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Abstract: Cooperation is widely recognized to be fundamental for the well-balanced development
of human societies. Several different approaches have been proposed to explain the emergence of
cooperation in populations of individuals playing the Prisoner’s Dilemma game, characterized by
two concurrent natural mechanisms: the temptation to defect and the fear to be betrayed by others.
Few results are available for analyzing situations where only the temptation to defect (Chicken game)
or the fear to be betrayed (Stag-Hunt game) is present. In this paper, we analyze the emergence
of full and partial cooperation for these classes of games. We find the conditions for which these
Nash equilibria are asymptotically stable, and we show that the partial one is also globally stable.
Furthermore, in the Chicken and Stag-Hunt games, partial cooperation has been found to be more
rewarding than the full one of the Prisoner’s Dilemma game. This result highlights the importance of
such games for understanding and sustaining different levels of cooperation in social networks.

Keywords: evolutionary games; cooperation; consensus; dynamics on networks; stag-hunt game;
chicken game; mixed Nash equilibrium; self-regulation; stable equilibrium; complex systems

1. Introduction

Cooperation in a population is a key emerging phenomenon, which has fascinated
many scientists in several fields, ranging from biology to social and economics science [1–7],
and recently also considered in technological applications [8,9]. Although cooperation has
been sometimes seen to contrast with the Darwinian concept of natural selection, it emerges
in many complex systems providing substantial benefits for all members of groups and
organizations [10–17]. Generally, this topic is tackled using the tools of evolutionary game
theory, which constitute the mathematical foundations for modeling the decision making
process of players taking part in a replicator/selection competition. These mechanisms are
described by means of the well known replicator Equation [3,18,19]. Moreover, the structure
of the society plays an important role: studies aimed to embed networks into games with a
finite set of strategies have been developed for infinite lattices [20]. Further developments
have been proposed in [21,22] where the graph topology is general, and players are allowed
to choose a strategy in the continuous set ∆ = [0, 1]. In general, it has been shown that
particular networks act as a catalyst for the emergence of cooperation [14,23–27]. In [28],
it has been shown that cooperation can emerge if the average connectivity, measured as
the average degree of the underlying graph, is smaller than the benefits/costs ratio of
altruistic behavior. Moreover, to solve the problem of cooperation, the majority of papers
on the topic add and/or change the rule of the played games [29]. For example, as part of a
society, individuals often use punishment mechanisms which limit the detrimental behavior
of free riders or they can be awarded if they prefer cooperative behaviors [10,17,30–33].
Furthermore, mechanisms based on discount and synergies among players have been also
proposed [13]. In summary, all these efforts are aimed to point out the role of exogenous
factors in the emergence of cooperation.
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Recently the fact that every human player is characterized by endogenous factors,
like the awareness of conflicts, which can act as a motivation for cooperation has been
emphasized. In other words, the rules of the game are important, but also other elements
that distinguish human and animals, must have a crucial effect. In particular, in [34]
the Self-Regulated Evolutionary Game on Network Equation (SR-EGN) this has been
introduced, by extending the EGN equation studied in [21,22]. The SR-EGN equation is
a set of ordinary differential equations modeling the social pressure on each individual
(exogenous factors) and their innate tendency to cooperate with one another even when it
contrasts their rational self-interest (endogenous factors). The introduced self-regulation
is not imposed by internal norms for cooperation; instead, it is inspired by the fact that
individuals are able to look at their interactions from the point of view of the others [35,36].
In this way, selfish behavior are subject to an inertial mechanism, driving the final decision
towards a more cooperative one.

Consensus solutions, where all players agree to converge to a common level of coop-
eration, are also significant for the sustainable development of interacting real societies.
Consensus is a puzzling topic since it is often achieved without centralized control [37–39].
Remarkably, when cooperation spreads all over a population, consensus of all individuals
to the same strategy is reached, thus allowing social individuals to wipe out the cost of
indecision [40]. In the context of cooperation, consensus is usually studied in the full
sense, where all players have the ability to make fully cooperative decisions (pure NE
equilibrium). For the purpose of being more realistic, we notice that real players can be also
partially cooperative. Thus, a revision of the concept of consensus towards cooperation in
a more general sense is required.

