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Abstract: Almost every supplier faces uncertain and time-varying demand. E-commerce and online
shopping have given suppliers unprecedented access to data on customers’ behavior, which sheds
light on demand uncertainty. The main purpose of this research project is to provide an analytic
tool for decentralized supply channel members to devise optimal long-term (multi-period) supply,
pricing, and timing strategies while catering to stochastic demand in a diverse set of market scenarios.
Despite its ubiquity in potential applications, the time-dependent channel optimization problem in
its general form has received limited attention in the literature due to its complexity and the highly
nested structure of its ensuing equilibrium problems. However, there are many scenarios where a
single-period channel optimization solution may turn out to be myopic as it does not consider the
after-effects of current pricing on future demand. To remedy this typical shortcoming, using general
memory functions, we include the strategic customers’ cognitive bias toward pricing history in the
supply channel equilibrium problem. In the form of two constructive theorems, we provide explicit
solution algorithms for the ensuing Nash–Stackelberg equilibrium problems. In particular, we prove
that our recursive solution algorithm can find equilibria in the multi-periodic variation of many
standard supply channel contracts such as wholesale, buyback, and revenue-sharing contracts.

Keywords: game theory; Stackelberg games; supply chain management; stochastic demand; behav-
ioral newsvendor; price-setting newsvendor
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1. Introduction

Almost every vendor faces uncertain and time-varying demand. The uncertainty
of demand may be of different natures and varying levels of tractability for statistical
modeling. The demand uncertainty for a specific commodity may stem from consumer
behavior or the economic development condition for that commodity. For instance, the
stochasticity of demand for commodities such as sports apparel may arise from changing
trends of fashion; while for electronic devices or computer software, it may be caused by
better products being rolled out. Anticipating future trends of theee market and addressing
stochastic demand remains a challenge for manufacturers and vendors. In general, the
uncertain demand for a specific product is price-dependent and dynamic in the sense that it
evolves through time. The main goal of this paper is to demonstrate that a general structure
for stochastic dynamic demand can be utilized for decision-making purposes. This general
structure, as we will see, is such that many other demand models turn into sub-classes of
our formulation.

The single-period (static) supply channel optimization problem while facing price-
dependent uncertain demand has long been studied in the literature. For a comprehensive
survey, see [1]. However, there are a variety of scenarios in which decision-makers need a
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multi-period perspective and analysis of stochastic demand for a commodity as its price
(and price-elasticity of demand) changes. Among them, we enumerate a few below, and
provide concrete examples in Section 7.

Consider an entrant price-setting supplier trying to secure a niche in a market with
uncertain demand. The demand-based revenue optimization problem faced at the begin-
ning of the market penetration campaign may be quite different from the one at a later time
when she would have become an incumbent vendor. Initial market penetration campaigns
are typically driven by demand-boosting strategies such as temporary offerings of free
trial versions or low-price commodities [2,3]. Such strategies may incur huge losses at the
beginning. Thus, a time-dependent analysis becomes necessary to determine the optimal
length of the free distribution phase, and the pricing strategy for various times afterward.

Strategic customers, aware of the marketing plans or seasonal trends in pricing, may
either expedite their purchase to benefit from those marketing schemes, or postpone it
until they see a price lower than their reservation price. Khouja et al. (2020) demonstrate
that in both cases a retailer would be better off by catering to these thrift consumers even by
offering off-price commodities [4]. Levin et al. (2009) define strategic customers as those
who are “aware that pricing is dynamic". Thus, obviously, incorporating the expectations
of market-savvy customers in the supply channel’s revenue optimization problem also
requires a dynamic (i.e., time-dependent) demand and pricing analysis [5]. An example of
this type is brought in Section 7.3 where the solution algorithm provides optimal supply
quantities and prices at various times as well as the optimal timing for offering off-price
goods.

Demand for certain innovative products is built-up as time goes by, through word-of-
mouth marketing (or network effect). See the classic work of [6], or that of [7]. Modeling
such markets where demand requires a massive number of buyers to take off also necessities
a time-dependent analysis. These type of markets have been covered in the example
Section 7.4 and our results are consistent with predictions made by the Baas diffusion
model for new product adoption.

The scenarios described above, despite demonstrating different demand patterns,
have one feature in common—in all of those settings, the price-setting supplier(s) must
come to a balance between immediate profits and maintaining future demand. A static
(single-period) channel optimization method typically does not include such a balance as,
for example, it does not guarantee that the current price will not stifle future demand. In
our analysis, we take this point of view from marketing and behavioral economics that
previous prices scale demand, for example, by affecting the number of customers taking
interest in the product.

It should be noted that the same algorithm is used to model and solve the different
optimization problems in each of the various scenarios described above. That is, in our
model, a market is typically defined by its memory-based demand functionals. The solution
algorithm, then, fed by these varying demand structures provides optimal supply quanti-
ties and pricing for different times. Thus, obviously, the algorithm’s scope of applicability
is not limited to these example scenarios and may be expanded to many time-dependent
supply and pricing optimization problems. Moreover, it is imperative to note that the
section dedicated to the numerical implementation of the model (Section 7) is only intended
to familiarize the reader with the scope of applicability of our solution algorithm and its
implementation steps. This section uses simplified functionals demonstrating different
demand patterns. The flexility of our model enables it to provide time-dependent prescrip-
tive analyses for highly different economic and inventory management settings. Another
feature of our model of dynamic price-dependent demand is that it can be embedded in
a game theoretic setting where two vendors cater to the demand within a vertical supply
channel. The general solution algorithm presented in the constructive Theorem 1 thus
provides the optimal level of inventory and optimal prices for both of the channel members
at each period.
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The main challenge in a multi-period discrete time model of demand in which demand
at the present may be affected by that of previous periods is the implicit interdependence of
values of all periods. In order to emphasize the nestedness caused by this interdependence,
we introduce the notion of memory functions. These memory functions carry the effects of
present demand onto the future. They are generally price- and time-dependent and can
be adjusted to model markets with stronger or weaker memories. By embedding memory
effects in the model, not only do we emphasize this nestedness, but also cover the down-
stream (customer-side) effects of pricing. Thus, our model will be able to systematically
cover price elasticity of demand as it changes through periods. Otherwise, by solving the
same problem for demand distribution at every period, we cannot see the after effects of
the pricing scheme on demand. Moreover, in Appendix A, we find the necessary conditions
for the well-posedness of a decentralized supply channel equilibrium problem with respect
to our model. Any supply channel contract satisfying these criteria can be decoupled and
solved by our proposed method. In Appendix B, we prove that many conventional supply
channel coordination contracts indeed meet these requirements.

The paper is organized as follows. We start with a single-supplier model. In Section 3.1,
we introduce the multi-period expected revenue optimization problem of a supplier ad-
dressing a time-varying uncertain demand. In Section 3.2, we briefly sketch our solution
algorithm for the (single-vendor) optimization problem using a backward induction ap-
proach. The structure of the uncertain demand in these sections remains arbitrary and no
assumption is made about its statistical distribution. Next, in Section 4, we analyze the
uncertain demand structure and how it is affected by market memory.

In Section 5, combining the two previously introduced segments of the model, we em-
bed the memory-based demand structure in a general time-dependent profit and inventory
optimization problem. Setting the stage for a complete solution algorithm, in Proposition 1,
we prove that many conventional decentralized channel coordination contracts are of
certain structure making them compatible with our backward induction solution approach.
In the next section, we use this feature to decouple the nested equilibria problems with 3n
unknown variables into 3n decoupled equations, each with only one unknown variable.

Finally, in Section 6, we extend the solution algorithm to a supply channel composed
of two vendors competing in a Stackelberg framework. The direction of generalization in
this section is based on the number of periods: first, in Section 6.1, the static single-period
equilibrium problem is solved, and, finally, in Section 6.3, the general solution algorithm
for the dynamic game is presented. The final theoretical results for equilibria problems are
stated in Theorem 1 and its Corollary 1. The final solution algorithm yields the numerical
values for optimal decision variables at different times while considering all the model
parameters to also be time-dependent, thereby ensuring full non-autonomy of the model.

While this article should be regarded as a methodology paper, in Section 7, we provide
examples of decision-making problems using our model. It is important to emphasize that
the simplified demand functionals offered in this section are merely illustrative and not,
for instance, the results of empirical studies. Through these examples, we will see how the
model can be implemented in strategic games where the parties must balance immediate
profits with future earnings. Among the scenarios in this section, we analyze a special
case wherein the two suppliers integrate to form a centralized channel (Section 7.2). The
diagram of section dependency can be found in Scheme 1.
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Section 3.1 General Profit Optimization
Problem

Section 5 Embedding Memeory-based Demand
in Profit Optimization Problem
(Single Supplier)

Section 4 Uncertain Demand Structure

Section 6 Decentralized Channel Optimization
(Two Suppliers)

Section 7 Numerical Implemenetation of The Model

Scheme 1. Diagram of Section Dependency

2. Related Works

In this section, we survey different models employed by researchers in the analysis
of supply channels addressing uncertain demand. We divide the large body literature on
the subject into two classes. The first class of papers deem the distribution of stochastic
demand to be unknown. The second group of researchers consider certain characteristics of
the demand distribution to be part of the a priori knowledge of the decision-makers about
the market. In many research works, a continuous probability distribution is assumed for
the uncertain demand.

