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Abstract: We study two-sided matching contests with two sets, A and B, each of which includes a
finite number of heterogeneous agents with commonly known types. The agents in each set compete
in a lottery (Tullock) contest, and then are assortatively matched, namely, the winner of set A is
matched with the winner of set B and so on until all the agents in the set with the smaller number of
agents are matched. Each agent has a match value that depends on their own type and the type of
their match. We assume that the agents’ efforts do not affect their match values and that they have a
positive effect on welfare. Therefore, an interior equilibrium in which at least some of the agents are
active is welfare superior to a corner equilibrium in which the agents choose to be non-active. We
analyze the conditions under which there exists a (partial) interior equilibrium where at least some of
the agents compete against each other and exert positive efforts.

Keywords: two-sided matching; Tullock contest

JEL Classification: D44; J31; D72; D82

1. Introduction

In two-sided matching contests, two contests take place independently within two
groups. At the end of these contests, the agents in both groups are assortatively matched
according to their efforts and the efforts of the other agents. Then, the prize of each
pair who are matched is a function of their types. Two-sided matching contests can be
observed, for example, in academic life, in which one of the groups includes universities
that invest in hiring the best researchers and teachers as well as in providing the best
learning conditions for the students. Such an investment improves its rank and thus will
attract better candidates. The other group includes potential student candidates who aspire
to be admitted to higher education universities and for this purpose put forth their best
efforts in studying for entrance exams, acquiring recommendations, etc. Subsequently,
candidates with the best qualities will be admitted to the highest ranked universities.
Similar two-sided matching contests can be seen among accounting or law students on the
one side and firms on the other, or among models, actors, and artists on the one side and
talent agencies on the other.

Two-sided matching contests may involve incentive problems for the designer as well
as for the agents. For example, Hoppe, Moldovanu, and Sela studied two-sided matching
contests with incomplete information (marginal cost of effort), and compared random
matching (without agents’ efforts) to assortative matching (based on agents’ wasteful
efforts) in terms of total expected net welfare [1]. They showed that for distribution
functions having a decreasing failure rate, assortative matching with wasteful efforts is
welfare-superior, while for distribution functions having an increasing failure rate, random
matching is superior. Furthermore, they also showed that each agent may be better off
under random matching. We, on the other hand, assume that the agents’ efforts are
productive for the designer such that these efforts positively affect the net welfare. This
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means that the benefit from the agents’ efforts is larger than their costs for the agents. For
example, in Spence’s model, investment in education represents the agents’ efforts which
are obviously not wasteful and have some benefit for the society’s welfare [2]. Then, when
the agents’ efforts positively affect welfare, it is clear that assortative matching is welfare
superior to random matching in which agents do not exert any effort at all. Therefore a
designer’s goal is to activate the agents in order to obtain assortative matching instead
of random matching. In this paper, we examine for what reasons agents choose to be
non-active in two-sided assortative matching contests and when and how the designer can
motivate them to become active.

For this purpose, we study a matching model under complete information where
there are two sets of agents, set A with m heterogeneous firms and set B with n, n ≤ m,
heterogeneous workers, each of which has commonly known types. There is only one stage
in which the two sets act simultaneously. The firms compete against each other in a Tullock
contest [3], and at the same time, the workers compete against each other in another Tullock
contest. The agents exert their efforts, and then are assortatively matched, namely, the
winner in the contest of set A is matched with the winner in the contest of set B, and so on
until all the agents in the set with the smaller number of agents (workers) are matched. The
agents have match-value functions that are monotonically increasing in both types of firms
and workers. An agent who is matched has a payoff of his match-value minus the cost of
their effort. It is worth noting that although the agents’ types are commonly known, since
the Tullock contest success function is stochastic, it is possible that a high-type firm from set
A is matched with a lower-type worker from set B and vice versa, namely, a low-type firm
will be matched with a high-type worker. This reflects real-life situations such as when the
best university does not necessarily include all the best students nor all the best researchers.
Likewise, students with lower ability may get higher grades than students with higher
abilities. In other words, the ability (type) of an agent does not guarantee success in the
matching contest.

We first claim that in the n× n assortative matching contest with any match-value
functions, for every n ≥ 2 there is a corner equilibrium in which the efforts of all the
agents in both sets are zero, and therefore the agents are randomly matched and each
firm (worker) has the same probability to be matched with each of the workers (firms).
When the match-value functions are additive, we prove that the corner equilibrium in
which all the agents are non-active is the unique symmetric equilibrium, and also every
permutation of the vector of the agents’ equilibrium effort in each set is also in equilibrium.
The reason behind this is that the additive function has mixed second order derivatives
that are equal to zero, which yields that each agent wins a minimum value that is equal to
their own type. As such, the agents in the same set actually have the same prizes based
on the agents’ types in the other set, and therefore they are symmetric, and, furthermore,
if they exert the same effort in equilibrium it is necessarily equal to zero. However, for
different forms of the match-value functions, our matching contests may also have an
interior equilibrium in which the agents are active and exert positive efforts, or, at least,
a partial interior equilibrium in which some of the agents exert positive efforts. Since the
explicit characterization of the agents’ equilibrium efforts on both sides might be very
complex, we focus on 2 × 2 assortative matching contests in which there are two agents on
each side. We first establish that there is an interior equilibrium by providing necessary and
sufficient conditions on the match-value functions.1 In this case, there is no partial interior
equilibrium in which some of the agents exert positive efforts. Then, for multiplicative
match-value functions of the agents’ types, we have a unique interior equilibrium for which
we explicitly characterize the equilibrium efforts. Then, we show that the larger the type of
the agent is, the larger is their equilibrium effort.

We proceed by analyzing m× n assortative matching contests where the number of
firms m is larger than the number of workers n. We claim that in a m × n assortative
matching contest where m > n, at least n firms exert positive efforts in equilibrium.
Furthermore, with additive match-value functions where m > n, at least n + 1 firms exert
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positive efforts in equilibrium. We focus on 3 × 2 assortative matching contests for which
we can explicitly characterize the agents’ equilibrium efforts and show that it is possible that
all the agents on both sides are active. On the other hand, we also show that it is possible
that all the agents (firms) on the larger side are active while the agents (workers) in the other
side are not active. These results establish the existence of an interior equilibrium with
positive efforts in m× n assortative matching contests, and, in particular, the non-existence
of a corner equilibrium without any efforts. Hence, by organizing assortative matching
contests with different numbers of agents on both sides, the designer can ensure that,
independent of the form of the match-value functions, at least k agents, k = (min(m, n)),
will be active.

The rest of the paper is organized as follows: in Section 2, we present our assortative
matching contest. In Section 3, we analyze n× n assortative matching contests, and in
Section 4 we analyze m× n assortative matching contests. Section 5 concludes. Some of the
proofs appear in the Appendix A.

