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Abstract: This paper studies how the cost of delay and voting order affect agents’ decisions in
a unanimity voting mechanism. Specifically, we consider two-voter conclaves with commonly
known preferences over two alternatives, the cost of delay, and the following novelty: each voter
has a subjective deadline—a moment in time when he/she prefers immediate agreement on any
alternative, rather than future agreement on his/her most-preferred alternative. Our key finding
shows that patience is not necessarily a main attribute of strategic advantage. When the first voter is
the same at every stage, this voter will obtain his/her preferred alternative, even if he/she is the least
patient one. However, this first movement advantage disappears when agents alternate as the first
voter of each stage: in this case, the most patient voter always wins.

Keywords: sequential voting; fixed ordering; alternate ordering; subgame perfect equilibrium

1. Introduction

The voting mechanism is a highly important decision-making procedure used in very
different kinds of situations, such as political decisions, jury trials, or the election of the
Catholic Pope. It is noteworthy that, in this last situation, the agreement is met only when
unanimity arises. This requirement reveals some interesting questions about the voters’
behaviour. For instance, in conclaves with misaligned preferences, is it possible to agree on
an alternative? If this is the case, which alternative will be implemented? Which voter will
have to give up first? When will this occur?

The study of these questions, which originated from the model of [1], involves a
vast number of different contexts, such as the bargaining in legislatures [2], multilateral
bargaining models [3], and situations with asymmetric information [4,5]) and incomplete
information [6–8]. Recently, References [9,10] studied how agents reach an agreement
through a sequential random ordering voting procedure with, potentially, an infinite
number of stages. The result of this negotiation process shows that the most patient agent’s
preferred alternative is chosen in the first round.

The closest model to the one presented here is a model by [9]. He considered a
decision-making conclave choosing between two alternatives under a supermajority rule
(including unanimity). If a decision is not reached in the first round of voting, then the
procedure repeats in the next round, and so on, until the required supermajority is reached.
The delay in time is increasingly costly to each player. The question that is asked is: Which
rule offers higher utilitarian welfare? In answering this question, he found that there is a
subgame perfect Nash equilibrium that leads to a unique voting outcome in the first round.
This outcome coincides with the alternative preferred by the pivotal voter with the greater
indifference time (or, in other words, impatience degree).

The current approach studies how agents make a unanimous decision over a set of
alternatives, assuming potentially an infinite number of voting stages, such that the delay
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of the decision implies some costs for the voters. Unlike to [9], it is assumed that the
ordering of the voters is fixed and the agreement is met by unanimity. Each voter has an
impatience degree indicating when it is worth voting for the non-preferred alternative
rather than for the preferred alternative. We do not restrict our attention to the cases when
voters must be different in their patience, as was done by [9]. Since both voters know
the impatience degree of themselves and the other voter, intuition suggests that the more
patient voter will manage to obtain his preferred alternative. We show that the subgame
perfect equilibrium is unique: the first voter obtains his/her preferred alternative in the
first stage, independently of his/her impatience degree. The result contradicts the one
obtained by [9].

The remainder of the paper is organised as follows. The next section introduces the
model. Sections 3 and 4 provide the main results of the model and its discussion. Finally,
Section 5 closes the paper.

2. The Model
2.1. Decision Problem

We considered a sequential voting procedure with complete information. Let
N “ t1, 2, . . . , nu denote the set of individuals with typical elements i and j, where
n ě 2. A decision is made via a sequential unanimity voting procedure in which the agents
have to choose between two alternatives c P C “ tα, βu. Each (proposal) stage t P T “ N
consists of a proposal of an alternative c by an agent and a counterproposal c1 P C by
her/his opponent. If both alternatives coincide, the agents are interpreted to have agreed
on outcome pt, cq, and the process terminates. The situation in which no agreement is reached
is denoted by p8,Hq. Finally, each agent i’s preferences over the set of possible outcomes
O “ Tˆ CY tp8,Hqu is represented by the utility function ui : O Ñ R, which is assumed
to satisfy the four axioms we detail next.

