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Abstract: This paper deals with the problem of calculating the Shapley–Shubik power index in
weighted majority games. We propose an efficient Monte Carlo algorithm based on an implicit
hierarchical structure of permutations of players. Our algorithm outputs a vector of power indices
preserving the monotonicity, with respect to the voting weights. We show that our algorithm reduces
the required number of samples, compared with the naive algorithm.

Keywords: voting game; weighted majority game; power index; Monte Carlo algorithm

1. Introduction

The analysis of power is a central issue in political science. In general, it is difficult to
define the idea of power, even in restricted classes of the voting rules commonly considered
by political scientists. The use of game theory to study the power distribution in voting
systems can be traced back to the invention of “simple games” by von Neumann and
Morgenstern [1]. A simple game is an abstraction of the constitutional political machinery
for voting.

In 1954, Shapley and Shubik [2] proposed the specialization of the Shapley value [3] to
assess the a priori measure of the power of each player in a simple game. Since then, the
Shapley–Shubik power index (S–S index) has become widely known as a mathematical
tool for measuring the relative power of the players in a simple game.

In this paper, we consider a special class of simple games, called weighted majority games,
which constitute a familiar example of voting systems. Let N be a set of players. Each player
i ∈ N has a positive integer voting weight wi as the number of votes or weight of the players. A
positive integer q is the quota needed for a coalition to win. A coalition N′ ⊆ N is a winning
coalition if ∑i∈N′ wi ≥ q holds; otherwise, it is a losing coalition. Many works analyze weighted
majority games in a variety of settings, including the Council of the European Union [4–6], the
U.S. Electoral College [7,8], and the International Monetary Fund [9,10]. Weighted majority
games and power indices are applicable beyond classical voting situations in politics. Applica-
tions of power indices include cost allocation [11], analyses of genetic networks [12], analyses of
social networks [13,14], and reliability problems in the maintenance of computer networks [15].

The difficulty involved in calculating the S–S index in weighted majority games
is described in [16] without a proof (see p. 280, problem [MS8]). Deng and Papadim-
itriou [17] showed the problem of computing the S–S index in weighted majority games
to be #P-complete. Prasad and Kelly [18] proved the NP-completeness of the problem of
verifying the positivity of a given player’s S–S index in weighted majority games. The
problem of verifying the asymmetry of a given pair of players was also shown to be
NP-complete [19]. It is known that even approximating the S–S index within a constant
factor is intractable, unless P = NP [20].

There are variations of methods for calculating the S–S index. These include algo-
rithms based on the Monte Carlo method [21–26], multilinear extensions [27,28], dynamic
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programming [22,29–32], generating functions [33], binary decision diagrams [34], the
Karnaugh map [35], relation algebra [36], or the enumeration technique [37]. A survey of
algorithms for calculating power indices in weighted voting games is presented in [22].

In the classical theory of cooperative games, it is assumed that all players can com-
municate freely. Alonso-Meijide et al. [38] consider situations where some players are
incompatible, i.e., some players cannot cooperate among themselves for ideological or
economic reasons. They proposed a method for calculating the S—S and Banzhaf–Coleman
power indices when some players are incompatible, using generating functions. Courtin
et al. [39] discussed multi-type games in which there are several non-ordered types in the
input, while the output consists of a single real value. When the output is dichotomous,
they extend and fully characterize the S–S index.

This paper addresses Monte Carlo algorithms for calculating the S–S index in weighted
majority games. In the following section, we describe the notations and definitions used
in this paper. In Section 3, we analyze a naive Monte Carlo algorithm (Algorithm 1) and
extend some results obtained in the study reported in [25]. In Section 4, we propose an
efficient Monte Carlo algorithm (Algorithm 2) and show that our algorithm reduces the
required number of samples compared to the naive algorithm. Table 1 summarizes the
results of this study, where (ϕ1, ϕ2, . . . , ϕn) denotes the S–S index and (ϕA

1 , ϕA
2 , . . . , ϕA

n )
denotes the estimator obtained by Algorithm 1 or 2.

Table 1. Required Number of Samples.