In the first group, ref. [8] formulates the problem of stochastic demand in a Bayesian
setting. Assuming a known prior distribution for the uncertain demand, the newly gained
information is incorporated into the posterior distribution with unknown parameters.
These unknown parameters constitute a multi dimensional state space. The dimensionality
of the resulting problem is then reduced such that the solution of the Bayesian model
can be obtained by solving another dynamic program with a one-dimensional state space.
Analogously, the study in [9] provides a Bayesian inventory management analysis in which
demand distribution belongs to a parametric family of distributions. However, they assume
that the unmet demand is lost and unobserved. Bensoussan et al. (2007), in their analysis
of the multi-period newsvendor model, also consider demand distribution to be the state
of their stochastic programming problem [10]. In their model, demand is a stationary
Markov process with a known transition probability. Using the unnormalized probabilities,
they convert the state transition equation to a linear one. A non-parametric Monte Carlo
sampling algorithm is used in [11] to garner information about the underlying distribution
of demand. Assuming that the demands in all periods are independent and identically
distributed (i.i.d) random variables, they do not consider the inter-dependence of demand
level in the current period to the future ones. All of these papers, addressing only the
inventory management problem, consider the demand to be independent of the price.
Therefore, they do not address the optimal pricing strategy problem.

In the second camp [12], analyzing a multi-period newvendor model, discretize the
problem as a multi-stage stochastic programming problem. The stochasticity of demand
in their model is formulated as a set of a finite number of scenarios and the occurrence of
each scenario is associated with a probability. Moreover, they use a discrete probability
distribution (Poisson) to represent the demand. The ensuing scenario-based stochastic
problems can then be treated as discrete deterministic optimization problems. In their
model, demand distribution is known to the newsvendor and is not price dependent. In
the seminal analysis of the single-period newsvendor problem presented in [13], considers
uncertain price-dependent demand for a perishable good to be of a general probability
density function. The decision variables are the order quantity and the pricing policy, which
are obtained by solving the maximization problem for the expected profit.

Gümüş et al. study a dyadic channel coordination problem in which two channel
partners supply used goods to a peer-to-peer web-based market [14]. They construct a
Stackelberg structure between the manufacture (leader) and the retailer (follower), and
analyze the necessary conditions for return policies to constitute the equilibrium strategy.
In their model, the time frame is comprised of two periods. In the first period, the degree
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of uncertainty in customer valuation for a specific product is assumed to be heterogenous
and follow a uniform distribution. Trying to formulate the inter-dependence of demands at
the two periods, they assume the demand potential for the second period to be positively
correlated to the realization of demand in the first period, which becomes the known
history when the second period starts. Khouja et al. argue that a supplier addressing
uncertain demand must also consider the utility-optimizing attitude of strategic customers,
in addition to the distribution of uncertain demand [4]. They prove that a supplier would be
better off by complying with the expectations of the strategic customers who may expedite
or postpone their purchase expecting certain pricing trends. The multi-period bi-level
channel optimization models in [15,16] also employ a memory-based framework wherein
different dynamic demand structures are represented and solve a basic supply channel
coordination problem, including a price-setting newsvendor supplier.

We consider the mean and variance of demand to be arbitrary functions of time and
price history. The dependence of demand mean and variance to the current price can be
obtained from microeconomics theory or empirical data, while the inter-dependence of
current demand to the prices of the past periods are represented by memory functions. The
solution scheme that we propose is, however, independent of the functions representing
the demand distribution. Moreover, based on the model presented in [17], we consider the
current demand to be a function of current price, pricing strategy in the past, and demand
history. Thereby, we avoid neglecting the downstream effect of pricing strategies. That is,
our model also considers the fact that the pricing scheme set by the decision-maker(s) will
affect the availability of the commodity to the costumers, which in turn, will affect their
purchase decision, future demand, and the expected profit for the vendor(s). As a result
of such a nested, price-dependent demand structure, the decision-makers will be able to
engineer the demand through devising the optimal pricing strategy.

3. Problem Description

A decentralized supply channeladdresses the demand for a perishable commodity
over a given timespan. The demand for the commodity is uncertain with a price-dependent
distribution. The suppliers are risk-neutral as they seek to maximize their expected dis-
counted total profit within the entire time horizon. We consider a discrete time frame for
our model, in which the timespan is divided into n intervals referred to as periods. Each
period is denoted by k; k ∈ {1, · · · , n}. The periods may be of different lengths and, hence,
differently value-discounted. We assume all model parameters and variables to be constant
within each period. The proposed solution algorithm is such that the centralized channel
becomes a special (trivial) case of the general decentralized format (see Section 7.2).

3.1. Multi-Period Profit and Inventory Level Optimization Catering to Uncertain Demand

In this section, we outline a brief sketch of our general multi-period inventory man-
agement and profit optimization algorithm for a supplier who faces uncertain demand. For
simplicity, we start off by analyzing the case with only one supplier. Later, in Section 6, we
extend the analysis to a game theoretic scenario within a decentralized supply channel.

A price-setting supplier has to cater to an uncertain Dk within each period k in a
timespan composed of n periods. Her decision variables are the retail prices rks and supply
quantities qks. We denote the net running value of the profit obtained at period k, by Πk,
and its expected value with respect to a given distribution by Πk. The supply quantity qk is
to address the stochastic demand Dk. Luckily, there exists a classical closed form solution
for each optimal qk as a function of rk—the solution for the single-period price-setting
newsvendor problem [18]. Thus, the expected profit at period k will be of the following
general form:

E[Πk] = Πk

(
Dk, rk, qk(rk), {parameters}k

)
= Πk

(
Dk, rk, {parameters}k

)
(1)
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It should be noted that in our model, in addition to the decision variables in this
single-vendor model, i.e., rk and qk, all of the given parameters are considered time-
dependent entities. This full-blown non-autonomy with respect to both the variables and
the parameters is kept throughout the entire analysis and is present in the expression of the
final results in Theorem 1 and its Corollary 1 for general double-vendor models. Assuming
the total number of periods to be n, we have the expected discounted total profit of the
whole n periods as below.

J := E[Π1] + α2E[Π2 | D1] + · · ·+ αnE[Πn | D1, · · · , Dn−1] (2)

where 0 < αk ≤ 1 are given discount factors (we set α1 = 1).
Now, we have to solve the following nested n-variable optimization problem,

max
rn

J =
n

∑
k=1

αk Πk(rk) (The barred symbol indicate expected value.) (3)

where the price sequence at period k, rk = {rj, j = 1, · · · , k}. Moreover, throughout this
paper, a hat superscript will denote an optimal decision variable. Solving (3), we seek to
obtain the vector of optimal prices denoted by r̂k.

3.2. A General Solution Scheme Based on Backward Induction

In the final period, there is no need to worry about future demand. Moreover, by the
time the decisions are being made for the last period, all the previous decision variables
and the demands themselves are common knowledge. Moreover, because no term other
than Πn in J as expressed in (3) depends on rn, the problem of finding the nth argmax of J
boils down to the single-variable problem of finding the rn that maximizes Πn.

max
rn

J ≡ max
rn

Πn (4)

Hence, given rn−1 and Dn−1, and assuming that the mapping rn 7→ E[Πn | Dn−1] has
a global maximum, we can construct a function r̂n = r̂n(rn−1, Dn−1) that maximizes this
conditional expected value. Inserting this function in (3) and iterating the same procedure
for max

rn−1
J, · · · , max

r1
J, we obtain the vector r̂n with each r̂k being the global argmax to J at

the kth period. Note that unless the profit at period k is independent from the previous
demands and thereby from the previous prices, r̂k is not necessarily an argmax to the
corresponding Πk.

Later, in Section 6, we extend the procedure to solve the equilibrium problem when
there are two suppliers (a leader and a follower) in the supply channel. The ensuing bilevel
optimization problem will be of the following general form.

max
{li}

(
J Leader | { f̂ j}

)
s.t. { f̂ j} ⊆

{
Argmax

(
J Follower | {l̂i}

)} (5)

where the sets {li} and { f j} denote the sets of decision variables for the leader and the
follower, respectively.