The SR-EGN is suitable for this scope, since the modeled individuals are naturally able
to exhibit both full and partial levels of cooperation, as well as full defection. Additionally,
the SR-EGN equation has three different consensus steady states: x∗AC, where all players
are fully cooperative, x∗AM where all players are partially cooperative, and x∗AD, where all
players are fully defective. While x∗AD should be avoided, x∗AC and x∗AM are both desirable.
In this paper, we study and compare the stability conditions and the effectiveness of the
last two states in the Stag-Hunt (SH) [13,41–43] and Chicken (CH) [12,13,25,41] games.
In [34], the conditions for the onset of the fully cooperative consensus steady state have
been found for the Prisoner’s Dilemma game (PD). Anyway, in this case, convergence
towards a partially cooperative consensus is not possible.

The main finding of this paper is that, in both SH and CH games, the steady states
x∗AC and x∗AD are simultaneously asymptotically stable. On the other hand, when they
are unstable, the conditions for which the partially cooperative state x∗AM is globally
asymptotically stable. Additionally, we show that x∗AM can produce an higher payoff
than x∗AC. These results highlight the importance of studying SH and CH games, thus
providing a deeper understanding of the mechanisms leading towards cooperation in real
world situations.

The paper is structured as follows: Section 2 illustrates main concepts and the SR-EGN
equation. Section 3 presents the results on asymptotic stability of x∗AC and x∗AD, and on
asymptotic and global stability of x∗AM. In Section 4, several numerical experiments are
developed and the discussion on the main findings is reported. Finally, some conclusions
and further developments are presented in Section 5.

2. Emergence of Cooperation and Consensus

The study developed in this paper is grounded on a recently introduced equation,
namely the SR-EGN model [34], which represents a framework for understanding the
evolution of cooperation under the effect of self regulation in a structured population.

Following [34], we consider a population of N players, labeled by v = {1, . . . , N},
arranged on an undirected graph, described by the adjacency matrix A = {av,w} (av,w =
aw,v = 1 when v plays against w, 0 otherwise). We assume av,v = 0 ∀v ∈ V . Moreover,
the degree of player v, i.e., the number of its connections, is denoted by kv = ∑N

w=1 av,w.
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At each time instant, an individual v plays kv two-person games with its neighbors. The
vector k collects all degrees kv. We denote with xv ∈ ∆ = [0, 1] the level of cooperation
of player v, and with 1− xv its level of defection. A player with xv ∈ int(∆) = (0, 1) is
exhibiting a partial level of cooperation, while full cooperator has xv = 1 and a free rider
is characterized by xv = 0. The cooperation levels of each individual are collected in the
vector x = [x1, . . . , xN ]

> ∈ ∆N .

2.1. Games and Payoffs Calculation

The reward of player v playing against a connected individual w is defined by the
payoff function φ : ∆× ∆→ R:

φ(xv, xw) =

[
xv

1− xv

]>
B
[

xw
1− xw

]
, (1)

where B represents the payoff matrix defined as:

B =

[
1 S
T 0

]
, (2)

where 1 is the reward collected by v when both players cooperate, T is earned by v when
it defects and w cooperates (temptation to defect), S is the payoff for cooperative v and
defective w (sucker’s payoff), and 0 is get when both players defect (punishment for mutual
defection). The games classification with respect to parameters T and S, as well as the
characterizing social tensions [13,24,25], are reported in Figure 1.

0 1 2
T

−1

0

1

S

SH

1 > T > 0 > S

PD

T > 1 > 0 > S

CH

T > 1 > S > 0

HA

0<T<1
0<S<1

Preference for
unilateral defection over

mutual cooperation

Preference for
mutual defection over
unilateral cooperation

Tension-free
case

Both tensions
are active

Figure 1. Different game types according to the values of parameters T and S.

Using (2), Equation (1) can be rewritten as follows:

φ(xv, xw) = xv(1 · xw + S(1− xw)) + (1− xv)(Txw + 0 · (1− xw))
= ((1− T − S)xw + S)xv + Txw.