Related Literature

There are several ways to award prizes in contests. One, which is the most common
in the literature, is when there is one prize or several prizes which are identical to all
the players, namely, the prize for the i’th place is the same independent of the type of
player2 [4–8]. The second, which is more complex, is when agents have heterogenous prizes
but with the same order. Then it is usually assumed that the ratio of the values for every
pair of prizes is the same for all the agents [9–12]. In our model of assortative matching
contests, we study a complex case in which agents do not necessarily know the order of
their prizes and even do not necessarily know their values.

In a matching model, efforts can be exerted by either one or both sides. One-sided
activity has been modeled in the Tullock contest [3,13–20]; in the all-pay contest [21–23];
and in the rank-order tournament [24,25]. In these contests, there is one set of agents
and one set of prizes, and the agents exert efforts to win the prizes. In such one-sided
models, the higher the agent’s effort is, the higher is their probability to win a larger
prize. Some examples of one-sided models include [26,27] who considered a seller facing
a continuum of customers differing in their private valuations of service quality. They
showed how customers can be matched to different service qualities by offering them price
menus that induce them to reveal their types. Likewise, Fernandez and Gali compared
the performance of markets and tournaments in a model with a continuum of uniformly
distributed agents on each side where only one side is active [28]. They found that despite
wasteful signaling, tournaments may be welfare superior to markets if the active agents
have budget constraints.

A matching model in which efforts are exerted by agents on two sides with complete
information has been studied by Bhaskar and Hopkins who considered a continuum of
homogenous agents who are matched according to the tournament model of Lazear and
Rosen [29,30]. As was already mentioned, Hoppe, Moldovanu, and Sela studied two-sided
markets with incomplete information and a finite number of agents where the agents
are matched according to the all-pay contest. Later, Hoppe, Moldovanu, and Ozdenoren
studied that model where the agents on both sides compete in the all-pay contest, but with
an infinite number of agents on each side [31]. Peters showed that equilibrium efforts in
a very large finite two-sided matching model can be quite different from the equilibrium
efforts in the continuum model [32]. Dizdar, Moldovanu, and Szech also studied a two-
sided model with a finite number of agents where on each side the agents compete in the
all-pay contest [33], but in contrast to Hoppe, Moldovanu, and Sela they assumed that
the agents’ efforts generate benefits for their partners that are increasing in the level of
effort [1,34,35]. We, on the other hand, assume that agents’ efforts are productive for the
designer, but they do not affect the match values and therefore do not generate any benefit
for their partners. Our model is the first to combine a two-sided matching model with
the lottery (Tullock) contest. Although we assume that there is complete information, the
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stochastic lottery (Tullock) success function generates uncertainty in the matching between
the two sides.

2. The Assortative Matching Contest

We consider a set A = {1, 2, . . . , m} of m firms and a set B = {1, 2, . . . , n} of n workers
where n ≤ m. Firm i’s type is mi, where mi ≥ mi+1, i = 1, . . . , m− 1. Worker j’s type is
wj, where wj ≥ wj+1, j = 1, . . . , n− 1. All these types are commonly known. As we can
see below a firm’s utility function as well as a worker’s utility function increase in their
own types. The matching contest proceeds as follows: There is one stage in which both
sets act simultaneously. Each firm i, i = 1, 2, . . . , m exerts an effort xi, and each worker
j, j = 1, 2, . . . , n exerts an effort yj. Efforts are submitted simultaneously in each set. The
order of the firms (workers) to be matched is determined according to the method of Clark
and Riis (1998a) as follows: The first firm to be matched is determined by the probability
success function which takes into account the efforts of all the firms. Formally, firm i,
i = 1, . . . , m wins to be the first match with probability xi

∑m
k=1 xk

, where xk is firm k’s effort,

k = 1, . . . , m.3 Then, the second firm to be matched is determined by the probability success
function that is based on the efforts of all the firms excluding the effort of the first winner.

Thus, firm i, i = 1, . . . , m wins to be the second match with probability
m
∑

k=1
k 6=i

xk
m
∑

j=1
xj

xi
m
∑

j=1
j 6=k

xj

, and

so on until all the firms are ranked, and similarly, all the workers are ranked. Then, the
firm and the worker who win first place in their sets are matched, those who win second
place in their sets are matched and so on until all the workers are matched. If firm i is
matched with worker j after exerting efforts of xi and yj, correspondingly, the firm’s utility
is f (mi, wj)− xi and, similarly, the worker’s utility is g(mi, wj)− yj, where f , g : R2 → R1

are the match-value functions which are monotonically increasing in the types of the firms
and the workers who are matched. We say that a matching contest has an equilibrium if
every agent chooses an effort that maximizes their expected utility given the efforts of the
other agents in both sets.

3. The n × n Assortative Matching Contests

In our n × n assortative matching contests there is always a corner equilibrium in
which all the agents do not exert any effort.

Proposition 1. In the n× n assortative matching contest with any match-value functions, for
every n ≥ 2, there is a symmetric equilibrium in which the efforts of all the agents are zero and
therefore the agents are randomly matched such that each firm (worker) has the same probability to
be matched with each of the workers (firms).

The reason behind this corner equilibrium is that if all the n workers exert the same
effort, all the workers have the same probability to be in first, second or, any other place.
Thus, each firm actually faces n identical prizes since it has the same probability to be
matched with each of the workers. As such, the place of each firm is not important, and
therefore each of the firms does not have an incentive to exert any effort at all. Likewise,
each of the workers exerts an effort of zero, and we have an equilibrium in which all the
firms as well all the workers do not exert efforts.

It is worth noting that the existence of a corner equilibrium holds in more general
models independent of the preferences of the agents. Furthermore, the existence of the
corner equilibrium holds for any contest success function that breaks ties with a fair lottery.
For example, consider the assortative all-pay matching contest in which the agent with the
highest effort wins for sure, but if there is more than one agent with the highest effort, all
these agents win with the same probability [33]. Then, in this assortative all-pay matching
contest there is always a corner (trivial) equilibrium in which all the agents in both sets do
not exert efforts and the agents are randomly matched.
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The corner equilibrium in n× n assortative matching contests is not necessarily unique
and might also be an interior equilibrium in which all or some of the agents exert positive
efforts or a partial interior equilibrium in which some of the agents are active. The following
result provides sufficient conditions on the match-value functions such that if there is a
symmetric equilibrium it is the corner one in which all the agents exert an effort of zero.

Proposition 2. Consider n× n assortative matching contests with match-value functions that
satisfy f (mi, wj) = s(mi) + t(wj), g(mi, wj) = s̃(mi) + t̃(wj), g(mi, wj), i = 1, . . . , n, j =

1, . . . , n where s, s̃, t, t̃ : R1 → R1 are monotonically increasing functions. Then, for every n ≥ 2,
if there is a symmetric equilibrium then it is the corner equilibrium in which the efforts of all the
agents are zero. If, on the other hand, there is an asymmetric equilibrium, then any permutations of
the vectors of the agents’ equilibrium efforts in both sides is also an asymmetric equilibrium.