4. Demand Structure

The expected profit as expressed in (1) is a function of demand. In the following
three sections, we outline the general structure of time-dependent stochastic demand that
the supply channel has to address. This demand expression is ultimately embedded in
the optimization objective functions, i.e., the suppliers’ expected profits. In Section 4.1,
we outline the demand structure with respect to its dependence on time and price. In
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Section 4.2, we delineate the stochastic nature of demand. Finally, in Section 4.3, combining
the features, we introduce the memory-based demand structure.

4.1. Demand’s Dependence on Time And Price

It is classical to assume that the demand at present depends on the current price, i.e.,
Dk = ψ(rk). However, not all markets behave in such a simple manner. Many markets have
some kind of memory, in the sense that pricing in the past may affect demand at present.
In a dynamic market, the customers may become anchored to past prices, and this may
affect their purchasing behavior. Consider a market in which a commodity with a limited
lifespan is supplied to a base of potential customers. It is natural to assume that strategic
customers are sensitive to previous prices when comparing them to the current price. Thus,
one can conclude that, in general, in addition to the current price, previous prices may have
a bearing on the current customer base by scaling the demand. For example, in a specific
scenario, a price increase by 20% may reduce the customer base by, for example, 10%. We
argue that a general time-dependent model of supply and price optimization should also
consider the effect of anchoring to the past prices on current demand.

We build our time-dependent model of uncertain demand on the simple premise that
the probability of an item being sold at time k for the price of rk depends on the customers’
interest, which, in general, may depend on the past prices.

Dk = Φk(rk−1, · · · , r1) · ψk(rk) (6)

where the functional form Φ represents price history. We refer to the functional structure
Φk(rk−1) as the memory function.

4.2. Stochastic Demand

This section introduces uncertainty into the demand structure. We consider the
uncertainty of demand at each period to be of a general i.e. additive-multiplicative form.
Such a demand structure is comprised of two deterministic parts each a function of time
and price history and a stochastic variable with a given distribution at each period. We
consider demand at period k, Dk to be of the following general form.

Dk = µ̃k(rk) + σ̃k(rk) · εk (7)

where:

εk ’s are independent and identically distributed random variables of arbitrary distribution,
normalized such that E[εk] = 0 and Var[εk] = 1, ∀k and supported on intervals with
continuous density function, fεk > 0, a.e. on its support.
rk = price per unit at period k.

It is obvious that with the normalization described above, we will get µ̃k = E[Dk] and
σ̃k = SD[Dk], where:
µ̃k(rk) = given function, representing mean of demand at period k, and
σ̃k(rk) = given function, the standard deviation of demand at period at k.

4.3. Memory-Based Uncertain Demand

In this section, we formulate the demand scaling factors and the customers’ cognitive
bias to the past prices (anchoring effects), as described in Section 4.1, within memory
functions. These memory functions carry the effects of the past prices onto current demand.
They are generally price- and time-dependent and can be adjusted to model markets with
stronger or weaker memories. Thus, the demand expression equipped with memory
functions at each period is a function of not only price at that period, but also can be
affected by pricing policies in the previous periods.

In the emerging line of research referred to as behavioral newsvendor, the strategic cus-
tomers are included in the demand analysis—those market-savvy customers who, aware of
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seasonal trends or marketing schemes, may postpone their purchase until observing a lower
price, or may expedite it to exploit the initial low-price demand-boosting distributions.
This implies the necessity of including the customers’ biases (anchoring) toward past prices
in the supply channel’s optimization problem [19–21]. We argue that including the cus-
tomers’ cognitive biases in the supply channel revenue optimization problem necessitates
the inclusion of their memory of the past prices. Therefore, a dynamic (time-dependent)
and memory-based analysis becomes necessary. For a comprehensive introduction of the
anchoring effects, see [22,23]. The memory function structure implemented here is based
on the more generalized models proposed in [24].

Combining (6) for memory-based demand and (7) for stochastic demand, we arrive at
the general expression for demand as below.

Dk(rk) = µ̃k(rk) + σ̃k(rk)εk = Φk(rk−1)

ψk(rk)︷ ︸︸ ︷(
µk(rk) + σk(rk)εk

) (8)

such that:

µ̃k(rk) = Φk(rk−1)µk(rk)

σ̃k(rk) = Φk(rk−1)σk(rk).
(9)

Expressions for µ′ks and σ′ks are typically given by microeconomic theory, and Φ can be
obtained through behavioral data anlayses. In Section 7, where numerical examples are
analyzed, we present simple functional forms for both µk, σk and Φk. The memory function
for the k + 1st period, Φk+1(rk) retains the pricing information from the previous period,
while being affected by the last piece of information that has become available, i.e., rk.
The level of retainment of the price history information (determining the potential buyers’
anchoring to the past prices) may vary depending on the market and the behavior of strategic
buyers. That is,

Φk+1
Φk

:= φk(rk) (10)

we call these φk(rk)s the memory elements. Notice that the possibility of having different
functional forms for φks in different periods enables our demand structure to cover more
non-autonomy. With the general memory structure in (10), we will have:

Φk(rk−1) =
k

∏
i=2

φi(ri−1) (11)

These memory functions, as we will see, are adjustable such that they can enable
the model to represent different levels of influence from the past. For example, Φi = 1,
∀i ∈ {2, · · · , n} represent a memory-less market in which Dis are decoupled from each
other.

5. Embedding the Memory-Based Demand in the Expected Profit Expression

The general construction outlined in (3) and (4) is sufficiently explicit to enable solu-
tions of the problem for most choices of functions µ̃k and σ̃k. However, the problem is so
deeply nested that one cannot expect to find an analytical solution. The importance of our
memory-based structure of demand, as described in Section 4.3, is that in many classical
supply chain optimization problems, as it has been shown in the Appendix A, the running
expected profit at each period, as outlined in (1), has the following form.

Proposition 1. A decentralized supply channel composed of two channel members is to address a
stochastic demand as given by (7) at each period k ∈ {1, · · · , n}. The channel members are bound
by classical channel coordination contracts such as wholesale price, buyback, and revenue-sharing
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contracts (as defined in [1], and described in Appendix B), or their linear combinations. The running
expected profit at each period, as outlined in (1), will then be of the following general structure.

Πk(rk) = Ψk(rk)µ̃
p
k (rk) + Θk(rk)σ̃

p
k (rk) (12)

Proof. See Appendices B.1, B.2 and B.3, where the functional structures for Ψk(rk) and
Θk(rk) are obtained.

The power p in these classical contracts is equal to 1. With the memory structure
introduced in (8), we will have:

µ̃
p
k (rk) = µ

p
k (rk)Φp

k (rk−1) and (13)

σ̃
p
k (rk) = σ

p
k (rk)Φp

k (rk−1) (14)

and can recast (12) as below.

Πk =

:=Π̃k(rk)︷ ︸︸ ︷(
Ψk(rk)µ

p
k (rk) + Θk(rk)σ

p
k (rk)

)
Φp

k (rk−1) = Π̃k(rk)Φp
k (rk−1) (15)

Now, the profit optimization problem in (3) can be simplified as follows.

J =
n

∑
k=1

αkΦp
k (rk−1) Π̃k(rk) (16)

The multiplier effect in (16) is the crucial observation in this paper, as it reduces the nested
n-variable optimization problem to n single-variable optimization problems.

This decoupling effect is shown (17). Again, starting from the final period, we observe
that the only term in J containing rn is Π̃n. Thus, we have:

max
rn

J ≡ max
rn

Π̃n (17)

This optimization problem is much more straightforward to solve compared to the general
case in (4), as here, we can immediately obtain the numerical value for r̂n. Substituting this
value in (16), we solve the next single-variable maximization problem with respect to rn−1.
Continuing the same procedure backward in time, we can obtain all the optimal values
of r̂ks.

6. Equilibria in Decentralized Channels with Two Suppliers

Having outlined our general model of memory-based stochastic demand, and embed-
ding it in a single-vendor profit optimization problem, we now extend the scope of the
analysis to problems where two vendors facing stochastic demand try to maximize their
own respective profits. For the analysis of our proposed demand structure, we begin with
the newsvendor model as it epitomizes the problem of inventory management when the
demand for a commodity with short lifespan is stochastic.

We assume that goods are produced by a manufacturer and sold to a retailer. We
also assume that the manufacturer and the retailer are risk neutral in the sense that they
try to maximize expected discounted total profit. We consider a multi-period Stackelberg
game between the manufacturer and the retailer where the actions of the two parties affect
the actions of a third party, the customers. In this Stackelberg structure, the upstream
vendor (the manufacturer), as the leader, has to find a sequence of optimal wholesale prices
at different periods (wks) to ensure her maximum profit. The downstream vendor (the
retailer), who is the follower, then faces the wholesale price and accordingly decides on the
number of products to be ordered to the manufacturer (and supplied to the market) and
the sequence of optimal retail prices (rks).
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The dynamics of prices in game theoretical settings have been discussed in several
publications by K. Bagwell, we mention [25,26]. The analysis presnted in [27] considers
multi-period cases with price-dependent demand, and show how to adapt such models
to include backorders. However, they do not discuss Stackelberg competition. Pricing
strategies for retailers have been discussed intensively in the marketing literature—we
mention [28,29].