Required Number of Samples

Property Algorithm 1 Algorithm 2
(Naive Algorithm) (Our Algorithm)

Pr
[∣∣∣ϕA

i − ϕi

∣∣∣ < ε
]
≥ 1− δ ln 2 + ln(1/δ)

2ε2

(
ln 2 + ln(1/δ)

2ε2

)(
1
i2

)
[25] (assume w1 ≥ · · · ≥ wn)

Pr
[
∀i ∈ N,

∣∣∣ϕA
i − ϕi

∣∣∣ < ε
]
≥ 1− δ ln 2 + ln(1/δ) + ln n

2ε2
ln 2 + ln(1/δ) + ln 1.129

2ε2

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA
i − ϕi

∣∣∣ < ε

]
≥ 1− δ n ln 2 + ln(1/δ)

2ε2
n′′ ln 2 + ln(1/δ)

2ε2

An integer n′′ denotes the size of a maximal player subset with mutually different weights.

2. Notations and Definitions

In this paper, we consider a special class of cooperative games called weighted ma-
jority games. Let N = {1, 2, . . . , n} be a set of players. A subset of players is called a
coalition. A weighted majority game G is defined by a sequence of positive integers
G = [q; w1, w2, . . . , wn], where we may think of wi as the number of votes or the weight of
player i, and q as the quota needed for a coalition to win. In this paper, we assume that
0 < q ≤ w1 + w2 + · · ·+ wn.

A coalition S ⊆ N is called a winning coalition when the inequality q ≤ ∑i∈S wi holds.
The inequality q ≤ w1 + w2 + · · ·+ wn implies that N is a winning coalition. A coalition S
is called a losing coalition if S is not winning. We define an empty set as a losing coalition.

Let π : {1, 2, . . . , n} → N be a permutation defined on the set of players N, which
provides a sequence of players (π(1), π(2), . . . , π(n)). We denote the set of all the permu-
tations by ΠN . We say that the player π(i) ∈ N is the pivot of the permutation π ∈ ΠN ,
if {π(1), π(2), . . . , π(i− 1)} is a losing coalition and {π(1), π(2), . . . , π(i− 1), π(i)} is a
winning coalition. For any permutation π ∈ ΠN , piv(π) ∈ N denotes the pivot of π. For
each player i ∈ N, we define Πi = {π ∈ ΠN | piv(π) = i}. Obviously, {Π1, Π2, . . . , Πn}
becomes a partition of ΠN . The S–S index of player i, denoted by ϕi, is defined by |Πi|/n!.
We know that 0 ≤ ϕi ≤ 1 (∀i ∈ N) and ∑i∈N ϕi = 1.
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Assumption 1. The set of players is arranged to satisfy w1 ≥ w2 ≥ · · · ≥ wn.

Clearly, this assumption implies that ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn.

3. Naive Algorithm and Its Analysis

In this section, we describe a naive Monte Carlo algorithm and analyze its theoretical
performance. In the following, M denotes the number of samples generated in our algorithm.

Algorithm 1 Naive Algorithm.

Step 0: Set m := 1, ϕ′i := 0 (∀i ∈ N).
Step 1: Choose π ∈ ΠN uniformly at random.

Put (the random variable) I(m) := piv(π). Update ϕ′
I(m) := ϕ′

I(m) + 1.
Step 2: If m = M, then output ϕ′i/M (∀i ∈ N) and stop.

Else, update m := m + 1 and go to Step 1.

For each permutation π ∈ ΠN , we can find the pivot piv(π) ∈ N in O(n) time. Thus,
the time complexity of Algorithm 1 is bounded by O(M(τ(n) + n)), where τ(n) denotes
the computational effort required for the random generation of a permutation.

We denote the vector (of random variables) obtained by executing Algorithm 1 by
(ϕA1

1 , ϕA1
2 , . . . , ϕA1

n ). The following theorem is obvious.

Theorem 1. For each player i ∈ N, E
[

ϕA1
i

]
= ϕi.

The following theorem provides the number of samples required in Algorithm 1.

Theorem 2. For any ε > 0 and 0 < δ < 1, we have the following.

(1) Ref. [25] If we set M ≥ ln 2 + ln(1/δ)

2ε2 , then each player i ∈ N satisfies that

Pr
[∣∣∣ϕA1

i − ϕi

∣∣∣ < ε
]
≥ 1− δ.

(2) If we set M ≥ ln 2 + ln(1/δ) + ln n
2ε2 , then

Pr
[
∀i ∈ N,

∣∣∣ϕA1
i − ϕi

∣∣∣ < ε
]
≥ 1− δ.

(3) If we set M ≥ n ln 2 + ln(1/δ)

2ε2 , then

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA1
i − ϕi

∣∣∣ < ε

]
≥ 1− δ.