Proof. See Appendix A.1.

The intuitive explanation to the above result is that in this assortative matching contest,
the agents from each set face the same list of prizes which are the types in the other set.
In other words, the agents in each set are actually symmetric with the same strategy. We
prove that this symmetric strategy has to be an effort of zero. We conjecture that this result
will hold for all match-value functions that have mixed second order derivatives that are
equal to zero.

In the following, we demonstrate that there is an interior equilibrium in which firms
and workers exert positive efforts or at least a partial interior equilibrium in which some
of the firms and/or some of the workers exert positive efforts. A characterization of the
equilibrium efforts in an assortative matching contest with a large number of agents on
both sides is very complex, and therefore, for simplicity, we first focus on the smaller n× n
matching contest with two firms and two workers.

The 2 × 2 Assortative Matching Contests

Consider a set A = {h, l} of two firms and a set B = {h, l} of two workers. We call
the types mh and wh the high-type firm and worker, respectively, and the other types, ml
and wl , the low-type firm and worker, respectively. Suppose that firm i, i = h, l exerts effort
xi and worker j, j = h, l exerts effort yj, and the two firms compete against each other in a
Tullock contest and the two workers compete against each other in another Tullock contest
simultaneously. Then, if the agents exert positive efforts, they are assortatively matched,
namely the firm that won the contest is matched with the worker who won the contest, and,
similarly, the firm that lost the contest is matched with the worker who lost the contest. In
this case, the maximization problem of the high-type firm is

max
xh

f (mh, wh)

[
xh

xh + xl

yh
yh + yl

+
xl

xh + xl

yl
yh + yl

]
(1)

+ f (mh, wl)

[
xh

xh + xl

yl
yh + yl

+
xl

xh + xl

yh
yh + yl

]
− xh,

and that of the low-type firm is

max
xl

f (ml , wh)

[
xl

xh + xl

yh
yh + yl

+
xh

xh + xl

yl
yh + yl

]
(2)

+ f (ml , wl)

[
xl

xh + xl

yl
yh + yl

+
xh

xh + xl

yh
yh + yl

]
− xl .



Games 2022, 13, 64 6 of 20

The maximization problem of the high-type worker is

max
yh

g(mh, wh)

[
yh

yh + yl

xh
xh + xl

+
yl

yh + yl

xl
xh + xl

]
(3)

+g(ml , wh)

[
yh

yh + yl

xl
xh + xl

+
yl

yh + yl

xh
xh + xl

]
− yh,

and that of the low-type worker is

max
yl

g(mh, wl)

[
yh

yh + yl

xl
xh + xl

+
yl

yh + yl

xh
xh + xl

]
(4)

+g(ml , wl)

[
yh

yh + yl

xh
xh + xl

+
yl

yh + yl

xl
xh + xl

]
− yl .

The first-order conditions (F.O.C.) of the maximization problems (1)–(4) are

( f (mh, wh)− f (mh, wl))
xl

(xh + xl)2
yh − yl
yh + yl

≤ 1 (5)

( f (ml , wh)− f (ml , wl))
xh

(xh + xl)2
yh − yl
yh + yl

≤ 1

(g(mh, wh)− g(ml , wh))
yl

(yh + yl)2
xh − xl
xh + xl

≤ 1

(g(mh, wl)− g(ml , wl))
yh

(yh + yl)2
xh − xl
xh + xl

≤ 1.

We focus on the analysis of the interior equilibrium in which all the agents are active. It is
worth noting that a partial interior equilibrium in which some of the players exert positive
efforts and others do not exert any effort at all is not possible in a 2× 2 assortative matching
contests. Thus, we have only a corner equilibrium as well as an interior equilibrium. In the
case of an interior equilibrium, there is an equality between the LHS and the RHS of (5)
and then we have

Proposition 3. The agents’ equilibrium efforts in the 2 × 2 assortative matching contest are
obtained by the solution of the equations given in (5).

Proof. See Appendix A.2.

In an interior equilibrium, if we divide the LHS of the first two equations of (5) by
each other, and also divide both RHS of these equations by each other, we obtain that

f (mh, wh)− f (mh, wl)

f (ml , wh)− f (ml , wl)
=

xh
xl

. (6)

Similarly, if we divide both LHS of the last two equations of (5) by each other, and divide
the RHS of these equations by each other, we obtain that

g(mh, wh)− g(ml , wh)

g(mh, wl)− g(ml , wl)
=

yh
yl

. (7)

We assume now that all the agents have the same multiplicative match-value function,
f (mi, wj) = g(mi, wj) = miwj, i = h, l, j = h, l.4 By (5), the agents’ equilibrium efforts
satisfy:
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mh(wh − wl)
xl

(xh + xl)2
yh − yl
yh + yl

≤ 1 (8)

ml(wh − wl)
xh

(xh + xl)2
yh − yl
yh + yl

≤ 1

wh(mh −ml)
yl

(yh + yl)2
xh − xl
xh + xl

≤ 1

wl(mh −ml)
yh

(yh + yl)2
xh − xl
xh + xl

≤ 1.

In an interior equilibrium, by (6) and (7), we obtain

yh
yl

=
wh
wl

(9)

xh
xl

=
mh
ml

.

Thus, we have

Proposition 4. In the 2 × 2 assortative matching contest with a multiplicative match-value
function, there is either a corner equilibrium in which all the agents exert an effort of zero or a
unique interior equilibrium in which the agents’ equilibrium efforts are

xh =
m2

hml

(ml + mh)2
(wh − wl)

2

(wh + wl)
(10)

xl =
mhm2

l
(ml + mh)2

(wh − wl)
2

(wh + wl)

yh =
w2

hwl

(wh + wl)2
(mh −ml)

2

(mh + ml)

yl =
whw2

l
(wh + wl)2

(mh −ml)
2

(mh + ml)
,

where the worker (firm) with the larger type exerts a larger effort than his opponent.

In the one-sided standard Tullock contest between firms (workers) when their values
of winning are mh, ml (wh, wl), the equilibrium efforts (see [3]) are

x̃h =
m2

hml

(ml + mh)2

x̃l =
mhm2

l
(ml + mh)2 ,

and the equilibrium efforts of the workers are

ỹh =
w2

hwl

(wh + wl)

ỹl =
whw2

l
(wh + wl)

.

If we compare the agents’ equilibrium efforts in the (two-sided) assortative matching
contest with the (one-sided) standard Tullock contest, we obtain that each firm’s effort in
the 2 × 2 assortative matching contest with a multiplicative match-value function is larger
than in the standard Tullock contest iff

(wh − wl)
2 > (wh + wl).
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Similarly, each worker’s effort is larger than in the standard Tullock contest iff

(mh −ml)
2 > (mh + ml).