The discussion in [30] partly explains why general multi-period problems are difficult
to solve. Some types may admit numerical solutions, but the general problem is difficult
to compute or analyze even in the two-period case. By comparison, the discrete version
we consider in this paper is transparent. Our memory scheme decouples a multi-period
problem into a sequence of one-period problems, each of which is fairly easy to solve. Our
model retains the main essence of the problem itself, while simultaneously providing a
solution that can be analyzed without the need for advanced optimizing techniques.

6.1. The Basic Model: The Game in Single-Period

The solution to the single-period newsvendor problem epitomizes a supply chain
coordination scenario while facing stochastic demand. Therefore, in this section, we review
some properties of the single-period model and in the next sections, we propose our
multi-period model based on it.

Model Variables and Parameters

D = demand (random)
w = wholesale price per unit (chosen by the manufacturer)
r = retail price per unit (chosen by the retailer)
q = order quantity (chosen by the retailer)
cm = manufacturing cost per unit (fixed)
s = salvage price per unit (fixed)
Πr = profit for the retailer
Πm = profit for the manufacturer

In the classical newsvendor model, the manufacturer sets the wholesale price w for
one unit of a certain commodity that needs to be sold within a short timespan. The retailer
orders a quantity q units of the commodity to the manufacturer and plans to sell them
for the price r (per unit) in a market with stochastic demand D. Any unsold item can be
salvaged at the price s < r. The retailer’s profit Πr is calculated as below.

Πr = r min(D, q) + s(q− D)+ − wq

= r min(D, q) + s(q−min(D, q))− wq

= (r− s)min(D, q)− (w− s)q.

(18)

From this expression, we obtain the expected profit for the retailer:

E[Πr] = (r− s)E[min(D, q)]− (w− s)q. (19)

In our model, we consider the additive–multiplicative model for the demand as given
in (7). For a given r, it is well known that the maximum expected profit is obtained when:

P(D ≤ q) =
r− w
r− s

(20)

Inserting the general expression for the demand in (7) into (19) and using (20), we can
prove the following proposition where Fε denotes the cumulative distribution of ε.

Proposition 2. Assume ε has a continuous distribution, supported on an interval, with density
fε > 0 a.e. on its support. Given r and w, r ≥ w > s, the retailer will make an order:

q = µ(r) + σ(r) F−1
ε

(
r− w
r− s

)
. (21)
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in which case, they obtain the expected profit:
Πr

= E[Πr] = (r− w)µ(r, k) + Lε(r, w)σ(r, k) (22)
where Lε is defined by:

Lε(r, w) = (r− s)
∫ z

−∞
ζ fε(ζ)dζ z = F−1

ε

(
r− w
r− s

)
(23)

Proof. See the Appendix C.

The result in Proposition 2 is more or less well known within the literature. In our
normalization, we assume that E[ε] =

∫ ∞
−∞ ζ fε(ζ)dζ = 0, and hence, Lε(r, w) ≤ 0. The term

Lε . σ is typically referred to as the expected loss due to randomness.
It should be noted that the channel under study is considered to be a segment of a

more complete market, such that a segmentation of the pool of customers are addressed by
it. The market demand structure, in general, is an aggregation of the individual demands
from possibly heterogenous consumers who may be affected by the supply of competing
products from other vendors. This feature is embedded in D through the choice of µ[r, k]
and σ[r, k]. Therefore, although the manufacturer and the retailer in our model are basically
monopolistic suppliers, the model considers competition via demand structure.

In the one-period newsvendor model, to formulate a Stackelberg game, we assume
that both parties are risk neutral. The manufacturer (leader) offers a wholesale price w.
We ignore the possibility that the retailer can negotiate this wholesale price. Given w, the
retailer (follower) then solves (22) to find the r̂, which maximizes Πr, and then, substituting
this r̂ into (21) to find out the optimum order quantity q̂. The manufacturer also knows
that the retailer is going to choose q̂ to maximize the expected profit. Therefore, given each
possible value of w, the manufacturer can anticipate the resulting order quantity q̂ = q̂(w),
and so chooses ŵ to maximize the expected profit (which happens be to be deterministic in
this case). The manufacturer’s profit is given by:

Πm = (ŵ− cm)q̂. (24)

6.2. Multi-Period Vertical Contracting

Having discussed the solution to the single-period problem, we are now ready to pro-
vide a theoretical analysis of the multi-period Stackelberg game. Specifically, we consider
the situation where demand in a future period is scaled by a factor based on price and
demand now. Essentially, this is a Markovian assumption since it requires only knowledge
of the current situation.

In the multi-period game, we assume that the parties are risk neutral and try to
maximize their discounted expected profits:

Jr = Πr
1 + α2Πr

2 + · · ·+ αnΠr
n (25)

Jm = Πm
1 + α2Πm

2 + · · ·+ αnΠm
n (26)

where n is the number of periods.

6.3. Multi-Period Games with Memory Functions

Whereas it is straightforward to formulate an n-period game in the general case,
numerical solutions are difficult to obtain even if n is moderately large. The nonlinear
structure of the problem branching into separate cases for each particular choice made on
every level quickly renders the problem computationally intractable.

In this section, we show how to generalize the memory-based approach described in
the previous section to multi-period problems. First, we discuss an important technical
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issue. Consider a general three-period problem. Substituting the memories from (11), we
will have the following structure.

D1 = µ1(r1) + σ1(r1) ε1 (27)

D2 = φ2(r1)
(
µ2(r2) + σ2(r2) ε2

)
(28)

D3 = φ2(r1) φ3(r2)
(
µ3(r3) + σ3(r3) ε3

)
(29)

In the following analysis, we consider only the retailer’s profit optimization procedure.
The same arguments also hold true for the manufacturer’s. In the presence of the memory
functions, the maximization problem expressed in (25), turns into the following.

max
r1,r2,r3

Jr = Π1(r1) + α2 φ2(r1)Π2(r2) + α3 φ2(r1) φ3(r2)Π3(r3) (30)

Starting the backward induction process from the final period, we define Jr
k as the

expected discounted profit earned within the interval between period k and n = 3, inclusive.

Jr
3 = α3 φ2(r1) φ3(r2)Π3(r3) (31)

Jr
2 = α2 φ2(r1)Π2(r2) + Jr

3 (32)

Jr
1 = Jr = Π1(r1) + Jr

2 (33)
where according to (22), the running expected profit obtained at each period is:

Πk(rk) = (rk − wk)µk(rk) + Lεk (rk, wk)σk(rk).
Thus,

Jr
3 = α3 φ2(r1) φ3(r2)

(
(r3 − w3)µ3(r3) + Lε3(r3, w3)σ3(r3)

)
(34)

Because period 3 is the final period, there is no need to worry about future demand, and
therefore, given w3, the retailer chooses the optimal r3 to maximize Jr

3. Note that because r1
and r2 have happened in the past, they are not considered as decision variables at period
3 and the optimal values of r3 and w3 are independent of them. Thus, the optimization
problem reduces to the single-variable problem of maximizing Π3(r3).

Assuming that r̂3 is the (global) argmax value of Π3(r3), we set Π̂3 = Π3(r̂3). Then,
the backward induction proceeds to the next subproblem, i.e., the problem of maximizing
the expected profit in the second period. From (32):

max
r2

Jr
2 = φ2(r1)

(
α2 Π2(r2) + α3φ3(r2)Π̂3

)
= α2 φ2(r1)

([
(r2 − w2)µ2(r2) + Lε2(r2, w2)σ2(r2)

]
+

α3

α2
φ3(r2)Π̂3

) (35)

Notice that in (35), similar to the case in (34), the only decision variable for the retailer
is r2, as r1 has happened in the past. Therefore, the retailer faces another single-variable
optimization problem.