First, we assumed that each agent has a persistently most-preferred alternative. That
is, for each agent i, there exists an alternative δi such that, for every stage t, if agreed at
t, δi yields i a higher utility than c ‰ δi. We focused on the case in which preferences are
misaligned, δi ‰ δ´i, and assumed without loss of generality that agent a’s and b’s favourite
alternatives are α and β, respectively, i.e., that δa “ α and δb “ β.

Axiom 1. Persistence (PER). For each agent i, there exists some alternative δi such that uipt, δiq ą

uipt, cq for c ‰ δi at every stage t. Furthermore, δa ‰ δb.

Second, we assumed that agents are impatient, that is that the utility they obtain from
agreement decreases with time. This assumption is typically related to money costs: plane
or train tickets become more expensive with time; savings deposited in a current account at
the bank are affected by inflation, etc.

Axiom 2. Impatience (IMP). For each agent i, each alternative c, and each stage t, uipt, cq ą
uipt` 1, cq.

Third, we assumed that agents prefer any agreement to perpetual disagreement.

Axiom 3. Termination (TER). For each agent i and each outcome pt, cq, uipt, cq ą uip8,Hq.

Finally, we assumed that each agent i faces a subjective deadline ti P T. Beyond
this deadline, the utility obtained from agreeing on the least-preferred alternative now is
greater than the utility obtained from keeping on voting and eventually agreeing on the
most-preferred one.

Axiom 4. Reversion (REV). For each agent i, there exists a reversal stage ti such that uipt`
1, δiq ą uipt, δ´iq if t ă ti, and uipt` 1, δiq ă uipt, δ´iq otherwise.
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2.2. Order Schemes

The sequence of proposals and counterproposals is observable for the agents, and thus,
it is information their behaviour can be conditioned by. We refer to these sequences as histo-
ries, and they can be formalised as: piq the initial history h0, in which no proposal has been
made yet, piiq finite sequences ppc1

1, c1
2, . . . , c1

nq, . . . , pcn´1
1 , cn´1

2 , . . . , cn´1
n q, hnq, where either

hn P C or hn P C ˆ C, and piiiq infinite sequences ppc1
1, c1

2, . . . , c1
nq, . . . , pct

1, ct
2, . . . , ct

nq, . . . q.
Since the procedure is over once the agreement is reached, we require that, for finite histo-
ries of length n, it holds that ct

1 ‰ ct
2 at every stage t ă n, and that for infinite sequences, it

holds that ct
1 ‰ ct

2 at every stage t. Histories are naturally divided into two categories:

• Partial histories: histories in which either no proposal has been made or agreement has
not been reached after finitely many proposals. These are formalised by the initial
history h0 and finite histories ph1, . . . , hnq, where either hn “ cn

1 or hn “ pcn
1 , cn

2q and
cn

1 ‰ cn
2 , respectively. Let H denote the set of partial histories.

• Terminal histories: histories in which either agreement is reached or disagreement is
persistent. These are formalised by finite histories ph1, . . . , hnq, where hn “ pcn

1 , cn
2q

and cn
1 “ cn

2 , and infinite histories, respectively. Let Z denote the set of terminal
histories. Notice that each terminal history z induces a unique outcome opzq P O. This
is obtained as follows: piq if z is finite, then z “ phtqnt“1 with hn “ pcn

1 , cn
2q and cn

1 “ cn
2 ;

clearly, opzq “ pn, cn
1q; piiq if z is infinite, then opzq “ p8,Hq.

As mentioned above, our analysis focused on the sensitivity of strategic behaviour to
the particular way in which the agent who makes the first proposal is designated at each
stage. To this end, we distinguish the following two schedules:

1. Fixed order scheme: The designated proposer is the same at every stage; that is, at
every stage t, agent a makes a proposal and agent b decides whether to accept it or
continue with the voting. This scheme is formalised by assuming that agent a’s and
b’s information sets are, respectively:

H1
a “

!

ph1, . . . , hnq P H| hn “ pcn
1 , cn

2q
)

Y th0u,

H1
b “

!

ph1, . . . , hnq P H| hn “ cn
1

)

.

