2
	2
	10
	5
	1
	2
	0.1
	0.5
	0.01
	0.01



	3
	17
	3
	5
	5
	1
	2
	4
	2
	10
	2
	1
	3
	0.2
	0.1
	0.05
	0.01



	4
	10
	1
	2
	1
	1
	2
	5
	2
	10
	1
	5
	1
	0.5
	0.1
	0.2
	0.01



	5
	40
	10
	2
	5
	1
	5
	1
	2
	10
	1
	3
	2
	0.2
	0.1
	0.3
	0.01



	6
	20
	5
	3
	5
	1
	2
	4
	2
	10
	2
	5
	1
	0.3
	0.1
	0.01
	0.01



	7
	20
	5
	5
	2
	1
	3
	5
	2
	10
	1
	2
	5
	0.2
	0.1
	0.05
	0.01



	8
	30
	10
	7
	5
	1
	5
	2
	2
	10
	3
	2
	1
	0.5
	0.1
	0.7
	0.001



	9
	30
	10
	5
	5
	1
	2
	4
	2
	10
	1
	3
	4
	0.2
	0.1
	0.01
	0.5



	10
	30
	8
	7
	10
	1
	1
	5
	2
	10
	2
	1
	5
	0.3
	0.1
	0.2
	0.5



	11
	30
	6
	10
	10
	1
	5
	3
	2
	10
	10
	4
	5
	0.5
	0.1
	0.1
	0.5



	12
	30
	10
	5
	10
	1
	4
	2
	2
	10
	5
	1
	1
	0.1
	0.01
	0.05
	0.5



	13
	30
	10
	10
	5
	1
	2
	6
	2
	10
	5
	2
	3
	0.2
	0.5
	0.1
	0.5



	14
	30
	3
	5
	10
	1
	5
	1
	2
	10
	1
	5
	1
	0.3
	0.5
	0.05
	0.5



	15
	20
	3
	2
	4
	5
	2
	5
	2
	2
	1
	8
	5
	0.2
	0.5
	0.1
	0.5



	16
	40
	2
	5
	5
	5
	2
	4
	2
	2
	0.5
	1
	2
	0.05
	0.5
	0.7
	0.5



	17
	40
	4
	5
	10
	5
	3
	3
	2
	2
	1
	2
	0.5
	0.05
	0.5
	0.8
	0.5



	18
	40
	7
	10
	10
	5
	2
	1
	2
	2
	2
	1
	2
	0.2
	0.5
	0.1
	0.1



	19
	40
	10
	5
	5
	1
	5
	2
	2
	10
	1
	2
	5
	0.5
	0.1
	0.2
	0.1



	20
	30
	5
	10
	2
	1
	2
	4
	2
	10
	2
	1
	1
	0.3
	0.1
	0.3
	0.1



	21
	20
	5
	3
	6
	1
	1
	5
	2
	10
	3
	1
	5
	0.2
	0.1
	0.5
	0.1



	22
	20
	2
	8
	1
	1
	3
	4
	10
	10
	1
	5
	3
	0.2
	0.1
	0.5
	0.1



	23
	20
	5
	1
	4
	1
	2
	5
	2
	1
	1
	7
	2
	0.5
	0.1
	0.05
	0.1



	24
	20
	5
	6
	2
	1
	1
	4
	2
	20
	2
	1
	2
	0.3
	0.1
	0.2
	0.1



	25
	20
	3
	5
	2
	1
	2
	1
	2
	20
	1
	1
	1
	0.5
	0.1
	0.2
	0.5



	26
	20
	5
	8
	5
	1
	5
	5
	2
	20
	0.5
	0.5
	2
	0.5
	0.1
	0.3
	0.1



	27
	20
	5
	1
	2
	1
	5
	2
	2
	20
	1
	5
	1
	0.1
	0.5
	0.05
	0.1



	28
	20
	5
	2
	8
	1
	3
	4
	2
	20
	1
	1
	5
	0.05
	0.1
	0.5
	0.5



	29
	40
	5
	5
	6
	1
	1
	4
	2
	20
	0.5
	5
	1
	0.2
	0.05
	0.1
	0.3



	30
	40
	9
	5
	4
	1
	2
	5
	2
	20
	2
	1
	3
	0.1
	0.3
	0.3
	0.8



	31
	40
	5
	11
	6
	1
	5
	3
	2
	1
	1
	2
	3
	0.5
	0.1
	0.2
	0.1



	32
	40
	5
	1
	10
	1
	2
	4
	2
	20
	1
	3
	1
	0.3
	0.1
	0.5
	0.1



	33
	25
	5
	10
	5
	1
	3
	5
	2
	3
	5
	1
	3
	0.2
	0.1
	0.05
	0.1



	34
	50
	15
	5
	5
	1
	5
	2
	2
	10
	1
	3
	2
	0.3
	0.1
	0.2
	0.1
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Table 9. Payoffs for different information structures with the green effect.
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No.