The same procedure is applied backward until all three optimal decision variables are
found. Assuming that r̂2 is the global argmax of Jr

2, as optimized with respect to r2, from
(35), we set:

Π̂2 = Π2(r̂2) +
α3

α2
φ3(r̂2)Π̂3 =

Jr
2(r̂2)

α2φ2(r1)
(36)

Now, the remaining single-variable optimization problem is derived from (33) as below.
max

r1
Jr
1 = Π1(r1) + α2 φ2(r1)Π̂2 (37)

Generalizing the same procedure for an n-period game (n > 3), we start by solving
for the final period to obtain expected profits Π̂r

n and Π̂m
n . Once these values are known,

the profit values in the previous period can be computed through backward induction
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processes. That produces numerical values of Π̂r
n−1 and Π̂m

n−1. To determine the strategy
for the (n− 2)nd period, we consider the problem:

max
rn−2

Jr
n−2 =

(
(rn−2 − wn−2)µn−2(rn−2) + Lεn−2(rn−2, wn−2)σn−2(wn−2)

+
αn−1

αn−2
φn−1(rn−2) Π̂r

n−1

)
αn−2

n−2

∏
i=2

φi(ri−1)

(38)

max
wn−2

Jm
n−2 =

(
(wn−2 − cmn−2)

[
µn−2(rn−2) + σn−2(rn−2) F−1

εn−2

( rn−2 − wn−2

rn−2 − s

)]
+

αn−1

αn−2
φn−1(rn−2) Π̂m

n−1 )

)
αn−2

n−2

∏
i=2

φi(ri−1)

(39)

We also set α1 and φ1 equal to 1. Note that in (38) and (39), the term ∏n−2
i=2 φi(ri−1) =

Φn(rn-1) represents the previous prices and has no bearing on the optimization problem.
Thus, the equilibrium problem for period n− 2 is reduced to a single-period problem that
only involves rn−2 and wn−2. The only difference from the problem for period n− 1, is that
the values of (Π̂r

n−1, Π̂m
n−1) are different from the values (Π̂r

n, Π̂m
n ). Hence, all we have to

do to solve this problem is repeat the previous step with updated values for (Π̂r, Π̂m).
To simplify notation, we have suppressed dependence on arguments that are not yet

active; µn−2 and σn−2 are in general functions of (rn−3) but according to our assumptions,
this dependence enters as an independent multiplicative factor and can hence be factored
out of the optimization problem. (See Equations (34) and (35) for example.)

By using the argument above repeatedly, it is clear that we can solve this problem
for any value of n. Starting with the values (Π̂r

n+1, Π̂m
n+1) = 0 in the final period, we

essentially solve the same problem in all periods. The values of (Π̂r, Π̂m) are updated as
the construction progresses backwards, but those updated values come for free from the
solution of the previous step. We state the generalized result as follows.

Theorem 1. Let n be the number of periods and assume that demand in period k is given by:
Dk = (µk(rk) + σk(rk)εk)Φk

(
rk−1

)
(40)

where,

Φ1 = 1, Φk
(
rk−1

)
=

k

∏
i=2

φi(ri−1) k > 1

and ε1, · · · , εn are continuously distributed with E[εk] = 0 and Var[εk] = 1 for all k, with
fεk > 0 a.e. on their supports. If for each k, the one-period Stackelberg problem below has a unique
equilibrium at rk = r̂k, wk = ŵk.

Jr
k(rk) =

(
(rk − wk)µk(rk) + Lεk (rk, wk)σk(rk) +

αk+1
αk

φk+1(rk) Π̂r
k+1

)
αkΦk(rk−1)

Jm
k (wk) =

(
(wk − cmk )

(
µk(rk) + σk(rk)F−1

εk

[ rk − wk
rk − sk

])
+

αk+1
αk

φk+1(rk) Π̂m
k+1

)
αk Φk(rk−1)

(41)

where Πr
k and Πm

k are found recursively from:
Π̂r

n+1 = 0 Π̂m
n+1 = 0 (42)

Π̂r
k =

Jr
k(r̂k)

αk Φk(rk−1)
Π̂m

k =
Jm
k (ŵk)

αk Φk(rk−1)
, k = 1, 2, · · · , n, α1 = Φ1 = 1 (43)

then the problem of maximizing,
Jr = Πr

1 + α2 Φ2(r1)Πr
2 + · · ·+ αn Φn(rn−1)Πr

n (44)
Jm = Πm

1 + α2 Φ2(r1)Πm
2 + · · ·+ αn Φn(rn−1)Πm

n (45)
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has a unique equilibrium at r̂ = (r̂1, r̂2, · · · , r̂n), ŵ = (ŵ1, ŵ2, · · · , ŵn). The optimal order
quantity at k is then calculated as below.

q̂k = Φk(r̂k−1)
[
µk(r̂k) + σk(r̂k) F−1

εk

( r̂k − ŵk − crk

r̂k

)]
(46)

Theorem 1 delineates how the memory structure can decouple nested equilibria
problems. The result of the theorem can be generalized to all optimization or equilibrium
problems in which the running (single period) profit expression is of the structure stated in
(12). In the Appendix B, we show that the expected profit expressions in all the classical
coordination contracts (and their combinations), including the wholesale price contracts,
the buyback contracts, and the revenue-sharing contracts are indeed of this structure.

Corollary 1. Let n be the number of periods and assume that demand in period k is given by:
Dk = (µk(rk) + σk(rk)εk)Φk

(
rk−1

)
(47)

where:

Φ1 = 1, Φk
(
rk−1

)
=

k

∏
i=2

φi(ri−1) k > 1

and ε1, · · · , εn are continuously distributed with E[εk] = 0 and Var[εk] = 1 for all k with
fεk > 0 a.e. on their supports. Assuming that the running expected profit for the retailer and
the manufacturer at period k can be written in the following formats. (In classical supply-chain
optimization contracts, p = 1.)

Πr
k(rk) = Ψr

k(rk) µ
p
k (rk) + Θr

k(rk) σ
p
k (rk)

Πm
k (rk) = Ψm

k (rk) µ
p
k (rk) + Θm

k (rk) σ
p
k (rk)

if for each k, the one-period Stackelberg problem below has a unique equilibrium at rk = r̂k, wk = ŵk.

Jr
k(rk) =

(
Ψr

k(rk)µ
p
k (rk) + Θr

k(rk)σ
p
k (rk) +

αk+1
αk

φ
p
k+1(rk) Π̂r

k+1

)
αk Φk(rk−1)

Jm
k (wk) =

(
Ψm

k (rk)µ
p
k (rk) + Θm

k (rk)σ
p
k (rk) +

αk+1
αk

φ
p
k+1(rk) Π̂m

k+1

)
αk Φk(rk−1)

(48)

where Π̂r
k and Π̂m

k are found recursively from:
Π̂r

n+1 = 0 Π̂m
n+1 = 0 (49)

Π̂r
k =

Jr
k(r̂k)

αk Φk(rk−1)
Π̂m

k =
Jm
k (ŵk)

αk Φk(rk−1)
, k = 1, 2, · · · , n, α1 = Φ1 = 1 (50)

then the problem of maximizing:
Jr = Πr

1 + α2 Φ2(r1)Πr
2 + · · ·+ αn Φn(rn−1)Πr

n (51)
Jm = Πm

1 + α2 Φ2(r1)Πm
2 + · · ·+ αn Φn(rn−1)Πm

n (52)

has a unique equilibrium at r̂ = (r̂1, r̂2, · · · , r̂n), ŵ = (ŵ1, ŵ2, · · · , ŵn).

Remark 1. The Corollary 1 is a generalization of Theorem 1 based on general functional structures
introduced in Section 5. In Appendices B.1, B.2 and B.3 we calculate the structures Ψr,m

k s and
Θr,m

k s for some of the conventional supply chain contracts. These functional structures substituted
in the procedure outlined in Corollary 1 yield the optimal results for a supply channel bound to the
associated contract.

Remark 2. In multi-variable problems such as the ones discussed here, multiple local maxima are
detrimental to computational performance. The strength of Theorem 1, however, is that it reduces
the dimension of the search space to one, and maxima for functions of one variable can always be
handled by an exhaustive search.

Remark 3. Theorem 1 and its corollary state that the uniqueness of the multi-period equilibria is
contingent upon the uniqueness of the associated single-period equilibrium results. The unimodality
of the multi-period equilibria solutions is determined by the unimodality of each of the decoupled
single-period (i.e., single-variable) optimization problems. Finding necessary conditions to guarantee
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the unimodality of the single-period price-setting newsvendor problem has been exhaustively studied
in the literature; see, for example, [31,32].

6.4. The Infinite Horizon Case

According to Theorem 1, in the infinite horizon problem, for given values of Π̂r
k and

Π̂m
k , the parties try to optimize the following.

Jr
k(rk) =

(
(rk − wk)µk(rk) + Lεk (rk, wk)σk(rk) + α Π̂r

k+1 φk+1(rk)
)

α Φk(rk−1) (53)

Jm
k (wk) =

(
(wk − cmk )

(
µk(rk) + σk(rk) F−1

εk

[ rk − wk
rk − sk

])
+ α Π̂m

k+1 φk+1(rk)

)
α Φk(rk−1)

(54)

Here, α is the fixed discount factor and remains constant for the whole duration of the
problem from period 1 to n. (The reason for this restrictions is that in the infinite-horizon
case, a certain degree of autonomy is necessary for convergence to happen).