2. Switching order scheme: The designated proposer changes at every stage; that is, agent
a (respectively, b) makes a proposal at each odd (respectively, even) stage t, and agent
b (respectively, a) decides whether to accept agent a’s (respectively, b’s) proposal or to
continue with the voting. In this case, we assumed that agent a’s and b’s information
sets are, respectively:

H2
a “

#

ph1, . . . , hnq P H

ˇ

ˇ

ˇ

ˇ

ˇ

piq hn “ pcn
1 , cn

2q for even n,

piiq hn “ cn
1 for odd n

+

Y th0u,

H2
b “

#

ph1, . . . , hnq P H

ˇ

ˇ

ˇ

ˇ

ˇ

piq hn “ pcn
1 , cn

2q for odd n,

piiq hn “ cn
1 for even n

+

.

Given schedule k P t1, 2u, each agent i’s decision consists of what to propose at each of
her/his information sets; thus, the set of agent i’s strategies is given by:

Sk
i “ CHk

i

To understand better how the voting procedure is performed, consider Example 1.

Example 1. There are two voters voting sequentially for two alternatives ta, bu. At each stage,
Voter 1 votes first either for a or for b, then Voter 2 votes either for a or for b. Voter 1 prefers a, and
Voter 2 prefers b: α1 “ β2 “ a and α2 “ β1 “ b. The utilities are defined according to the four
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axioms: PER, IMP, REV, and TER. Figure 1 illustrates the first five stages and the utilities of the
possible outcome at these stages (we assumed that, starting from the sixth stage, the utility functions
for both voters fulfil the four axioms).

1

2

a

t = 1

a

b

a

b

b

2

(33,38)

(35,34)

1

t = 2

Reversal time of voter 2

2

2
a

a

b

a

b

b

(31,36)

(34,33)

1

t = 3

Reversal time of voter 1

2

2
a

a

b

a

b

b

(29,32)

(32,29)

1

t = 4

2

2
a

a

b

a

b

b

(24,28)

(27,24)

. . .θ

Figure 1. Example of fixed order scheme.

For instance, assume that the procedure arrives at the second stage, t “ 2: Individual 1
votes for b, and Individual 2 votes for b as well. Then, the voting stops, and the alternative b is
implemented, so that Individuals 1 and 2 obtain 31 and 36, accordingly. If Individual 2 votes for a,
then the voting passes to the next stage, t “ 3, and Individual 1 is asked to vote again. If the voters
never vote for the same alternative, then the outcome is considered to beH implemented at stage8.

It is easy to see that the reversal time of Voter 1 equals three: u2p2, bq ą u2p3, aq. The reversal
time of Voter 2 equals to two: u1p3, aq ą u2p4, bq.

Clearly, each strategy profile s P Sk
a ˆ Sk

b induces a unique conditional terminal history
zps|hq at each partial history h, namely the sequence of proposals that would follow in
case partial history h has been reached.1 This allows for defining the usual notion of the
subgame perfect equilibrium [1]:

Definition 1 (Subgame perfect equilibrium). For each schedule k P t1, 2u, we say that strategy
profile s˚ P Sk

a ˆ Sk
b is a subgame perfect equilibrium (SPE) for schedule k if, for any agent i, we

have that:
s˚i P

č

hPHk
i

arg max
siPSi

uipopzps˚´i; si|hqqq.

3. The Strategic Impact of Order Schemes

In this section, we study the outcome of the voting process described above in its
two variants: the fixed order scheme and the switching order one. As we shall see, the
opposing nature of the results corresponding to each schedule (Propositions 1 and 2 below,
respectively) sheds light on the relation between patience and the first-mover advantage.