The distance measure 1
2 ∑i∈N

∣∣∣ϕA1
i − ϕi

∣∣∣ appearing in (3) is called the total variation distance.

Proof. Let us introduce random variables X(m)
i (∀m ∈ {1, 2, . . . , M}, ∀i ∈ N) in Step 1 of

Algorithm 1, defined by

X(m)
i =

{
1 (if i = I(m)),
0 (otherwise).

It is obvious that, for each player i ∈ N, {X(1)
i , X(2)

i , . . . , X(M)
i } is a Bernoulli process satis-

fying ϕA1
i = ∑M

m=1 X(m)
i /M, E

[
ϕA1

i

]
= E

[
X(m)

i

]
= ϕi (∀m ∈ {1, 2, . . . , M}). Hoeffding’s

inequality [40] implies that each player i ∈ N satisfies
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Pr
[∣∣∣ϕA1

i − ϕi

∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2M2ε2

∑M
m=1(1− 0)2

)
= 2 exp(−2Mε2).

(1) If we set M ≥ ln(2/δ)

2ε2 , then

Pr
[∣∣∣ϕA1

i − ϕi

∣∣∣ < ε
]
≥ 1− 2 exp

(
−2

ln(2/δ)

2ε2 ε2
)
= 1− δ.

(2) If we set M ≥ ln(2n/δ)

2ε2 , then we have that

Pr
[
∀i ∈ N,

∣∣∣ϕA1
i − ϕi

∣∣∣ < ε
]
= 1− Pr

[
∃i ∈ N,

∣∣∣ϕA1
i − ϕi

∣∣∣ ≥ ε
]

≥ 1− ∑
i∈N

Pr
[∣∣∣ϕA1

i − ϕi

∣∣∣ ≥ ε
]
≥ 1−

n

∑
i=1

2 exp(−2Mε2)

≥ 1−
n

∑
i=1

2 exp
(
−2

ln(2n/δ)

2ε2 ε2
)
= 1−

n

∑
i=1

δ

n
= 1− δ.

(3) The vector of random variables

(MϕA1
1 , MϕA1

2 , · · · , MϕA1
n ) =

(
M

∑
m=1

X(m)
1 ,

M

∑
m=1

X(m)
2 , · · · ,

M

∑
m=1

X(m)
n

)

is multinomially distributed with parameters M and (ϕ1, ϕ2, · · · , ϕn). Then, the Bretagnolle–
Huber–Carol inequality [41] (Theorem A1 in Appendix A) implies that

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA1
i − ϕi

∣∣∣ ≥ ε

]
= Pr

[
∑
i∈N

∣∣∣MϕA1
i −Mϕi

∣∣∣ ≥ 2Mε

]
≤ 2n exp

(
−2Mε2

)
≤ 2n exp

(
−2
(

ln(2n/δ)

2ε2

)
ε2
)
= δ,

and thus, we have the desired result.

4. Our Algorithm

In this section, we propose a new algorithm based on the hierarchical structure of the
partition {Π1, Π2, . . . , Πn}. First, we introduce a map fi : Πi → Πi−1 for each i ∈ N \ {1}.
For any π ∈ Πi, fi(π) denotes a permutation obtained by swapping the positions of players
i and i− 1 in the permutation (π(1), π(2), . . . , π(n)). Because wi−1 ≥ wi (Assumption 1), it
is easy to show that the pivot of fi(π) becomes the player i− 1. The definition of fi directly
implies that ∀{π, π′} ⊆ Πi; if π 6= π′, then fi(π) 6= fi(π

′). Thus, we have the following.

Lemma 1. For any i ∈ N \ {1}, the map fi : Πi → Πi−1 is injective.

Figure 1 shows injective maps f2, f3, f4 induced by G = [50; 40, 30, 20, 10].
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Π1 f2 Π2 f3 Π3 f4 Π4
(2, 1©, 3, 4) ← (1, 2©, 3, 4) ← (1, 3©, 2, 4) ← (1, 4©, 2, 3)
(2, 1©, 4, 3) ← (1, 2©, 4, 3) ← (1, 3©, 4, 2) ← (1, 4©, 3, 2)
(4, 3, 1©, 2) ← (4, 3, 2©, 1) ← (4, 2, 3©, 1)
(3, 4, 1©, 2) ← (3, 4, 2©, 1) ← (2, 4, 3©, 1)
(3, 1©, 4, 2) ← (3, 2©, 4, 1) ← (2, 3©, 4, 1)
(3, 1©, 2, 4) ← (3, 2©, 1, 4) ← (2, 3©, 1, 4)
(4, 1©, 3, 2)
(4, 1©, 2, 3)
(4, 2, 1©, 3)
(2, 4, 1©, 3)

Figure 1. Injective maps f2, f3, f4 induced by G = [50; 40, 30, 20, 10]. The circled number (player)
denotes the pivot player.