This comparison indicates that even if, for example, wh, wl > 1 such that the agents’ values
of winning in the 2 × 2 assortative matching contest are larger than the agents’s values of
winning in the standard Tullock contest, the agents’ efforts in the 2× 2 assortative matching
contest are not necessarily larger than in the standard Tullock contest. As the above analysis
indicates, the necessary condition that the agents’ efforts are larger than their efforts in
the Tullock contest is that the difference in their opponents’ types be relatively larger with
respect to their sum. The reason is that when the variance of the agents’ types in one set is
relatively large, the agents of the other set have a high incentive to compete against each
other, while in the one-sided Tullock contest, similar to any other one-sided contest, if the
variance of the agents’ type is large, the competition between them is weak.

In the 2 × 2 assortative matching contest the agents’ total effort is

TE = xh + xl + yh + yl

= mhml
(mh −ml)

(ml + mh)2
(wh − wl)

2

(wh + wl)

+whwl
(wh − wl)

(wh + wl)2
(mh −ml)

2

(mh + ml)
.

Thus, when the sum of the agents’ types is constant on both sides, the larger the difference
of the agents’ types on both sides is, the larger is the equilibrium total effort.

In the next section, we show that if the number of firms and workers are not the same,
in contrast to Proposition 2, there is at least a partial interior equilibrium according to which
some of the agents compete in the contest and exert positive efforts.

4. The m × n Assortative Matching Contests

Consider now that the two sets do not necessarily have the same size such that there
is a set A = {1, 2, . . . , m} of m ≥ 2 firms and a set B = {1, 2, . . . , n} of n ≥ 2 workers
where n < m. The firms’ types are mi, where mi ≥ mi+1, i = 1, . . . , m− 1. The workers’
types are wj, where wj > wj+1, j = 1, . . . , n − 1. We showed that in an equilibrium of
the n× n assortative matching contest the agents from both sets may not exert efforts in
equilibrium. However, this does not occur in the m × n matching contests if m > n or
vice versa. However, m× n matching contests might have a partial interior equilibrium in
which some of the agents exert positive efforts but others do not exert any effort at all.

Proposition 5. In an equilibrium of a m× n assortative matching contest where m > n, at least n
firms exert positive efforts.

Proof. See Appendix A.3.

The intuition behind Proposition 5 is as follows: if less than n firms exert positive
efforts, a firm that does not exert any effort will not be matched with a positive probability.
Then, if such a non-active firm will choose to exert a sufficiently small effort, it will be
matched for sure with one of the workers and then their expected payoff significantly
increases.

We showed that in an equilibrium of the 2× 2 assortative matching contest with an ad-
ditive match-value function the agents from both sets do not exert efforts. By Proposition 5,
this does not occur in the m× n matching contests if m > n or vice versa. Furthermore, the
minimum number of agents who exert positive efforts is even larger when the match-value
function is additive.
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Proposition 6. In an equilibrium of a m× n assortative matching contest with an additive match-
value function where m > n, at least n + 1 firms exert positive efforts.

Proof. See Appendix A.4.

By Proposition 5 at least n firms exert positive efforts. If exactly n firms exert positive
efforts we actually have a n× n assortative matching contest, and by Proposition 2, all the
firms do not exert any effort. Then, similarly to the case in Proposition 5, any non-active
firm has an incentive to exert a sufficiently small positive effort such that there will be at
least n + 1 firms that exert positive efforts.

Consider now that n = 2 such that the firms’ types are mi, where mi ≥ mi+1, i =
1, . . . , m− 1, and the workers’ types are wh and wl , where wh ≥ wl . Then, if the firms and
the workers have a multiplicative match-value function, we have the following result:

Proposition 7. In a m× 2 assortative matching contest with multiplicative match-value functions
f (mi, wj) = g(mi, wj) = miwj, the efforts of the workers satisfy

whyl − wlyh = 0.

Proof. See Appendix A.5.

Furthermore, if the firms and the workers have additive match-value functions
we have

Proposition 8. In a m × 2 assortative matching contest with additive match-value functions
f (mi, wj) = g(mi, wj) = mi + wj the equilibrium workers’ efforts satisfy

yh = yl

Proof. See Appendix A.6.

Propositions 7 and 8 indicate the relation between the two workers’ efforts, but they
do not exclude the option that these efforts are equal to zero. An explicit characterization
of the equilibrium efforts in these matching contests with large numbers of agents on both
sides is very complex and therefore, for simplicity, in the next subsection we focus on the
smaller m× n matching contest with three firms and two workers.

The 3 × 2 Assortative Matching Contest

We now consider two sets with a different number of agents where in set A = {h, m, l}
there are three firms and in set B = {h, l} there are two workers. The firms’ types are
mh, mm and ml , where mh ≥ mm ≥ ml , and the workers’ types are wh and wl where wh ≥ wl .
Suppose that firm i, i = h, m, l exerts effort xi and worker j, j = h, l exerts effort yj. Then,
the maximization problem of firm h is

max
xh

f (mh, wh)

[
1

yh + yl
(

yhxh
xh + xm + xl

+
yl xl

xh + xm + xl

xh
xh + xm

+
yl xm

xh + xm + xl

xh
xh + xl

)

]
(11)

+ f (mh, wl)

[
1

yh + yl
(

yl xh
xh + xm + xl

+
yhxl

xh + xm + xl

xh
xh + xm

+
yhxm

xh + xm + xl

xh
xh + xl

)

]
− xh,

the maximization problem of firm m is

max
xm

f (mm, wh)

[
1

yh + yl
(

yhxm

xh + xm + xl
+

yl xh
xh + xm + xl

xm

xl + xm
+

yl xl
xh + xm + xl

xm

xm + xh
)

]
(12)

+ f (mm, wl)

[
1

yh + yl
(

yl xm

xh + xm + xl
+

yhxh
xh + xm + xl

xm

xl + xm
+

yhxl
xh + xm + xl

xm

xm + xh
)

]
− xm,
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and the maximization problem of firm l is

max
xl

f (ml , wh)

[
1

yh + yl
(

yhxl
xh + xm + xl

+
yl xh

xh + xm + xl

xl
xl + xm

+
yl xm

xh + xm + xl

xl
xl + xh

)

]
(13)

+ f (ml , wl)

[
1

yh + yl
(

yl xl
xh + xm + xl

+
yhxh

xh + xm + xl

xl
xl + xm

+
yhxm

xh + xm + xl

xl
xl + xh

)

]
− xl .