The first-order conditions for this problem yield two equations for the two unknowns
rk and wk. In the multi-period case, we start by using Π̂r

n = 0 and Π̂m
n = 0 and iterate

backward until we reach the starting period. However, if the horizon is infinite, this
approach fails because an infinite number of iterations is needed to reach the start.

If µ(r), σ(r), φ(r), and ε do not depend on k, or
lim
k→∞

(
µ(r, k), σ(r, k), φ(r, k), εk

)
=
(
µ(r), σ(r), φ(r), ε

)
,

i.e., the same functions are used for any k, then cases with an infinite horizon can be solved.
To do so, one needs a steady state for the system, i.e., one must find Π̂r and Π̂r

m such that:
Π̂r = (r− w)µ(r) + Lε(r, w) + α Π̂rφ(r) (55)

Π̂m = (w−M)
(

µ(r) + σ(r) F−1
ε

[ r− w
r− s

])
+ α Π̂mφ(r). (56)

The first-order conditions applied to (53) and (54), together with (55) and (56), yield four
equations with the four unknowns, r, w, Π̂r, and Π̂m.

7. Numerical Implementation of the Model

In this section, we illustrate the theory in Section 6.2 by explicit examples. In these
examples, we use a Cobb–Douglas demand function structure with a normally distributed
random term. The problem is as easily solved when using other functional forms. The
problem (given w) is reduced to finding maxima for a function of one variable, which is
straightforward for almost any choice of µk, σk, and φk.

In addition to many examples covering decentralized supply channels where the
channel members compete within a Stackelberg framework, an example of cooperative
behavior of the suppliers is offered in Section 7.2, where the two vendors integrate to form
a centralized supply chain.

We remark that the purpose of this entire section is to offer practical advice on how our
theory can be implemented in some special cases to prescribe optimal decision variables.
To take full advantage of the model, one should try to vary scaling factors and functional
forms in a systematic way. This makes it possible to model a wide range of economic
contexts. A full discussion of the model and all the variations it has to offer, is, however,
beyond the scope of this paper.

7.1. Multi-Period Buyback Contracts

As evidenced in Theorem 1, once we have an algorithm that solves the two-period
case, the same algorithm can be used repeatedly to solve n-period problems. We merely
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have to update the remaining profits as the construction progresses backward. We consider
the case in which demand in period k is given by:

Dk = ψk(rk)
k

∏
i=2

φi(ri−1) (57)

ψk(rk) = µk(rk) + σk(rk)εk (58)

where εk is N (0, 1). Because a normally distributed variable can take negative values, we
must impose restrictions to exclude artificial cases. If q, as given by (21), is negative, we set
q = 0. Likewise, if the expected profit in (22) is negative, we assume q = 0.

Setting the model parameters
As discussed in Section 3, in general, all the parameters and variables of the model

are time-dependent. In examples 1 to 3, we set the manufacturing cost at period k to be de-
creasing as time goes on; cmk = 2− 0.01k, the buyback price bk = 0.3× cmk , and the salvage
price, sk = 0.2, ∀k. Note that in a buyback contract, as described in [1], the remaining units
at the end of each period need not be physically returned to the manufacturer. Instead, it
may be such that the manufacturer credits the retailer with a price bk (here equal to 30% of
the manufacturing cost) for each unsold unit at the end of period k.

In principle, the scaling factors φks can change with k. For illustration purposes, we
consider only cases in which the expected scaling factors satisfy the following:

φk(rk) =
[
1 + γk(κk − rk)

]+ ≈ eγk(κk−rk) for small values of γk (59)

where γk > 0, the memory strength factor, and κk > 0 are given parameters. The parameter
κk can be interpreted as a price cap, i.e., any price above κk reduces demand, whereas
demand is more likely to increase if rk < κk. More complicated expressions can be computed
without problems. For simplicity, in example 1 to 3, we set γk, κk, and αk to remain constant
through periods (hence, the subscript k has been dropped.)

Example 1. In addition to the parameters determined earlier, we set α = 1 (no discounting),
γ = 0.01, κ = 3, n = 40, µk(rk) =

1000

r
(2−β n−k

n )
k

, β = 0.8, and σk(rk) =
1
2 µk +

5000
r3

k
.

The optimal pricing variables in each period (r̂k, ŵk), as well as the values for Dk (expected demand
at k) and q̂k (optimal order quantity at k), are shown in Figure 1.
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Figure 1. Pricing and supply quantities at equilibrium states in Example 1.

In this scenario, for the retailer, the optimal strategy is to increase demand by letting
r1 = · · · = r7 = 0, then start selling in period 8. Defining the blow-up factor as η := α · φ,
we have max(η) = α max(φ) = α(1 + γκ) = 1.03. To obtain increased profits from an
initial strategy in which r1 = 0, it is clearly necessary that max(η) = α max(φ) > 1. The
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total expected profits for the manufacturer and the retailer, Jm and Jr, respectively, are
found as below.

Jm = 596.39, Jr = 659.61

The relationship between the optimal supplied quantity (q̂k) and expected demand
(Dk) can be interpreted as representative of the level of risk taken by the retailer (i.e., the
newsvendor member of the channel). As seen in Figure 1, in this example, the optimal
strategy for the retailer is to over-supply the market with respect to the expected demand
q̂k > Dk, ∀k.

Remark 4. The optimality of an over-supply strategy is not a general phenomenon; as seen in
Example 4 (Section 7.3), where the retailer is prescribed to under-supply the market in all periods. In
more complicated scenarios, the newsvendor (the downstream channel member) may be prescribed to
apply a regime change in its supply strategy with respect to the expected demand. (See a secanrio
with both over and under supplying regimes in Example 5, Section 7.4.)

The average over-supplying ratio can be measured as 1
n ∑n

k=1
q̂k−Dk

q̂k
. For Example 1,

this value is calculated as 22.11%.

Example 2. In this case, we analyze the previous example subject to discounting: α = αk =
0.95, ∀k. The rest of the parameters and functional structures are the same as those of Example 1
(Section 1).

In this case, max(η) = α max(φ) = α(1 + γK) = 0.98 < 1. This blow-up factor is not
big enough to justify an initial retail price r1 = 0. Therefore, sales take place in all periods.
Figure 2 shows the equilibrium prices and corresponding total expected profits for this case.
For this case, we find Jm = 368.49 and Jr = 416.81. Again, a strategy of over-supplying is
prescribed as optimal, with an average over-supply ratio of 21.9%.
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Figure 2. Pricing and supply quantities at equilibrium states in Example 2.

7.2. Cooperative Agents: Centralized Channel, No Double Marginalization

So far, we have analyzed the equilibria in a Stackelberg framework. However, it is
possible for the two parties to merge into a centralized channel. Note that, as outlined in (5),
a Stackelberg equilibrium problem is essentially a bilevel optimization problem wherein
the leader optimizes her objective function while being constrained by the optimality of
the follower’s solution. Thus, the multi-period single-vendor price-setting newsvendor
problem turns into an unconstrained special case of our general model. Such a deviation
from the Stackelberg game is implemented by considering the two agents as a single
decision-maker, substitution of wk = cmk in Theorem 1, and optimizing only Jr with respect
to rks.
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Example 3. Here, we consider α = 1, γ = 0.01, K = 3, n = 40, cmk = 2− 0.01k, sk = 0.2 ∀k,
µk(r) = 1000

r(2−β n−k
n )

, β = 0.8, and σk(r) = 0.5µk(r) + 5000
r3 . Thus, the integrated channel in

Example 3 faces the same market as the one in Example 1.

The results are illustrated in Figure 3. Due to vertical competition between its mem-
bers, a decentralized channel suffers from double marginalization leading to its lower
performance compared to a centralized supply channel facing the same market. Compar-
ing the results of the centralized channel with its decentralized counterpart analyzed in
Example 1, we observe that while the centralized channel charges comparatively lower
prices in all periods, its overall expected profit is higher than the sum of expected profits for
the two agents in a decentralized channel in the same market. Denoting the total expected
profit for the centralized channel by Jc and the expected profits for the members of the
corresponding decentralized channel by Jr and Jm (obtained in Example 1), we have:

Jc = 5836.41 > Jm + Jr = 596.39 + 659.61 = 1256.22

The centralized channel outperforms its decentralized counterpart while taking a higher
risk in its supply quantity; the average over-supply ratio for the integrated channel is
31.74%, compared to 21.9% in Example 1. In addition, relatively lower prices offered
by the centralized channel leads to a lower level of demand suppression (compare the
expected demands in Figures 1 and 3). Thus, unlike the decentralized channel in Example 1,
the integrated channel does not need to resort to an early campaign of free distribution
of products in order to boost the demand—as observed in Figure 3, in the case of this
integrated channel, sale takes place in all periods.

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

Figure 3. Pricing and supply quantities at equilibrium states in a centralized channel.