When an ordered pair of permutations (π, π′) satisfies that either (1) π = π′ or
(2) π ∈ Πi, π′ ∈ Πj, i < j, and π = fi−1 ◦ · · · ◦ f j−1 ◦ f j(π

′), we say that π′ is an ancestor
of π. Here, we note that π is always an ancestor of π itself. Lemma 1 implies that every
permutation π ∈ ΠN has a unique ancestor, called the originator, π′ ∈ Πj satisfying
either that j = n or that its inverse image f−1

j+1(π
′) = ∅. For each permutation π ∈ ΠN ,

org(π) ∈ N denotes the pivot of the originator of π; i.e., Πorg(π) includes the originator
of π.

Now, we describe our algorithm.

Algorithm 2 Our Algorithm.

Step 0: Set m := 1, ϕ′i := 0 (∀i ∈ N).
Step 1: Choose π ∈ ΠN uniformly at random. Put the random variable L(m) := org(π).

Update ϕ′i :=
{

ϕ′i + 1/L(m) (if i ≤ L(m)),
ϕ′i (if L(m) < i).

Step 2: If m = M, then output ϕ′i/M (∀i ∈ N) and stop.
Else, update m := m + 1 and go to Step 1.

In the example shown in Figure 1, if we choose π = (3, 2©, 4, 1) at Step 1 of Algorithm 2,
then org(π) = 3, and Algorithm 2 updates

(ϕ′1, ϕ′2, ϕ′3, ϕ′4) := (ϕ′1 + (1/3), ϕ′2 + (1/3), ϕ′3 + (1/3), ϕ′4).

For each permutation π ∈ ΠN , we can find the originator org(π) ∈ N in O(n) time.
Thus, the time complexity of Algorithm 2 is also bounded by O(M(τ(n) + n)), where τ(n)
denotes the computational effort required for the random generation of a permutation.

We denote the vector (of random variables) obtained by executing Algorithm 2 by
(ϕA2

1 , ϕA2
2 , . . . , ϕA2

n ). We have the following properties.

Theorem 3. (1) For each player i ∈ N, E
[

ϕA2
i

]
= ϕi.

(2) For each pair of players {i, j} ⊆ N, if ϕi > ϕj, then ϕA2
i ≥ ϕA2

j .

(3) For each pair of players {i, j} ⊆ N, if ϕi = ϕj, then ϕA2
i = ϕA2

j .

Proof. (1) For each i ∈ N, we define that ξi = |{π ∈ ΠN | org(π) = i}|. It is obvious that
|Πi| = ξi + ξi+1 + · · ·+ ξn (∀i ∈ N). If we choose π ∈ ΠN uniformly at random, then
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Pr[org(π) = i] = (i · ξi)/n! holds. From the above, it is easy to see that, for each i ∈ N, a
random variable ∆ϕ′i(π) defined by

∆ϕ′i(π) :=
{

1/org(π) (if i ≤ org(π)),
0 (if org(π) < i),

satisfies that

E[∆ϕ′i(π)]

= Pr[org(π) = i]
(

1
i

)
+ Pr[org(π) = i + 1]

(
1

i + 1

)
+ · · ·+ Pr[org(π) = n]

(
1
n

)
=

(
i · ξi
n!

)(
1
i

)
+

(
(i + 1) · ξi+1

n!

)(
1

i + 1

)
+ · · ·+

(
n · ξn

n!

)(
1
n

)
=

ξi + ξi+1 + · · ·+ ξn

n!
=
|Πi|
n!

= ϕi.

When (π(1), π(2), . . . , π(M)) denotes a sequence of permutations generated in Algorithm 2,
we have that

E
[

ϕA2
i

]
= E

[
∆ϕ′i(π

(1)) + ∆ϕ′i(π
(2)) + · · ·+ ∆ϕ′i(π

(M))

M

]
=

M

∑
m=1

E[∆ϕ′i(π
(m))]

M

=
M

∑
m=1

ϕi
M

= ϕi.