Similarly, the maximization problem of worker h is

max
yh

g(mh, wh)

[
1

yh + yl
(

yhxh
xh + xm + xl

+
yl xl

xh + xm + xl

xh
xh + xm

+
yl xm

xh + xm + xl

xh
xh + xl

)

]
(14)

+g(mm, wh)

[
1

yh + yl
(

yhxm

xh + xm + xl
+

yl xh
xh + xm + xl

xm

xl + xm
+

yl xl
xh + xm + xl

xm

xh + xm
)

]
+g(ml , wh)

[
1

yh + yl
(

yhxl
xh + xm + xl

+
yl xh

xh + xm + xl

xl
xl + xm

+
yl xm

xh + xm + xl

xl
xh + xl

)

]
− yh,

and the maximization problem of worker l is

max
yl

g(mh, wl)

[
1

yh + yl
(

yl xh
xh + xm + xl

+
yhxl

xh + xm + xl

xh
xh + xm

+
yhxm

xh + xm + xl

xh
xh + xl

)

]
(15)

+g(mm, wl)

[
1

yh + yl
(

yl xm

xh + xm + xl
+

yhxh
xh + xm + xl

xm

xl + xm
+

yhxl
xh + xm + xl

xm

xh + xm
)

]
+g(ml , wl)

[
1

yh + yl
(

yl xl
xh + xm + xl

+
yhxh

xh + xm + xl

xl
xl + xm

+
yhxm

xh + xm + xl

xl
xh + xl

)

]
− yl .

The F.O.C. of firm h’s maximization problems is

f (mh, wh)

[
1

yh + yl
(

yh(xm + xl)

(xh + xm + xl)2 −
yl xl

(xh + xm + xl)2
xh

xh + xm
− yl xm

(xh + xm + xl)2
xh

xh + xl
)

]
(16)

+ f (mh, wh)

[
yl

yh + yl
(

xm

(xh + xm)2
xl

xh + xm + xl
+

xl
(xh + xl)2

xm

xh + xm + xl
)

]
+ f (mh, wl)

[
1

yh + yl
(

yl(xm + xl)

(xh + xm + xl)2 −
yhxl

(xh + xm + xl)2
xh

xh + xm
− yhxm

(xh + xm + xl)2
xh

xh + xl
)

]
+ f (mh, wl)

[
yh

yh + yl
(

xm

(xh + xm)2
xl

xh + xm + xl
+

xl
(xh + xl)2

xm

xh + xm + xl
)

]
≤ 1.

The F.O.C. of firm m’s maximization problem is

f (mm, wh)

[
1

yh + yl
(

yh(xl + xh)

(xh + xm + xl)2 −
yl xh

(xh + xm + xl)2
xm

xl + xm
− yl xl

(xh + xm + xl)2
xm

xm + xh
)

]
(17)

+ f (mm, wh)

[
yl

yh + yl
(

xh
xh + xm + xl

xl
(xl + xm)2 +

xl
xh + xm + xl

xh
(xm + xh)2 )

]
+ f (mm, wl)

[
1

yh + yl
(

yl(xl + xh)

(xh + xm + xl)2 −
yhxh

(xh + xm + xl)2
xm

xl + xm
− yhxl

(xh + xm + xl)2
xm

xm + xh
)

]
+ f (mm, wl)

[
yh

yh + yl
(

xh
xh + xm + xl

xl
(xl + xm)2 +

xl
xh + xm + xl

xh
(xm + xh)2 )

]
≤ 1,

and the F.O.C. of firm l’s maximization problem is
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f (ml , wh)

[
1

yh + yl
(

yh(xm + xh)

(xh + xm + xl)2 −
yl xh

(xh + xm + xl)2
xl

xl + xm
− yl xm

(xh + xm + xl)2
xl

xl + xh
)

]
(18)

+ f (ml , wh)

[
yl

yh + yl
(

xh
xh + xm + xl

xm

(xl + xm)2 +
xm

xh + xm + xl

xh
(xl + xh)2 )

]
+ f (ml , wl)

[
1

yh + yl
(

yl(xm + xh)

(xh + xm + xl)2 −
yhxh

(xh + xm + xl)2
xl

xl + xm
− yhxm

(xh + xm + xl)2
xl

xl + xh
)

]
+ f (ml , wl)

[
yh

yh + yl
(

xh
xh + xm + xl

xm

(xl + xm)2 +
xm

xh + xm + xl

xh
(xl + xh)2 )

]
≤ 1

Similarly, the F.O.C of worker h’s maximization problems is

g(mh, wh)

[
yl

(yh + yl)2 (
xh

xh + xm + xl
− xl

xh + xm + xl

xh
xh + xm

− xm

xh + xm + xl

xh
xh + xl

)

]
(19)

+g(mm, wh)

[
yl

(yh + yl)2 (
xm

xh + xm + xl
− xh

xh + xm + xl

xm

xl + xm
− xl

xh + xm + xl

xm

xh + xm
)

]
+g(ml , wh)

[
yl

(yh + yl)2 (
xl

xh + xm + xl
− xh

xh + xm + xl

xl
xl + xm

− xm

xh + xm + xl

xl
xh + xl

)

]
≤ 1

and the F.O.C. of worker l’s maximization problems is

g(mh, wl)

[
yh

(yh + yl)2 (
xh

xh + xm + xl
− xl

xh + xm + xl

xh
xh + xm

− xm

xh + xm + xl

xh
xh + xl

)

]
(20)

+g(mm, wl)

[
yh

(yh + yl)2 (
xm

xh + xm + xl
− xh

xh + xm + xl

xm

xl + xm
− xl

xh + xm + xl

xm

xh + xm
)

]
+g(ml , wl)

[
yh

(yh + yl)2 (
xl

xh + xm + xl
− xh

xh + xm + xl

xl
xl + xm

− xm

xh + xm + xl

xl
xh + xl

)

]
≤ 1.

Then, we have the following interior equilibrium:

Proposition 9. The equilibrium efforts of the 3 × 2 assortative matching contest are obtained by
the solution of the equations given in (16)–(20).

Proof. See Appendix A.7.

By Proposition 5, there is no corner equilibrium in the 3 × 2 assortative matching
contest in which all the three firms exert an effort of zero. However, the following example
shows that there is a partial interior equilibrium in which both workers exert an effort
of zero.

Example 1. Assume a 3 × 2 matching contest with three symmetric firms where m = mh =
mm = ml and two asymmetric workers where wh ≥ wl . By symmetry of the firms, assume that
every firm exerts the same effort x and worker j, j = h, l exerts effort yj. By (16)–(18), the firms
have the same F.O.C. which is given by

f (m, wh)

[
2

9x
yh

yh + yl
+

1
18x

yl
yh + yl

]
+ f (m, wl)

[
2

9x
yl

yh + yl
+

1
18

yh
yh + yl

]
= 1.