In principle, it seems natural to expect that the possible asymmetries in the degree of
patience offer a strategic advantage to the most patient agent: she/he could try to delay
the agreement until the the stage at which the least patient agent prefers to agree on any
alternative rather than keep negotiating. Our first result shows that this intuition can be
misleading: patience plays no role at all in the outcome under the fixed order scheme.

Proposition 1. Under any subgame perfect equilibrium s˚ for the fixed order scheme, agent a’s
most-preferred alternative is agreed in the first stage, i.e., opzps˚|0qq “ p1, αq.

Proof. Set t˚ “ maxtta, tbu; pick arbitrary SPE s˚; proceed by backward induction:
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Initial step: At every history h of length t ě t˚, agent a proposes his/her most-preferred
alternative and agent b accepts it, i.e., s˚a phq “ α and s˚b ph, αq “ α. Fix t ě t˚ and arbitrary
history h of length t. Then, since t ě tb, we know by REV and TER that, at h, agent b accepts
whatever agent a proposes, that is s˚b ph, cq “ c for any alternative c. Thus, because of PER,
agent a’s unique best response at h is to propose α, i.e., s˚a phq “ α.

Inductive step: At every history h of length t ď t˚, agent a proposes his/her most-preferred
alternative and agent b accepts it, i.e., s˚a phq “ α and s˚b ph, αq “ α. The case of histories of
length t˚ was already covered above, so we can proceed inductively. Suppose that the
claim is true for t ď t˚; let us verify that it also holds for t´ 1. Fix arbitrary history h of
length t´ 1. We know by the induction hypothesis that, for any history h1 of length t1 ě t,
s˚a ph1q “ α and s˚b ph

1, αq “ α. Hence, it follows from IMP and TER that at h, agent b accepts
whatever agent a proposes, that is s˚b ph, cq “ c for any proposal c. Thus, because of PER,
agent a’s unique best response at h is to offer α, i.e., s˚a phq “ α.

The fragility of the strategic advantage associated with patience illustrated by Proposition 1
highlights the deep relation and complex interplay between patience and another familiar
concept in game theory: the first-mover advantage. As the proposition shows, when an
agent is permanently established as the proposer, or first-mover, this feature arises as a de
facto advantage to the extent of being the only determinant of the outcome and, notably,
rendering patience irrelevant. Interestingly, the preponderance of patience is restored under
the switching order scheme:

Proposition 2. Under any subgame perfect equilibrium s˚ for the switching order scheme, the
most patient agent’s most-preferred alternative is agreed in the first stage, i.e., opzps|0qq “ p1, δiq,
where ti ą t´i.

Proof. Set t˚ “ maxtta, tbu, and let δ˚ denote the most patient agent’s most-preferred
alternative. Fix an arbitrary SPE s˚. We proceed now inductively.

Initial step: We have that: piq if t˚ is odd, then at each history of length t˚ ´ 1, agent b offers
δ˚ and agent a accepts it; piiq if t˚ is even, then at each history of length t˚ ´ 1, agent a
offers δ˚ and agent b accepts it. The proofs of both claims are, mutatis mutandis, identical,
so we focus on Claim piq. Pick arbitrary history h of length t˚ ´ 1. Since t˚ ´ 1 is even, we
know that h P H2

b . We considered then two different cases. First, if t˚ “ tb, then, necessarily,
ta ď t˚ ´ 1. Clearly, it follows from REV and TER that agent a is going to accept whatever
is offered to him/her at histories of length t˚ ´ 1, i.e., that s˚a ph, cq “ c for any alternative
c. Thus, because of PER, s˚b phq “ β “ δ˚ is the optimal proposal for agent b. Second, if
tb ă ta, it follows from REV and TER that s˚b ph

1, cq “ c for any alternative c and any history
h1 of length t˚. As a consequence, because of PER, s˚a ph1q “ α. Since agent a can guarantee
obtaining α at t˚, then, obviously, s˚a ph, βq “ α. Thus, it follows from IMP, REV, and TER
that s˚b phq “ α “ δ˚ and, from PER, that s˚a ph, αq “ α.