(2) Assumption 1 implies that, if ϕi > ϕj, then wi > wj, and thus, i < j. The update formula
of ϕ′i in Algorithm 2 directly implies that inequalities ϕ′1 ≥ ϕ′2 ≥ · · · ≥ ϕ′n hold throughout
the iterations of Algorithm 2, which leads to inequalities ϕA2

1 ≥ ϕA2
2 ≥ · · · ≥ ϕA2

n . From
the above, we obtain that ϕA2

i ≥ ϕA2
j .

(3) In the following, we assume that ϕi = ϕj and i < j. Assumption 1 implies that
ϕi = ϕi+1 = · · · = ϕj, and thus, |Πi| = |Πi+1| = · · · = |Πj|. From Lemma 1, fi+1, . . . , f j
are bijections; thus, ∀π ∈ Π, org(π) 6∈ {i, i + 1, . . . , j− 1}. Then, the update formula of ϕ′i
in Algorithm 2 implies that equalities ϕ′i = ϕ′i+1 = · · · = ϕ′j hold throughout the iterations

of Algorithm 2, which leads to the desired result: ϕA2
i = ϕA2

i+1 = · · · = ϕA2
j .

The following theorem provides the number of samples required in Algorithm 2.

Theorem 4. For any ε > 0 and 0 < δ < 1, we have the following.

(1) For each player i ∈ N = {1, 2, . . . , n}, if we set M ≥ ln 2 + ln(1/δ)

2ε2i2
, then

Pr
[∣∣∣ϕA2

i − ϕi

∣∣∣ < ε
]
≥ 1− δ.

(2) If we set M ≥ ln 2 + ln(1/δ)

2ε2 , then

Pr
[
∀i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε
]
≥ 1− 2

n

∑
i=1

(
δ

2

)i2

= 1− 2

((
δ

2

)
+

(
δ

2

)4
+

(
δ

2

)9
+ · · ·+

(
δ

2

)n2)
.
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(3) If we set M ≥ |N
∗| ln 2 + ln(1/δ)

2ε2 , then

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε

]
≥ 1− δ,

where N∗ = {i ∈ N \ {n} | ϕi > ϕi+1} ∪ {n}, i.e., |N∗| is equal to the size of the maximal player
subset, the S–S indices of which are mutually different.

Proof. Let us introduce random variables X(m)
i (∀m ∈ {1, 2, . . . , M}, ∀i ∈ N) in Step 2 of

Algorithm 2, defined by

X(m)
i =

{
1/L(m) (if 1 ≤ i ≤ L(m)),
0 (if L(m) < i).

It is obvious that, for each player i ∈ N, {X(1)
i , X(2)

i , . . . , X(M)
i } is a collection of independent

and identically distributed random variables satisfying

ϕA2
i =

M

∑
m=1

X(m)
i /M, E

[
ϕA2

i

]
= E

[
X(m)

i

]
= ϕi, and (1/i) ≥ X(m)

i ≥ (1/n)

for all m ∈ {1, 2, . . . , M}. Hoeffding’s inequality [40] implies that each player i ∈ N satisfies

Pr
[∣∣∣ϕA2

i − ϕi

∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2M2ε2

∑M
m=1(1/i− 0)2

)
= 2 exp(−2Mε2i2).

(1) If we set M ≥ ln(2/δ)

2ε2i2
, then

Pr
[∣∣∣ϕA2

i − ϕi

∣∣∣ < ε
]
≥ 1− 2 exp

(
−2

ln(2/δ)

2ε2i2
ε2i2
)
= 1− δ.

(2) If we set M ≥ ln(2/δ)

2ε2 , then we have that

Pr
[
∀i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε
]
= 1− Pr

[
∃i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ ≥ ε
]

≥ 1− ∑
i∈N

Pr
[∣∣∣ϕA2

i − ϕi

∣∣∣ ≥ ε
]
≥ 1−

n

∑
i=1

2 exp(−2Mε2i2)

≥ 1− 2
n

∑
i=1

exp
(
−2

ln(2/δ)

2ε2 ε2i2
)
= 1− 2

n

∑
i=1

(
δ

2

)i2

.

(3) We introduce random variables Y(m)
` (∀m ∈ {1, 2, . . . , M}, ∀` ∈ N) in Step 2 of

Algorithm 2, defined by

Y(m)
` =

{
1 (if ` = L(m)),
0 (otherwise).