	
    N E    

	
    S T / I S T    




	
     J 1     

	
     J 2     

	
     J 3     

	
     J 0     

	
     J 1     

	
     J 2     

	
     J 3     






	
1

	
334

	
3274

	
550

	
2617/2911

	
150/144

	
2067/1715

	
400/350




	
2

	
726

	
314

	
954

	
1204/1813

	
467/404

	
127/114

	
609/538




	
3

	
542

	
277

	
581

	
848/1217

	
313/266

	
174/159

	
360/237




	
4

	
147

	
203

	
147

	
427/852

	
127/112

	
172/143

	
127/112




	
5

	
1043

	
2851

	
3988

	
6890/8122

	
861/622

	
2381/1765

	
3648/3288




	
6

	
342

	
652

	
834

	
1370/3282

	
296/211

	
466/352

	
608/388




	
7

	
432

	
432

	
1331

	
1557/2136

	
249/177

	
249/177

	
1059/899




	
8

	
572

	
1863

	
1467

	
2960/3172

	
390/311

	
1556/1186

	
1015/886




	
9

	
534

	
1237

	
2311

	
3214/3542

	
306/176

	
961/721

	
1947/1783




	
10

	
834

	
987

	
1237

	
2471/2712

	
701/524

	
821/604

	
949/745




	
11

	
2323

	
672

	
672

	
2724/3006

	
1862/1562

	
431/378

	
431/378




	
12

	
525

	
2631

	
525

	
2622/2879

	
325/256

	
1972/1568

	
325/256




	
13

	
495

	
495

	
2648

	
2596/2870

	
316/278

	
316/278

	
1963/1672




	
14

	
1554

	
2167

	
372

	
3029/3765

	
1136/756

	
1739/1453

	
154/144




	
15

	
566

	
783

	
822

	
1567/1872

	
408/278

	
500/389

	
658/465




	
16

	
2845

	
3456

	
1869

	
6401/7021

	
2061/1765

	
2909/2753

	
1432/1299




	
17

	
2311

	
3892

	
883

	
5833/6023

	
1844/1567

	
3337/3098

	
652/525




	
18

	
2391

	
2981

	
1456

	
5659/5762

	
1781/1566

	
2595/2385

	
1284/1098




	
19

	
2656

	
2431

	
2431

	
6322/6544

	
2298/1987

	
2012/1877

	
2012/1877




	
20

	
2254

	
411

	
1663

	
3183/3211

	
1742/1567

	
159/154

	
1283/1076




	
21

	
809

	
671

	
322

	
1294/1277

	
610/577

	
470/455

	
214/197




	
22

	
1145

	
188

	
1271

	
2303/2534

	
1008/899

	
110/102

	
1198/934




	
23

	
372

	
824

	
739

	
1391/1512

	
200/177

	
580/562

	
611/578




	
24

	
324

	
242

	
1302

	
1474/1634

	
252/213

	
162/138

	
1061/812




	
25

	
740

	
569

	
824

	
1836/2195

	
649/587

	
427/397

	
760/674




	
26

	
451

	
178

	
842

	
1208/1411

	
354/302

	
128/98

	
727/621




	
27

	
415

	
762

	
1253

	
1785/1784

	
204/199

	
585/568

	
995/982




	
28

	
551

	
1675

	
131

	
2233/2451

	
517/462

	
1607/1523

	
114/94




	
29

	
2231

	
2231

	
3912

	
7608/7923

	
1983/1642

	
1983/1765

	
3642/3277




	
30

	
652

	
1598

	
3426

	
4942/5342

	
474/414

	
1331/1189

	
3137/2873




	
31

	
2434

	
1253

	
3954

	
6637/7012

	
2001/1763

	
949/821

	
3687/3456




	
32

	
3962

	
2811

	
942

	
6712/6712

	
3467/3434

	
2502/2488

	
743/727




	
33

	
721

	
189

	
1542

	
2092/2112

	
642/623

	
141/128

	
1307/1198




	
34

	
1621

	
7234

	
3761

	
11,063/11,651

	
1062/821

	
6684/6431

	
3318/3176
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Table 10. Indices of relative efficiency of the players for different information structures with consideration of the green effect.






Table 10. Indices of relative efficiency of the players for different information structures with consideration of the green effect.