Inductive step: For each history of length t ď t˚´ 1, the most patient agent’s most-preferred
alternative is offered and accepted, i.e., for any agent i and any history h P H2

i of length
t ď t˚ ´ 1, s˚i phq “ δ˚ and s˚´iph, δ˚q “ δ˚. The case of histories of length t˚ ´ 1 has already
been proven, so we can proceed inductively. Suppose that the claim holds for t ď t˚ ´ 1; let
us check that it does so for t´ 1. Pick arbitrary history h of length t´ 1, and let i denote
the agent satisfying h P H2

i . We know from the induction hypothesis that s˚´iph
1q “ δ˚

and s˚i ph
1, δ˚q “ δ˚ for any history h1 of length at least equal to t. Then: piq if ti “ t˚, it

follows from IMP and TER that s˚´iph, δ˚q “ δ˚ and, therefore, from PER, that s˚i phq “ δ˚;
if piiq t´i “ t˚, then t´ 1 ă t´i, and thus, it follows from PER that, first, s˚´iph, cq “ δ˚ for
any alternative c ‰ δ˚ and, thus, from IMP and TER, that s˚i phq “ δ˚. Hence, in any case,
s˚i phq “ δ˚ and s˚´iph, δ˚q “ δ˚. Applying for the case of h “ 0 proves the claim.
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Hence, in this case, patience is the sole determinant of the strategic interaction, and, in
particular, any trace of the first-mover advantage is absent. The sharp contrast between
the fixed order and switching order schemes is evident then: while the former maintains
the first-mover advantage to the extent that patience becomes negligible for the analysis,
the alternation of the proposer role in the switching role scheme abolishes the first-mover
advantage and allows patience to arise as the main driving force behind agents’ choice.

4. Discussion

The current paper analysed conclaves with commonly known misaligned preferences
over two alternatives. Specifically, our model of iterative voting introduces a time effect
through the cost of the delay of the decision. Contrary to most of the literature, we did not
consider a common deadline, i.e., a moment in time when negotiation stops even if the
agents have not come to any consensus (see, for instance, [11–13]). Instead, we introduce
the following novel feature: each agent has his/her own deadline—a moment in time when
it is worth voting for the non-preferred alternative, rather than for the preferred alternative.
The current model depicts the context where individuals must agree on selecting an option
out of the set of alternatives by voting in a sequential way. Individuals are arranged in
a fixed linear order, and at each stage, they cast their votes in that order. We considered
the most strictest voting rule, unanimity: if all the voters unanimously support the same
alternative, then the voting stops with this alternative chosen; otherwise, the procedure is
repeated at the next stage.

Note that voters have strict preferences over alternatives, which are persistent with
stages: at each stage, the voter prefers the same alternative to the others. For each voter,
a utility function is defined. Both utility functions and preferences are known by all the
voters; in other words, perfect information was assumed.

Since voting with stages usually causes delays and a loss of time, it was assumed that
the utilities decrease with the stages. The decrease of the utilities and the persistence of
preferences cause the existence of an impatience degree for each voter: a moment in time (a
stage) when it is worth voting for the non-preferred alternative now rather than waiting for
the next stage and voting for the preferred alternative.

As previously mentioned, intuition suggests that the more patient voter will manage to
obtain his/her preferred alternative. It is shown that in the unique solution of the sequential
voting procedure obtained by backward induction, the first voter obtains his/her preferred
alternative in the first stage. In this context, we analysed how two different voting schedules
may affect the final outcome. In doing so, we studied a fixed voting schedule, where the
voters’ ordering is fixed. A switching voting schedule is where the voting order alternates
at each stage. Obviously, the agreement is met by unanimity. Our key finding shows a
counterintuitive result: the most patient voter will not always obtain his/her preferred
alternative. Specifically, the chosen alternative will depend on both the voting schedule
and the degree of patience. Indeed, if the voting order is fixed, i.e., the first voter is always
the same agent at each round, the subgame perfect equilibrium is unique and the first
voter obtains his/her preferred alternative in the first stage, regardless of his/her degree
of impatience. On the contrary, if the voting order alternates at each stage, i.e., the agent
who votes first varies from one round to the next one, the subgame perfect equilibrium
is unique, and the most patient voter obtains his/her most-preferred alternative in the
first stage, even if in this stage, he/she is the second to vote, the usual first-movement
advantage disappearing.