Because ∑n
`=1 Y(m)

` = 1 (∀m), the above definition directly implies that

X(m)
i =

1
i

Y(m)
i +

1
i + 1

Y(m)
i+1 + · · ·+ 1

n
Y(m)

n .
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For each player i ∈ N and i ≤ ∀` ≤ n, we define Πi` = {π ∈ Πi | org(π) = `}. It is easy
to show that |Π1`| = |Π2`| = · · · = |Π``| for each ` ∈ {1, 2, . . . , n}. The above definitions
imply that

1
2 ∑

i∈N

∣∣∣ϕA2
i − ϕi

∣∣∣ = 1
2M ∑

i∈N

∣∣∣MϕA2
i −Mϕi

∣∣∣ = 1
2M ∑

i∈N

∣∣∣∣∣ M

∑
m=1

X(m)
i −M

|Πi|
n!

∣∣∣∣∣
=

1
2M ∑

i∈N

∣∣∣∣∣ M

∑
m=1

n

∑
`=i

1
`

Y(m)
` − M

n!

n

∑
`=i
|Πi`|

∣∣∣∣∣
=

1
2M ∑

i∈N

∣∣∣∣∣ n

∑
`=i

(
M

∑
m=1

1
`

Y(m)
` − M

n!
|Πi`|

)∣∣∣∣∣
≤ 1

2M

n

∑
i=1

n

∑
`=i

∣∣∣∣∣ M

∑
m=1

1
`

Y(m)
` − M

n!
|Πi`|

∣∣∣∣∣ = 1
2M

n

∑
`=1

`

∑
i=1

∣∣∣∣∣ M

∑
m=1

1
`

Y(m)
` − M

n!
|Πi`|

∣∣∣∣∣
=

1
2M

n

∑
`=1

`

∣∣∣∣∣ M

∑
m=1

1
`

Y(m)
` − M

n!
|Π1`|

∣∣∣∣∣ (since |Π1`| = |Π2`| = · · · = |Π``|)

=
1

2M

n

∑
`=1

∣∣∣∣∣ M

∑
m=1

Y(m)
` − M`

n!
|Π1`|

∣∣∣∣∣.
For each player ` 6∈ N∗, we have the equalities |Π`| = n!ϕ` = n!ϕ`+1 = |Π`+1|,

which yields that f`+1 : Π`+1 → Π` is a bijection; thus, Π` does not include any orig-
inator. From the above, it is obvious that, if ` 6∈ N∗, then Π1` = Π2` = · · · = Π`` = ∅.
For each ` ∈ {1, 2, . . . , n}, {Y(1)

` , Y(2)
` , . . . , Y(M)

` } is a Bernoulli process satisfying

E[Y(m)
` ] = 1

n! ∑`
i=1 |Πi`| = `

n! |Π1`| (∀m). Thus, ` 6∈ N∗ implies that Y(m)
` = 0 for any

m ∈ {1, 2, . . . , M}. To summarize the above, we have shown that

if ` 6∈ N∗ then
M

∑
m=1

Y(m)
` − M`

n!
|Π1`| =

M

∑
m=1

0− M`

n!
0 = 0.

Now, we have an upper bound of the total variation distance

1
2 ∑

i∈N

∣∣∣ϕA2
i − ϕi

∣∣∣ ≤ 1
2M

n

∑
`=1

∣∣∣∣∣ M

∑
m=1

Y(m)
` − M`

n!
|Π1`|

∣∣∣∣∣
=

1
2M ∑

`∈N∗

∣∣∣∣∣ M

∑
m=1

Y(m)
` −

M

∑
m=1

E[Y(m)
` ]

∣∣∣∣∣.
The vector of random variables

(
∑M

m=1 Y(m)
`

)
`∈N∗

is multinomially distributed and

satisfies that the total sum is equal to M. Then, the Bretagnolle–Huber–Carol inequality [41]
(Theorem A1 in Appendix A) implies that

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA2
i − ϕi

∣∣∣ ≥ ε

]
≤ Pr

[
1

2M ∑
`∈N∗

∣∣∣∣∣ M

∑
m=1

Y(m)
` −

M

∑
m=1

E[Y(m)
` ]

∣∣∣∣∣ ≥ ε

]

= Pr

[
∑

`∈N∗

∣∣∣∣∣ M

∑
m=1

Y(m)
` −

M

∑
m=1

E[Y(m)
` ]

∣∣∣∣∣ ≥ 2Mε

]
≤ 2|N

∗ | exp
(
−2Mε2

)

≤ 2|N
∗ | exp

−2
ln
(

2|N
∗ |/δ

)
2ε2 ε2

 = δ

and thus, we have the desired result.
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The following corollary provides an approximate version of Theorem 4 (2). Surpris-
ingly, it says that the required number of samples is irrelevant to n (number of players).