7.3. Markets With Strategic Customers

The generality of the problem described in Section 6 and the flexibility of the solution
algorithms presented in Theorem 1 and Corollary 1 allows our model to cover diverse sets
of market scenarios. The model as a result can be fed with market representation functional
much more complex than the ones presented in Examples 1 to 3.

Example 4. Consider a market with two different sets of customer bases. One group, referred to as
the strategic customers, postpones their purchase until they see a price lower than their “reservation
price". The other group is less sensitive to the offered prices. We assume that the reservation price is
known to the channel members. However, the assumption that there exists only one such reservation
price among the customers is not necessary and has been adopted for simplification purposes. In
general, the customer base can be divided into many factions in the model.

µk(Rk) =


2000

r2+0.1(k−1)
k

if rk > rreservation

2000
r2+0.1(k−1)

k

+ 30000
r5+0.1(k−1)

k

if rk ≤ rreservation



Games 2022, 13, 70 19 of 26

σk(rk) = 0.1 µk(Rk) +
100
r3

k
, n = 40, α = 1, γk = 0.01, κk = 5, cmk = 2, sk = 1, rreservation = 2.5.

As illustrated in Figure 4, the solution algorithm determines the optimal values for
the three decision variables through the periods, and, proposes the optimal timing to begin
the sales season (k = 31). Compare this feature with the prescription of the optimal time to
end the free distribution phase in Example 1, Section 1.
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Figure 4. Market with strategic customers: pricing and supply quantities at equilibrium states

7.4. Positive Network Effects On Demand

Example 5. Demand for certain innovative products is built-up as time goes by through the word-
of-mouth effect (see [6,7]). In our model, this network effect, like other externalities is embedded in
the demand function via time-dependent functionals. Unlike previous examples, in Example 5, we
consider a time-dependent price cap, based on the Bass diffusion model for new-product-adaption:
κk = 100 exp(−0.2k)/

(
1 + 10 exp(−0.2k)

)2. Initially, the price cap is increasing with time,
reflecting the customers’ gradually increasing willingness to purchase as time goes by (hence a
decreasing sensitivity to prices). Again, we use a simple Cobb–Douglas function for the demand
mean functional: µk(r, k) = 10000

r4−0.01k . σk(rk) = 0.5 µk(rk) +
100
r3

k
, α = 0.9, n = 80, γ = 0.01,

cmk = 2− 0.01k, sk = 0.3, bk = 0.5.

The shape of the demand results in Figure 5 are consistent with typical shapes obtained
by sales diffusion models. In addition to yielding optimal pricing strategies for the supply
channel members at different times, the solution algorithm provides the optimal timing for
a change in the supply regime. In the first phase, from period 1 until period 66, the retailer
(newsvendor) is better off by under-supplying the market (q̂k < Dk); while from period 67,
a strategy of over-supplying is found to be optimal.
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Figure 5. Market with positive network effect at equilibrium states.
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8. Concluding Remarks

In this paper, we considered a decentralized supply chain composed of a manufacturer
and a retailer within a bilevel (Stackelberg) structure. The manufacturer is the (global)
leader and the retailer is the follower. The supply chain is to address an uncertain demand
within a discretized time horizon. The two agents must strategically solve their respective
optimization problems over the entire span of all periods. That is, the final solution algo-
rithm is to give decision variables that are optimizers of the aggregate expected profit over
n periods. The ensuing Nash–Stackelberg equilibria, thus, becomes highly interdependent
in time. This nestedness has been a challenge in solving Nash–Stackelberg equilibrium
problems in a multi-periodic setting within supply chain contracts. Static single-periodic
versions of the problem have been solved in the literature. Although mathematically con-
venient, such reduced static models may turn out to be myopic as they do not cover the
after-effects of current pricing on future demand.

In Theorem 1, we introduce a decoupling algorithm that breaks this nestedness and
solves the ensuing three interdependent n-dimensional equilibria problems to three se-
quences of n single-variable equations. In doing so, we prove the existence of a Nash–
Stackelberg for a general bilevel optimization problem for the two suppliers in the contract.
Next, in the appendices, we show that many supply channel contracts, such as revenue-
sharing and buyback contracts indeed produce the same general equilibrium problem
structure and hence can be decoupled by our proposed algorithm.

To include strategic customers’ behavior in our model, we implemented a memory-
based demand structure. For example, the potential buyers may have become anchored to
the past prices and their decision to purchase a product may, to various degrees, be affected
by the history of pricing. Such behavioral features are embedded in the model through the
introduction of memory functions.

To demonstrate how such Nash–Stackelberg equilibria can be obtained by the recursive
algorithm outlined in Theorem 1 and its corollary, we provided numerical solutions to a
variety of special cases. Note, however, that our framework is not limited to such special
cases. The numerical illustrations raise questions of interest for future research.

In the numerical section, we demonstrated an interesting link to marketing. Under
certain conditions, an optimal strategy is to give away products in a pre-sales period. This
stimulates demand, and the parties benefit from increased demand in the remaining time
periods. Many high-tech products such as mobile phones and computers have a very short
lifespan. Our paper, hence, offers a new framework where the optimality of sales strategies
for such products can be discussed and analyzed. An example based on the Bass diffusion
model for demand is given in Section 7.4.

The parameters and functional structures that we have used to illustrate the scope
of applicability of the solution procedures are merely speculative. To take full advantage
of the model, one should try to vary scaling factors and functional forms in a systematic
way, for example, through the use of data obtained from empirical studies. Exploring the
potential of our modeling approach is a topic for future research.
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Appendix A. The Profit Structures Compatible with the Use of Multiplicative
Memory Functions

In this section, we find the sufficient conditions for the profit structures enabling
the memory-based algorithm to decouple nested optimization/equilibrium problems. In
Appendix B, we show that many conventional supply channel contracts indeed follow
these structures.

Let the following be the demand expression at period k ∈ {1, · · · , n}, where n is the
number of periods.

Dk(rk) = µ̃k(rk) + σ̃k(rk)εk (A1)

Now, assume that the running profit expression for each period is as below.

Πr
k(rk) = Ψk(rk) µ̃

p
k (rk) + Θk(rk) σ̃

p
k (rk) (A2)

Using the memory function structure in (8) and (9), the expression in (A1) turns into the
following.

Dk(rk) =
(
µk(rk) + σk(rk)εk

)
Φk(rk-1) (A3)

Therefore, for (A2), we will have:

Πr
k(rk) =

(
Ψk(rk)µ

p
k (rk) + Θk(rk)σ

p
k (rk)

)
Φp

k (rk-1) (A4)

= Π̃k(rk)Φp
k (rk-1) (A5)

Thus, when solving the multi-variable optimization problem max
rn

J = ∑n
k=1 αkΠr

k, finding

the kth armgax, r̂k, will be equivalent to finding the argmax of the single-variable function
Π̃k(rk). Whence decoupling becomes possible.

The same argument applies to the expected profit for the manufacturer. In Appendix B,
we will see that a special case of the structure in (A2), where p = 1, indeed appears in many
supply chain optimization contracts.

Appendix B. The Expected Profit Structure in Supply Chain Coordination Problems

In Appendix A, we realized that in order for the decoupling scheme (using memory
functions) to work in multiple periods, the single-period profits (for either vendor) must be
of specific structures. In other words, in such cases, the multiplicative memory functions
decouple the highly nested n-variable optimization (or equilibrium) problem, by turning it
into n single-variable problems.

In the following sections, we prove that the desired general structures indeed appear
in many classical channel coordination contracts; hence, making our theoretical formwork
applicable to a large variety of multi-period optimization/coordinatin problems dealing
with uncertain demand. This class of contracts include, e.g., The wholesale Price Contracts, The
Buyback Contracts, and, The revenue-sharing Contracts. We have borrowed the nomenclature
from [1]. Other sources may use different names; for example, [13] refers to buyback
contracts as return policies.
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Model Variables and Parameters

D = uncertain demand

µ = E[D] expected value of uncertain demand

r = retail price per unit

w = wholesale price per unit

q = order quantity

s = salvage price per unit

gr = retailer’s goodwill penalty per unit, incurred for each unmet demand unit

gm = manufacturer’s goodwill penalty per unit

cr = retailer’s marginal cost per unit

cm = manufacturer’s production cost per unit1

Appendix B.1. The Wholesale Price Contract

We start with analyzing the general newsvendor problem, also known as the wholesale
price contract. In this contract, the retailer profit is obtained as below.

Πr(r, q) = r min(D, q) + s(q− D)+ − crq− gr(D− q)+ − wq

= r min(D, q) + s(q−min(D, q))− crq− gr(D−min(D, q))− wq

= (r− s + gr)min(D, q)− (cr + w− s)q− grD

(A6)

In the analysis of all of the contracts presented here, our strategy is as follows.