Games 2022, 13, 64 12 of 20

By symmetry of the firms, the workers’ F.O.C. (19) and (20) are

3g(m, wh)

[
yl

(yh + yl)2 (
1
3
− (

1
6
+

1
6
))

]
− 1 < 0

3g(m, wl)

[
yh

(yh + yl)2 (
1
3
− (

1
6
+

1
6
))

]
− 1 < 0.

Thus, the equilibrium efforts of the workers are yl = yh = 0, and yl
yh+yl

= yh
yh+yl

= 1
2 . Then, the

identical effort of all three firms is x = 5
18

f (m,wh)+ f (m,wl)
2 .

By Proposition 5, in any 3 × 2 assortative matching contest at least two firms exert
positive efforts in equilibrium. The following example shows that in a 3 × 2 assortative
matching contest with a multiplicative match-value function, it is possible that exactly two
firms exert positive efforts and the third one exerts an effort of zero, or, alternatively, stays
out of the contest.

Example 2. Suppose that in the 3 × 2 assortative matching contest, firms h and m have the same
type, and firm l exerts an effort of xl = 0. Then, by the the equilibrium efforts in the 2 × 2
assortative matching contest given by (10), we obtain that the equilibrium efforts of the workers
satisfy yh

yl
= wh

wl
and that the equilibrium efforts of the firms that participate are

xm = xh = x =
mh
4

(wh − wl)
2

(wh + wl)
.

By (18), the F.O.C. of firm l’s maximization problem is

FOC3 =
xm + xh

(xh + xm)2
1

yh + yl
( f (ml , wh)yh + f (ml , wl)yl)

+(
xh

xh + xm

1
xm

+
xm

xh + xm

1
xh

)
1

yh + yl
( f (ml , wh)yl + f (ml , wl)yh)

−1.

Inserting the equilibrium efforts of the other agents yields

FOC3 =
1

2x
1

1 + wl
wh

ml(wh +
w2

l
wh

) +
1
x

1
1 + wl

wh

ml(2wl)

=
1
x

wh
wh + wl

ml(2wl + wh +
w2

l
wh

) =
4ml
mh

wh
(wh − wl)2 (2wl + wh +

w2
l

wh
)− 1

=
4ml
mh

(wh + wl)
2

(wh − wl)2 − 1.

Thus, if ml
mh

is sufficiently small, FOC3 is negative, which implies that firm l stays out of the contest.

5. Concluding Remarks

We studied assortative matching contests in which there are two sets of agents. In each
set, the agents compete against each other in a Tullock contest, and then, according to the
results of both Tullock contests, if the agents exert positive efforts, the agents from both sets
are assortatively matched such that the first agents from both sets are matched, the second
agents are matched, and so on until all the agents from the smaller set are matched. Every
two agents who are matched win a reward according to match-value functions that depend
on both agents’ types. Our findings for this simultaneous competition are summarized in
the following Table 1:
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Table 1. The simultaneous competition of different agents.

Size Multiplicative Form Additive Form

2 × 2 Agents exert efforts Agents do not exert efforts

3 × 2 At least two firms exert efforts All the three firms exert efforts

m× 2 Both types of worker may exert efforts Both types of worker exert the same effort

m× n At least n firms exert efforts At least n + 1 firms exert efforts

n× n All agents might not exert efforts All agents might not exert efforts

We can see that in symmetric assortative matching contests in which the number of
agents in both sets is the same (n× n), there is always an equilibrium in which all the agents
in both sets do not exert efforts and as such the agents are randomly matched. However,
these matching contests may also have an interior equilibrium in which the equilibrium
strategies depend on the form of the match-value function. It is important to note that when
the number of agents in both sets is not the same (m× n), independent of the form of the
match-value function, there is no equilibrium in which all the agents do not exert efforts.

In sum, the reason for non-activity of the agents in assortative matching contests is
that the match-value functions have the same property of the additive function according
to which the mixed second derivatives are equal to zero. Then, if the number of agents in
both sets are the same, agents from the same set face the same differences between their
possible prizes (values of winning) and so that they have the same strategy to be non-active.
Thus, a contest designer has two ways to activate the agents: the first is to choose the
correct match-value functions and the second is to organize two sets with different sizes.
Since in many situations the forms of the match-value function are exogenous such that a
designer does not necessarily have control over their forms, by choosing the correct number
of agents on each side of the matching contest, independent of the form of the match-value
functions, he can ensure that the results of the contest will not be random and the agents
will exert positive efforts in order to find their best match.
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authors have read and agreed to the published version of the manuscript.
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Appendix A

Appendix A.1. Proof of Proposition 2

The maximization problem of firm i, i = 1, . . . , n is

max
xi

n

∑
j=1

s(mi) + t(wj)
n

∑
k=1

Pr(firm i wins k-th place) · Pr(worker j wins k-th place)− xi

which is equivalent to the maximization problem

max
xi

s(mi) +
n

∑
j=1

t(wj)
n

∑
k=1

Pr(firm i wins k-th place) · Pr(worker j wins k-th place)− xi

where Pr(firm i wins k-th place) is the probability that firm i wins k-th place, and Pr(worker
j wins k-th place) is the probability that worker j wins k-th place. The first-order conditions
(F.O.C.) of firm i’s maximization problems is
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n

∑
j=1

t(wj)
n

∑
k=1

dPr(firm i wins the k-th place)
dxi

· Pr(worker j wins k-th place) = 1

Since the F.O.C. of each firms’ maximization problem does not depend on the type of
the firm, it is clear that if there is an asymmetric equilibrium, then any permutation of the
vectors of the agents’ equilibrium efforts is also an asymmetric equilibrium. In addition, it
is clear that there is a symmetric solution that satisfies x1 = x2 =, . . . = xn. Given that all
the firms’ equilibrium strategies are the same, every worker has the same probability to be
matched with each firm such that the best response for each worker j is to exert an effort of
yj = 0, j = 1, . . . ., n. Now, since all the workers’ equilibrium strategies are the same, every
firm has the same probability to be matched with each worker so that the best response for
each firm i is to exert an effort of xi = 0, i = 1, . . . ., n. Q.E.D.

Appendix A.2. Proof of Proposition 3

The S.O.C. of the maximization problems (1)–(4) are

( f (mh, wh)− f (mh, wl))
−2xl

(xh + xl)3
yh − yl
yh + yl

( f (ml , wh)− f (ml , wl))
−2xh

(xh + xl)3
yh − yl
yh + yl

(g(mh, wh)− g(ml , wh))
−2yl

(yh + yl)3
xh − xl
xh + xl

(g(mh, wh)− g(ml , wh))
−2yh

(yh + yl)3
xh − xl
xh + xl

,

which can be rewritten as

−2
(xh + xl)

[
( f (mh, wh)− f (mh, wl))

xl
(xh + xl)2

yh − yl
yh + yl

]
−2

(xh + xl)

[
( f (ml , wh)− f (ml , wl))

xh
(xh + xl)2

yh − yl
yh + yl

]
−2

(yh + yl)

[
(g(mh, wh)− g(ml , wh))

yl
(yh + yl)2

xh − xl
xh + xl

]
−2

(yh + yl)

[
(g(mh, wl)− g(ml , wl))

yh
(yh + yl)2

xh − xl
xh + xl

]
.