Corollary 1. For any ε > 0 and 0 < δ′ < 1, we have the following.

If we set M ≥ ln 2 + ln(1/δ′) + ln 1.129
2ε2 , then

Pr
[
∀i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε
]
≥ 1− δ′.

Proof. If we put δ = δ′/1.129, then Theorem 2 (2) implies that

Pr
[
∀i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε
]

≥ 1− 2

((
δ

2

)
+

(
δ

2

)4
+

(
δ

2

)9
+ · · ·+

(
δ

2

)n2)

≥ 1− δ

(
1 +

(
1
2

)3
+

(
1
2

)8
+

(
1
2

)15
+

(
1
2

)24
+ · · ·+

(
1
2

)n2−1
)

≥ 1− δ

(
1 +

(
1
2

)3
+

(
1
2

)8
(

1 +
(

1
2

)7
+

(
1
2

)14
+

(
1
2

)21
+ · · ·

))

= 1− δ

(
1 +

(
1
2

)3
+

(
1
2

)8( 1
1− (1/2)7

))
≥ 1− 1.129δ = 1− δ′.

Here, we note that ln 2 ' 0.69314 and ln 1.129 ' 0.12133.
In a practical setting, it is difficult to estimate the size of N∗ defined in Theorem 4 (3)

since the problem of verifying the asymmetricity of a given pair of players is NP-complete [19].
The following corollary is useful in some practical situations.

Corollary 2. For any ε > 0 and 0 < δ < 1, we have the following.

If we set M ≥ n′′ ln 2 + ln(1/δ)

2ε2 , then

Pr

[
1
2 ∑

i∈N

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε

]
≥ 1− δ,

where n′′ = |{i ∈ N \ {n} | wi > wi+1} ∪ {n}|, i.e., n′′ is equal to the size of a maximal player
subset with mutually different weights.

Proof. Since ϕi > ϕi+1 implies wi > wi+1, it is obvious that |N∗| ≤ n′′, and we have the
desired result.

A game of the power of the countries in the EU Council is defined by (255; 29, 29, 29,
29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 3) [42,43]. In this case,
n = 27 and n′′ = 9. A weighted majority game defined by [44] (Section 12.4) for a voting
process in the United States has a vector of weights

(270; 45, 41, 27, 26, 26, 25, 21, 17, 17, 14, 13, 13, 12, 12, 12, 11, 10, . . . , 10︸ ︷︷ ︸
4 times

, 9, . . . , 9︸ ︷︷ ︸
4 times

,

8, 8, 7, . . . , 7︸ ︷︷ ︸
4 times

, 6, . . . , 6︸ ︷︷ ︸
4 times

, 5, 4, . . . , 4︸ ︷︷ ︸
9 times

, 3, . . . , 3︸ ︷︷ ︸
7 times

), where n = 51 and n′′ = 19.
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5. Computational Experiments

This section reports the results of our preliminary numerical experiments. All the
experiments were conducted on a Windows machine, i7-7700 CPU@3.6GHz Memory (RAM)
16 GB. Algorithms 1 and 2 were implemented using Python 3.6.5.

We tested the EU Council instance and the United States instance described in the
previous section. In each instance, we set M in Algorithms 1 and 2 (the number of generated
permutations) to M ∈ {1× 105, 2× 105, . . . , 24× 105}. For each value of M, we executed
Algorithms 1 and 2 100 times. Figures 2 and 3 show the results of some players. For each
value of M, we calculated the mean number of |ϕi − ϕA

i |, denoted by ε̂i, in an average
of 100 trials. The horizontal axes of Figures 2 and 3 show the value 1/ε̂i

2. Under the
assumption that M = α/ε̂i

2, we estimated α by the least squares method. Table 2 shows
the results and ratios of α of the two algorithms.

Figure 2. EU Council.

Figure 3. United States.
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Table 2. Comparison of Algorithms 1 and 2.