It is easy to provide real-life examples of the fact that the first voter who takes the
initiative wins. Consider a situation with two players: a firm and a labour union in the case
of a strike. If the strike is already happening, then the union has set up some claims on the
enterprise. Although it seems that the enterprise is more patient, with more resources at its
disposal, in the case of a strike, it is likely that the enterprise agrees with the claims of the
union. Otherwise, the enterprise can prevent the strike by moving first and proposing an
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offer to the workers, which is less generous than the offer in the case when the strike has
already happened (see, for instance, [14]).

Note that if the order of the voters is not exogenous and is defined by the voters
themselves, then it is likely that the most extreme voter would take the initiative and
vote first. Therefore, in this case, the result coincides, to some degree, with the results
of [15,16]. In other words, being more patient does not guarantee the victory of one’s
preferred alternative. Therefore, what really matters is the order of the voters.

The obtained result of the uniqueness of the subgame perfect equilibrium is similar
to the result of [1], where the proposal of the first individual is accepted by the other
individual. Besides, there is a huge literature on voting by conformity that shows that
people are likely to accept the proposal immediately. For instance, Reference [17] states
that the voters are willing to conform because they recognise that even small departures
from the social norm will seriously impair their status. Despite this penalty, the voters with
a higher degree of patience (agents with sufficiently extreme preferences) are not likely to
confirm with the first voter. It is noteworthy that [18] and [19] (among others) suggested
that voters follow a leader and attract other voters to follow them as well. Reference [20]
also studied the effect of the presence of leaders between the voters on the information
transmission among themselves. In the model studied here, leadership can be presented as
taking the initiative and voting first.

5. Conclusions

We analysed a two-agent sequential unanimity voting procedure, where at each stage,
the order of voting can be either fixed or switching and in which both agents have a
subjective deadline (understood as patience), after which ending the procedure gains
priority over the alternative agreed.

In this setting, we showed that the specification of the order is crucial for the outcome
of the procedure due to the way it affects the interplay between patience and the first-mover
advantage: while in the fixed order procedure, the first voter’s most-preferred alternative
is agreed in the first stage, in the switching order scheme, the most patient agent’s most-
preferred alternative is the agreed one in the first stage. Hence, patience plays no role in
the fixed order scheme, and there is no first order advantage in the switching order one. In
particular, the results highlight the subtleties involved in economic modelling and the lack
of robustness of predictions in light of misspecifications of the interaction context.

An interesting ongoing issue is to modify existing elements of the model, for instance
to explicitly introduce a final stage. Second is to modify the procedure. The most natural
extension is not to fix the order of the voters and make it random at each stage (as a contin-
uation and generalisation of the considered case where the voting order is reversed only
once). The other extension would be to allow coalitions or to introduce other voting rules.
The presence of bribing seems to be challenging and promising. Bribing can be presented
in different ways: utility transfer between the voters, direct payments, or increasing the
probability to vote first. Maybe, in this case, the veto power of the individuals is reduced
and the degree of impatience matters.
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Notes
1 This requires an inductive construction. If h P Hk

i , then let zps|hq “ ph, ĥq, where: piq ĥ1 “ pĉ1
1, ĉ1

2q, consisting of c1
1 “ siphq and

ĉ1
2 “ s´iph, ĉ1

1q; piiq for any m ě 2, define inductively ĥm as pĉm
1 , ĉm

2 q, consisting of ĉm
1 “ siph, ĥ1, . . . , ĥm´1q for the corresponding i,

and ĉm
2 “ s´iph, ĥ1, . . . , ĥm´1, ĉm

1 q, until ĉm
1 “ ĉm

2 .
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