Since according to the F.O.C. (5), in an interior equilibrium each of the terms inside the
parentheses is positive, we obtain that each of the equations of the S.O.C. is negative and
therefore the solution obtained by the equations of the F.O.C is an equilibrium.

It is quite easy to see that the system of the F.O.C. given by (8) has a solution only
when all the F.O.C. are equations, namely, there is not a partial interior equilibrium in
which some of the equilibrium efforts are positive and others are zero. Then, if we insert
the necessary Equation (9) into the F.O.C. we obtain that each of the F.O.C. is a first order
equation of one of the agents’ effort such that the solution is unique. In other words, the
F.O.C given by (10) have a unique solution. Q.E.D.

Appendix A.3. Proof of Proposition 5

Suppose first that in the m× n assortative matching contests all the m firms do not
exert any effort. In such a case, it is obvious that also the n workers do not have an incentive
to exert positive efforts. Therefore, every firm is matched with each of the n workers with
a probability of 1

m and then a firm has a positive expected payoff. In addition, a firm is
not matched at all with a probability of m−n

m and then it has an expected payoff of zero.
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Thus, if one firm exerts a sufficiently small effort, given that its opponents do not exert any
effort, its expected payoff significantly increases since it is matched with a probability of 1

n
with each of the workers who exert an effort of zero such that each has the same chance to
win as well as to lose. Therefore there is no equilibrium in which all the firms do not exert
any effort.

Now, suppose that k, k < n, firms exert positive efforts and all the other m− k firms do
not exert any effort. Then, each of the k firms that exert positive efforts is matched for sure,
while each of the m− k firms that do not exert any effort is matched with one of the n− k
workers with the lowest efforts with a probability of n−k

m−k and is not matched at all with
a probability of m−n

m−k in which case he has an expected payoff of zero. Thus, if a firm that
does not exert any effort will choose to exert a sufficiently small effort he will be matched
for sure with one of the workers and then their expected payoff significantly increases.
Therefore there is no equilibrium in which the number of firms that exert positive efforts is
smaller than the number of workers n. Q.E.D.

Appendix A.4. Proof of Proposition 6

By Proposition 5, suppose that exactly n firms exert positive efforts. Then, we actually
have a n× n assortative matching contest, and by Proposition 2, all the firms do not exert
any effort. In that case, each of the firms has a probability of 1

m to be matched with each of
the n workers and a probability of m−n

m not to be matched at all. Thus, if one of the firms
exerts a sufficiently small effort it significantly increases its expected payoff since then it is
matched for sure with a probability of 1

n with each of the workers. Consequently, in any
equilibrium, at least n + 1 firms participate and exert positive efforts. Q.E.D.

Appendix A.5. Proof of Proposition 7

The maximization problem of worker h is

max
yh

m

∑
i=1

miwh

[ yh
yh+yl

Pr(firm i wins first place)
+ yl

yh+yl
Pr(firm i wins second place)

]
,

where Pr(firm i wins first place) is the probability that firm i wins first place, and Pr(firm i
wins second place) is the probability that firm i wins second place.

Similarly, the maximization problem of worker l is

max
yl

m

∑
i=1

miwl

[ yl
yh+yl

Pr(firm i wins first place)
+ yh

yh+yl
Pr(firm i wins second place)

]
.

If we subtract the F.O.C. of these workers’ maximization problems from each other we
obtain that

∆FOC =
m

∑
i=1

mi(whyl − wlyh)

(yh + yl)2 Pr(firm i wins first place)

−
m

∑
i=1

mi(whyl − wlyh)

(yh + yl)2 Pr(firm i wins second place).

Thus, when whyl − wlyh = 0, we obtain that ∆FOC = 0, which implies that in equilibrium
whyl = wlyh. Q.E.D.

Appendix A.6. Proof of Proposition 8

The maximization problem of worker h is

max
yh

m

∑
i=1

(mi + wh)

[ yh
yh+yl

Pr(firm i wins first place)
+ yl

yh+yl
Pr(firm i wins second place)

]
,
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where Pr(firm i wins first place) is the probability that firm i wins first place, and Pr(firm i
wins second place) is the probability that firm i wins second place. Similarly, the maximiza-
tion problem of worker l is

max
yl

m

∑
i=1

(mi + wl)

[ yl
yh+yl

Pr(firm i wins first place)
+ yh

yh+yl
Pr(firm i wins second place)

]
.

If we subtract the F.O.C. of these workers’ maximization problems from each other we
obtain that

∆FOC =
m

∑
i=1

(mi + wh)
yl

(yh + yl)2 Pr(firm i wins first place)

−
m

∑
i=1

(mi + wh)
yl

(yh + yl)2 Pr(firm i wins second place)

−
m

∑
i=1

(mi + wl)
yh

(yh + yl)2 Pr(firm i wins first place)

+
m

∑
i=1

(mi + wl)
yh

(yh + yl)2 Pr(firm i wins second place).

Since for j = l, h we have
m

∑
i=1

wjPr(firm i wins the first place) = wj

m

∑
i=1

wjPr(firm i wins the second place) = wj,

we obtain that

∆FOC =
m

∑
i=1

mi
yl − yh

(yh + yl)2 Pr(firm i wins the first place)

−
m

∑
i=1

mi
yl − yh

(yh + yl)2 Pr(firm i wins the second place).

Thus, when yl = yh, we obtain that ∆FOC = 0, which implies that in equilibrium yl = yh.
Q.E.D.

Appendix A.7. Proof of Proposition 9

In an interior equilibrium, by (16), the F.O.C. of firm h’s maximization problem is

FOCh = f (mh, wh)( f oc1 + f oc2 + f oc3 + f oc4 + f oc5)

+ f (mh, wl)( f oc6 + f oc7 + f oc8 + f oc9 + f oc10)

= 1,

where
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f oc1 =
xm + xl

(xh + xm + xl)2
yh

yh + yl

f oc2 = − xl
(xh + xm + xl)2

xh
xh + xm

yl
yh + yl

f oc3 = − xm

(xh + xm + xl)2
xh

xh + xl

yl
yh + yl

f oc4 =
xm

(xh + xm)2
xl

xh + xm + xl

yl
yh + yl

f oc5 =
xl

(xh + xl)2
xm

xh + xm + xl

yl
yh + yl

f oc6 =
xm + xl

(xh + xm + xl)2
yl

yh + yl

f oc7 = − xl
(xh + xm + xl)2

xh
xh + xm

yh
yh + yl

f oc8 = − xm

(xh + xm + xl)2
xh

xh + xl

yh
yh + yl

f oc9 =
xm

(xh + xm)2
xl

xh + xm + xl

yh
yh + yl

f oc10 =
xl

(xh + xl)2
xm

xh + xm + xl

yh
yh + yl

.