1. Obtain the expression for the expected value of retailer’s profit as a function of r and
q.

2. Apply the First Order Condition (F.O.C.) with respect to q on Πr, i.e., ∂Πr

∂q = 0 to
obtain q∗ as a function of r.

3. Check the concavity of Πr with respect to q∗(r).
4. Substitute the obtained q∗ as a function of r in the expression for Πr and see if it is of

the general structure in (A2).
5. Substitute the obtained q∗ as a function of r in the expression for Πm and see if it is of

the general structure in (A2).

To obtain the expected value of the retailer’s profit as stated in (A6), we need to obtain the
expected sales, S(q), i.e., the expected value of min(D, q). For simplicity, we start with a
distribution function, fD, for D, instead of fε, bearing in mind that for D = µ + σ ε, we
have: F−1

D (·) = µ + σ F−1
ε (·).

S(q) = E[min(D, q)] =
∫ ∞

0
ζ fD(ζ)dζ =

∫ q

0
ζ fD(ζ)dζ +

∫ ∞

q
q fD(ζ)dζ

= q−
∫ q

0
FD(ζ)dζ

(A7)

Alternatively, using our normalization based on fε instead of fD, we obtain the following
statement for the expected sales.

S(q) = E[min(D, q)] = µ + σ
∫ ∞

−∞
ζ fε(ζ)dζ = q− (q− µ)Fε

(
q− µ

σ

)
+ σ

∫ q−µ
σ

−∞
ζ fε(ζ)dζ (A8)

we define I(q) = E[(q− D)+] = q− S(q) as the expected left-over inventory. Similarly,
let L(q) = E[(D− q)+] = µ− S(q) be the expected lost sales function. Further, observe
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that dS(q)
dq = 1− FD(q). Now, we can calculate the expected value of the retailer’s profit, as

expressed in (A6).

Πr
(r, q) = (r− s + gr)S(q)− (cr − s + w)q− grµ (A9)

The Strict concavity of Πr
(q) with respect to q is obvious:

∂2Πr
(q)

∂q2 = −(r− s + gr)× fD(q) (A10)

Thus, we apply the F.O.C. with respect to q and obtain q∗(r) as below.

q∗(r) = F−1
D

(
r− w + gr − cr

r− s + gr

)
= µ(r) + σ(r) F−1

ε

(
r− w + gr − cr

r− s + gr

)
(A11)

Substituting (A11) in (A9) and using (A8) we have:

Πr
(r) = (r− w− cr)µ(r) + (r− s + gr)

( ∫ F−1
ε

(
r−w+gr−cr

r−s+gr

)
−∞

ζ fε(ζ)dζ

)
σ(r) (A12)

In a single-vendor system, the F.O.C. applied to (A12) yields the r∗. However, in our
Stackelberg framework, a numerical solution to ∂Πr

∂r = 0 provides us with r∗ as a function
of w: r∗(w). The optimal order quantity, q∗ can then be obtained using r∗.

Let us now analyze the expected value of the manufacturer’s profit.

Πm(r∗(w), w
)
= wq∗(w)− cmq∗(w) + gmS(q∗(w))− gmµ

(
r∗(w)

)
= q∗

(
w− cm + gm

)
− gm

(
σF−1

ε (y)× y + µ +
∫ F−1

ε (y)

−∞
ζ fε(ζ)dζ

)
= µ(w)(w− cm) + σ(w)

(
F−1

ε (y)
(

w− cm − gm(y− 1)
)

+ gm

∫ F−1
ε (y)

−∞
ζ fε(ζ)dζ

)
where y =

r− w + gr − cr

r− s + gr

(A13)

The structure of Πm
(w), as stated in (A13) is also of the desired type.

Appendix B.2. The Buyback Contract

In a buyback contract, the manufacturer pays the retailer b ≤ wb per unit remaining at
the end of the selling season (period).

Πr
(r, q) = (r− s + gr − b)S(q)− (wb − b + cr − s)q− grµ (A14)

Similarly, assuming that r− s + gr − b > 0, the strict concavity of Πr
(q) with respect to q is

obvious. Applying the F.O.C. with respect to q, we obtain the following for q∗(r).

q∗(r) = F−1
D

(
r− wb + gr − cr

r− s + gr − b

)
= µ(r) + σ(r) F−1

ε

(
r− wb + gr − cr

r− s + gr − b

)
(A15)

Substituting (A15) in (A14), we obtain the following expression for the retailer’s expected
profit.

Πr
(r) = (r− wb − cr)µ(r) + (r− s + gr − b)

( ∫ F−1
ε

( r−wb+gr−cr
r−s+gr−b

)
−∞

ζ fε(ζ)dζ

)
σ(r) (A16)
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Notice that, due to our normalization in which we set E[ε] = 0, the integral term Γ :=∫ F−1
ε

( r+gr−cr−wb
r−s+gr−b

)
−∞ ζ fε(ζ)dζ is always negative, making (r− s + gr − b) · Γ · σ(r) in (A16) also

negative. In the literature, the latter term is called the loss due to stochasticity. Similarly, we
obtain the expected value of the manufacturer’s profit as below.

Πm
(w) = µ(w)(wb − cm) + σ(w)

(
F−1

ε (y)
(

w− cm + gm(1− y)− by
)

+ (gm + b)
∫ F−1

ε (y)

−∞
ζ f (ζ)dζ

)
where y =

(
r− wb + gr − cr

r− s + gr − b

) (A17)

Appendix B.3. The Revenue-Sharing Contract

With a revenue-sharing contract, the manufacturer charges wr per unit purchased and
the retailer gives the manufacturer a percentage of their revenue. Let θ be the fraction of
supply chain revenue the retailer keeps, so (1− θ) is the fraction given to the manufacturer.
The retailer’s expected profit function is:

Πr
(r, q) = (θ(r− s) + gr)S(q)− (wr + cr − θs)q− grµ. (A18)

we observe that Πr is concave with respect to q because θ(r− s) + gr > 0. Applying F.O.C.
with respect to q yields:

q∗(r) = F−1
D

(
θr− wr + gr − cr

θ(r− s) + gr

)
= µ(r) + σ(r) F−1

ε

(
θr− wr + gr − cr

θ(r− s) + gr

)
(A19)

Substituting (A19) into (A18), we have:

Πr
(r) = (θr− wr − cr)µ(r) +

(
(θ(r− s) + gr)

∫ F−1
ε

(
θr−wr+gr−cr

θ(r−s)+gr

)
−∞

ζ fε(ζ)dζ

)
σ(r). (A20)

Furthermore, notice how θ = 1 turns (A20) into (A12).
Next, we obtain the manufacturer’s expected profit as below.

Πm
=
(

gm + (1− θ)(r− s)
)
S(q) +

(
wr + (1− θ)s− cm

)
q− gmµ

= µ
(
(1− θ)r + wr − cm

)
+ σ

(
F−1

ε (y)
(

gm + (1− θ)r + wr − cm − y
(

gm + (r− s)(1− θ)
))

+ gm

∫ F−1
ε (y)

−∞
ζ fε(ζ)dζ

)
where y =

θr− wr + gr + cr

θ(r− s) + gr
.

(A21)

Notice how θ = 1 turns (A21) into (A13).

Appendix C. Proof of Proposition 2

Proof. Let Fε denote the cumulative distribution of ε. Since ε is continuous and supported
on an interval, with density fε > 0 a.e. on its support, the expected profit Πr is strictly
concave in q on the support of D, and the order quantity q from (20) is unique. It is clear
that:

q = µ(r, k) + σ(r, k) F−1
ε

(
r− w
r− s

)
. (A22)
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Using (7) and (20), we obtain:

E[Πr] = (r− s)E[min(D, q)]− (w− s)q

= (r− s)
(

µ(r, k) + E
[

min
(

σ(r, k)ε, σ(r, k)F−1
ε

(
r− w
r− s

))])
− (w− s)

(
µ(r, k) + σ(r, k)F−1

ε

(
r− w
r− s

))
.

(A23)

Equations (7) and(A22) indicate that:

E
[

min
(

ε, F−1
ε

(
r− w
r− s

))]
(A24)

=
∫ F−1

ε ( r−w
r−s )

−∞
ζ fε(ζ)dζ + F−1

ε

( r− w
r− s

)
P
(

ε ≥ F−1
ε

( r− w
r− s

))
(A25)

=
∫ F−1

ε ( r−w
r−s )

−∞
ζ fε(ζ)dζ + F−1

ε

( r− w
r− s

)(
1− r− w

r− s

)
. (A26)

Inserting (A26) into (A23) and simplifying the resulting expression yields:

Πr
= E[Πr] = (r− w)µ(r, k) + Lε(r, w)σ(r, k) (A27)

where Lε is defined as:

Lε(r, w) = (r− s)
∫ z

−∞
ζ fε(ζ)dζ z = F−1

ε

(
r− w
r− s

)
. (A28)
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