	
Example

	
    N E    

	
    S T / I S T    




	
    S C I    

	
     K 1  /  K 2  /  K 3     

	
    S C I    

	
     K 1 L  /  K 2 F  /  K 3 F  /    






	
1

	
0.89

	
0.21/2.1/0.35

	
0.56/0.47

	
0.1/1.33/0.26 /0.09/1.1/0.23




	
2

	
0.95

	
1 04/0.45/1.36

	
0.57/0.5

	
0.67/0.18/0.87/0.58/0.16/0.77




	
3

	
0.96

	
1.11/0.57/1.19

	
0.58/0.45

	
0.64/0.36/0.74/0.55/0.33/0.49




	
4

	
0.83

	
0.73/1.01/0.73

	
0.71/0.61

	
0.63/0.86/0.63/0.56/0.71/0.56




	
5

	
0.74

	
0.29/0.8/1.12

	
0.64/0.53

	
0.24/0.67/1.02 /0.18/0.5/0.92




	
6

	
0.85

	
0.48/0.91/1.17

	
0.64/0.44

	
0.41/0.65/0.85/0.3/0.5/0.54




	
7

	
0.92

	
0.55/0.55/1.68

	
0.66/0.44

	
0.31/0.31/1.34/0.22/0.22/1.13




	
8

	
0.94

	
0.37/1.2/0.95

	
0.64/0.49

	
0.25/1.0/0.65/ 0.2/0.77/0.57




	
9

	
0.88

	
0.35/0.8/1.5

	
0.69/0.58

	
0.2/0.62/1.26/0.11/0.47/1.15




	
10

	
0.78

	
0.63/0.75/0.94

	
0.63/0.47

	
0.53/0.62/0.72/0.4/0.46/0.57




	
11

	
0.85

	
1.62/0.43/0.47

	
0.63/0.54

	
1.3/0.3/0.29 /1.01/0.26/0.26




	
12

	
0.8

	
0.34/1.72/0.34

	
0.57/0.45

	
0.21/1.29/0.21/0.17/1.02/0.17




	
13

	
0.8

	
0.33/0.33/1.74

	
0.57/0.47

	
0.2/0.2/1.29/0.18/0.18/1.10




	
14

	
0.75

	
0.86/1.2/0.21

	
0.56/0.43

	
0.49/0.96/0.08/0.42/0.8/0.08




	
15

	
0.9

	
0.71/0.98/1.03

	
0.65/0.45

	
0.45/0.62/0.82 /0.35/0.49/0.58




	
16

	
0.81

	
0.81/0.98/0.53

	
0.61/0.55

	
0.62/0.83/0.41/0.5/0.78/0.37




	
17

	
0.75

	
0.73/1.23/0.28

	
0.62/0.54

	
0.61/1.06/0.21/0.5/0.98/0.17




	
18

	
0.85

	
0.89/1.11/0.54

	
0.7/0.63

	
0.65/0.97/0.48/0.58/0.89/0.41




	
19

	
0.82

	
0.87/0.8/0.77

	
0.69/0.63

	
0.75/0.66/0.66/0.65/0.62/0.62




	
20

	
0.75

	
1.17/0.21/0.86

	
0.55/0.48

	
0.9/0.08/0.66/0.81/0.08/0.56




	
21

	
0.84

	
1.13/0.93/0.45

	
0.6/0.57

	
0.85/0.65/0.3 /0.8/0.63/0.27




	
22

	
0.97

	
1.27/0.21/1.41

	
0.86/0.72

	
1.12/0.12/1.33/1.0/0.11/1.04




	
23

	
0.72

	
0.42/0.92/0.82

	
0.52/0.49

	
0.22/0.65/0.68/0.2/0.63/0.65




	
24

	
0.79

	
0.41/0.31/1.64

	
0.62/0.49

	
0.32/0.2/1.34/0.27/0.17/1.03




	
25

	
0.91

	
0.95/0.73/1.06

	
0.78/0.69

	
0.83/0.55/0.97/0.75/0.51/0.86




	
26

	
0.88

	
0.81/0.32/1.51

	
0.72/0.61

	
0.63/0.23/1.3/0.54/0.18/1.11




	
27

	
0.92

	
0.47/0.87/1.43

	
0.68/0.66

	
0.23/0.67/1.13/0.23/0.65/1.12




	
28

	
0.99

	
0.69/2.1/0.16

	
0.94/0.87

	
0.65/2.02/0.14/0.58/1.92/0.12




	
29

	
0.91

	
0.73/0.73/1.28

	
0.83/0.73

	
0.65/0.65/1.19/0.54/0.58/1.07




	
30

	
0.79

	
0.27/0.67/1.43

	
0.59/0.62

	
0.19/0.55/1.31/0.17/0.49/1.21




	
31

	
0.83

	
0.8/0.41/1.29

	
0.72/0.66

	
0.66/0.31/1.21/0.58/0.27/1.13




	
32

	
0.68

	
1.04/0.74/0.25

	
0.59/0.59

	
0.92/0.66/0.2/0.91/0.66/0.19




	
33

	
0.82

	
0.72/0.19/1.55

	
0.7/0.65

	
0.65/0.14/1.31/0.63/0.13/1.2




	
34

	
0.83

	
0.32/1.44/0.75

	
0.73/0.69

	
0.21/1.32/0.66/0.16/1.28/0.63




	

	
0.84

	
0.71/0.85/0.96

	
0.66/0.57

	
0.58/0.69/0.95/0.49/0.58/0.72
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