The S.O.C. of firm h’s maximization problem is

SOCh = f (mh, wh)(soc1 + soc2 + soc3 + soc4 + soc5)

+ f (mh, wl)(soc6 + soc7 + soc8 + soc9 + soc10)

where

soc1 =
−2(xh + xm + xl)(xl + xm)

(xh + xm + xl)4
yh

yh + yl

soc2 = (
2(xh + xm + xl)xl
(xh + xm + xl)4

xh
xh + xm

− xl
(xh + xm + xl)2

xm

(xh + xm)2 )
yl

yh + yl

soc3 = (
2(xh + xm + xl)xm

(xh + xm + xl)4
xh

xh + xl
− xm

(xh + xm + xl)2
xl

(xh + xl)2 )
yl

yh + yl

soc4 = (
−2(xh + xm)xm

(xh + xm)4
xl

xh + xm + xl
− xl

(xh + xm + xl)2
xm

(xh + xm)2 )
yl

yh + yl

soc5 = (
−2(xh + xl)xl
(xh + xl)4

xm

xh + xm + xl
− xm

(xh + xm + xl)2
xl

(xh + xl)2 )
yl

yh + yl

soc6 =
−2(xh + xm + xl)(xl + xm)

(xh + xm + xl)4
yl

yh + yl

soc7 = (
2(xh + xm + xl)xl
(xh + xm + xl)4

xh
xh + xm

− xl
(xh + xm + xl)2

xm

(xh + xm)2 )
yh

yh + yl

soc8 = (
2(xh + xm + xl)xm

(xh + xm + xl)4
xh

xh + xl
− xm

(xh + xm + xl)2
xl

(xh + xl)2 )
yh

yh + yl

soc9 = (
−2(xh + xm)xm

(xh + xm)4
xl

xh + xm + xl
− xl

(xh + xm + xl)2
xm

(xh + xm)2 )
yh

yh + yl

soc10 = (
−2(xh + xl)xl
(xh + xl)4

xm

xh + xm + xl
− xm

(xh + xm + xl)2
xl

(xh + xl)2 )
yh

yh + yl
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We have the following relations among the elements of the FOCh and those of the SOCh:

soc1 =
−2

xh + xm + xl
f oc1

soc2 = (
−2

xh + xm + xl
+

xm

xh(xh + xm)
) f oc2 >

−2
xh + xm + xl

f oc2

soc3 = (
−2

xh + xm + xl
+

xl
xh(xh + xl)

) f oc3 >
−2

xh + xm + xl
f oc3

soc4 = (
−2

xh + xm
− 1

xh + xm + xl
) f oc4 <

−2
xh + xm + xl

f oc4

soc5 = (
−2

xh + xl
− 1

xh + xm + xl
) f oc5 <

−2
xh + xm + xl

f oc4

soc6 =
−2

xh + xm + xl
f oc6

soc7 = (
−2

xh + xm + xl
+

xm

xh(xh + xm)
) f oc7 >

−2
xh + xm + xl

f oc7

soc8 = (
−2

xh + xm + xl
+

xl
xh(xh + xl)

) f oc8 >
−2

xh + xm + xl
f oc8

soc9 = (
−2

xh + xm
− 1

xh + xm + xl
) f oc9 <

−2
xh + xm + xl

f oc9

soc10 = (
−2

xh + xl
− 1

xh + xm + xl
) f oc10 <

−2
xh + xm + xl

f oc10.

Since f ocj, j = 2, 3, 7, 8 are negative and f ocj, j = 1, 4, 5, 6, 9, 10 are positive, we obtain that

SOCh <
−2

xh + xm + xl
FOCh < 0.

Similarly, it can be shown that the S.O.C. of the maximization problems of firms m and l
are negative as well.

Now, in an interior equilibrium, by (19), the F.O.C. of worker h’s maximization
problem is

f och = g(mh, wh)

[
yl

(yh + yl)2
xh

xh + xm + xl

]
−g(mh, wh)

[
(

xl
xh + xm + xl

xh
xh + xm

+
xm

xh + xm + xl

xh
xh + xl

)

]
+g(mm, wh)

[
yl

(yh + yl)2
xm

xh + xm + xl

]
−g(mm, wh)

[
yl

(yh + yl)2 (
xh

xh + xm + xl

xm

xl + xm
+

xl
xh + xm + xl

xm

xh + xm
)

]
+g(ml , wh)

[
yl

(yh + yl)2
xl

xh + xm + xl

]
−g(ml , wh)

[
yl

(yh + yl)2 (
xh

xh + xm + xl

xl
xl + xm

+
xm

xh + xm + xl

xl
xh + xl

)

]
= 1.
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And, the S.O.C. of worker h’s maximization problem is

soch = − g(mh, wh)

[
2(yh + yl)yl
(yh + yl)4

xh
xh + xm + xl

]
+g(mh, wh)

[
2(yh + yl)yl
(yh + yl)4 (

xl
xh + xm + xl

xh
xh + xm

+
xm

xh + xm + xl

xh
xh + xl

)

]
−g(mm, wh)

[
2(yh + yl)yl
(yh + yl)4

xm

xh + xm + xl

]
+g(mm, wh)

[
2(yh + yl)yl
(yh + yl)4 (

xh
xh + xm + xl

xm

xl + xm
+

xl
xh + xm + xl

xm

xh + xm
)

]
−g(ml , wh)

[
2(yh + yl)yl
(yh + yl)4

xl
xh + xm + xl

]
+g(ml , wh)

[
2(yh + yl)yl
(yh + yl)4 (

xh
xh + xm + xl

xl
xl + xm

+
xm

xh + xm + xl

xl
xh + xl

)

]
.

Then, we obtain that

soch = − f och
2(yh + yl)

(yh + yl)2 < 0.

Similarly, it can be shown that the S.O.C. of the maximization problem of worker l is
negative as well. Q.E.D.

Notes
1 In 2x2 matching contests there is no partial interior equilibrium in which only some of the agents exert positive efforts.
2 The agents may be different by their marginal costs.
3 If xi = 0 for all 1 ≤ i ≤ m, each firm’s probability of winning is assumed to be 1/m. Similarly, if yj = 0 for all 1 ≤ j ≤ n, each

worker’s probability of winning is assumed to be 1/n.
4 Note that our results in this section can be immediately extended to match-value functions of the form f (mi, wj) = δ(mi)ρ(wj),

where δ and ρ are strictly increasing and differentiable.
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