EU Council
α

Algorithm 1 Algorithm 2 ratio

Player 1 0.0557 0.0022 25.318
Player 13 0.0199 4.1615× 10−4 47.819
Player 27 0.0049 1.3987× 10−4 35.033

United States
α

Algorithm 1 Algorithm 2 ratio

Player 1 0.0489 0.0181 2.7017
Player 26 0.0088 1.2837× 10−4 68.552
Player 51 0.0032 4.8911× 10−5 65.424

For each (generated) permutation, the computational effort of both Algorithms 1 and 2
are bounded by O(n). Here, we discuss the constant factors of O(n) computations. We
tested the cases where weights wi are generated uniformly at random from the intervals
(1, 10) or (1, 20), and the quota is equal to (1/2)∑i∈N wi. For each n ∈ {10, 20, . . . , 100},
we executed Algorithms 1 and 2 by setting M = 10,000. Under the assumption that
computational time is equal to an + b, we estimated a and b by the least squares method.
Figure 4 shows that for each permutation, the computational effort of Algorithm 2 increases
about five-fold compared to Algorithm 1.

Figure 4. Computational time.

6. Conclusions

In this paper, we analyzed a naive Monte Carlo algorithm (Algorithm 1) for calculating
the S–S index denoted by (ϕ1, ϕ2, . . . , ϕn) in weighted majority games. By employing the
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Bretagnolle–Huber–Carol inequality [41] (Theorem A1 in Appendix A), we estimated the
required number of samples that gives an upper bound of the total variation distance.

We also proposed an efficient Monte Carlo algorithm (Algorithm 2). The time complex-
ity of each iteration of our algorithm is equal to that of the naive algorithm (Algorithm 1).
Our algorithm has the property that the obtained estimator (ϕA2

1 , ϕA2
2 , . . . , ϕA2

n ) satisfies

both [ if ϕi < ϕj, then ϕA2
i ≤ ϕA2

j ] and [ if ϕi = ϕj, then ϕA2
i = ϕA2

j ].

We proved that, even if we consider the property

Pr
[
∀i ∈ N,

∣∣∣ϕA2
i − ϕi

∣∣∣ < ε
]
≥ 1− δ,

the required number of samples is irrelevant to n (the number of players).

Author Contributions: Y.U.: validation, original draft preparation; M.T.: visualization, coding
simulations; T.M.: manuscript writing, project supervision. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by JSPS KAKENHI, Grant Numbers JP26285045, JP26242027,
and JP20K04973.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A. (Bretagnolle–Huber–Carol Inequality)

Theorem A1 ([41]). If the random vector (Z1, Z2, Z3, . . . , Zn) is multinomially distributed with
parameters (p1, p2, . . . , pn) and satisfies Z1 + Z2 + · · ·+ Zn = M, then

Pr

[
n

∑
i=1
|Zi −Mpi| ≥ 2Mε

]
≤ 2n exp(−2Mε2).

Proof. It is easy to see that

Pr

[
n

∑
i=1
|Zi −Mpi| ≥ 2Mε

]
= Pr

[
2 max

S⊆{1,2,...,n}
∑
i∈S

(Zi −Mpi) ≥ 2Mε

]

= Pr

[
∃S ⊆ {1, 2, . . . , n}, ∑

i∈S
(Zi −Mpi) ≥ Mε

]
≤ ∑

S⊆{1,2,...,n}
Pr

[
∑
i∈S

(Zi −Mpi) ≥ Mε

]

= ∑
S⊆{1,2,...,n}

Pr

[
∑
i∈S

Zi −M ∑
i∈S

pi ≥ Mε

]

For any subset S ⊆ {1, 2, . . . , n}, there exists a Bernoulli process (X(1)
S , X(2)

S , . . . , X(M)
S )

satisfying ∑i∈S Zi = ∑M
m=1 X(m)

S and E[X(m)
S ] = ∑i∈S pi (∀m ∈ {1, 2, . . . M}). Hoeffding’s

inequality [40] implies that

∑
S⊆{1,2,...,n}

Pr

[
∑
i∈S

Zi −M ∑
i∈S

pi ≥ Mε

]
= ∑

S⊆{1,2,...,n}
Pr

[
M

∑
m=1

X(m)
S − E

[
M

∑
m=1

X(m)
S

]
≥ Mε

]

= ∑
S⊆{1,2,...,n}

Pr

[
1
M

M

∑
m=1

X(m)
S − 1

M
E

[
M

∑
m=1

X(m)
S

]
≥ ε

]
≤ ∑

S⊆{1,2,...,n}
exp(−2Mε2)

= 2n exp(−2Mε2).
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