(3)

Accordingly, the derivative of (3) with respect to xv is:

∂φ(xv, xw)

∂xv
= (1− T − S)xw + S. (4)
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Over the network of connections, the total payoff function φv : ∆N → R of a generic
player v corresponds to the sum of all payoffs gained against neighbors, and it is defined
as follows:

φv(x) =
N

∑
w=1

av,wφ(xv, xw). (5)

The player v is able to appraise if a change of its own strategy xv leads to an improve-
ment of the payoff φv. That is, if the derivative of φv with respect to xv is positive (negative),
the player will increase (decrease) its strategy over time in order to raise its payoff. When
this derivative is null, the player has reached a steady state. The derivative of the total
payoff (5) is:

∂φv

∂xv
=

∂

∂xv

N

∑
w=1

av,wφ(xv, xw)

=
N

∑
w=1

av,w
∂φ(xv, xw)

∂xv

=
N

∑
w=1

av,w[(1− T − S)xw + S]

= kv[(1− T − S)xv + S],

(6)

where xv = 1
kv

∑N
w=1 av,wxw represents the average of the strategies of all its neighbors.

In particular, this quantity can be interpreted as the strategy of an equivalent neighbor-
ing player for v. ∂φv

∂xv
represents the external feedback perceived by player v from the

environment, which influences its own strategy dynamics [34].
The similarity of Equations (4) and (6) suggests the introduction of a function modeling

the dependency of the game mechanics on the elements of the payoff matrix:

∂φv

∂xv
= kv[(1− T − S)xv + S] := kv f (xv). (7)

2.2. The SR-EGN Model

“What kind of reward can I earn if I use a certain strategy against myself?”. In
order to appropriately answer to these kinds of questions, we need to account for internal
feedback induced by cultural traits, awareness, altruism, learning, etc. [1,11]. When an
individual judges cooperation as a greater good, some inertial mechanisms, able to reduce
the (rational) temptation to defect, may be activated. The most intuitive way to account
for these factors is to use the same game mechanics, assuming that the opponent is the
player itself. In this way, a player is capable to assume the position of the other agent, thus
evaluating the payoff internally as an additional driver for its decision. This is accounted
by the SR-EGN Equation [34], which reads as follows:

ẋv = xv(1− xv)(kv f (xv)− βv f (xv)), (8)

where we used Equation (7) and βv is a parameter weighting the importance of the inter-
nal factors.

Equation (8) embeds both external and internal feedback mechanisms driving the
player’s decisions. When βv = 0, the individual is somehow “member of the flock”,
since its strategy changes only according to the outcomes of the game interactions with
neighbors. This effect is particularly dramatic in the classical PD context, as cooperation
completely disappears from the population. In this direction, βv can be also interpreted
as the resistance strength of player v to external feedback [39]. This corresponds to the
presence of an internal feedback, which can be positive (βv > 0) or negative (βv < 0).

It is useful to introduce the following matrix:

A′(β) = A− diag(β), (9)
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where
β = [β1, . . . , βN ]

>.

The diagonal of A′(β) contains the weights βv of the self games.

2.3. The Concepts of Emergence of Cooperation and Consensus

Figure 2 shows five possible asymptotic configurations in a simple social network
with N = 5 individuals.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5
x∗AM

1

2

3

4

5
x∗AC

1

2

3

4

5
x∗AD

0

1

xv

Defector (D)

Cooperator (C)Emergence of cooperation

Consensus

Some defectors All defectors

Figure 2. Emergence of cooperation and consensus. Five configurations of a social network of
5 players. The cooperation level of each player is represented by a color ranging from red (full
defection, xv = 0) to yellow (full cooperation, xv = 1), as reported on the shaded box on the
rightmost part of the figure. The first graph shows a generic configuration with cooperators, defectors
and mixed players. The graphs highlighted by the blue dashed line box, are examples of emergence
of cooperation, since no full defector is present. In particular, the middle graph corresponds to the
steady state x∗AM, while the last one represents the steady state x∗AC. The fifth graph shows a
population composed of full defectors only, thus SR-EGN converged to the steady state x∗AD. The
graphs in the green dashed line box represent consensus states, since all players reach the same level
of cooperation.

The color of each node of the graph denotes the level of cooperation of the corre-
sponding player (red for full defectors, yellow for full cooperators and orange shadings for
intermediate levels). In the first graph of Figure 2, a generic configuration is illustrated,
including defectors (players 1 and 5), one cooperator (player 2), and mixed ones (play-
ers 3 and 4). The second graph in Figure 2 depicts a population without full defectors
(i.e., xv > 0 ∀v ∈ V). Moreover, the third graph shows consensus towards the partially
cooperative steady state x∗v = m ∈ int(∆) ∀v ∈ V .

In this study, we focus on the following consensus steady states of (8):

• Full cooperation (pure strategy): x∗AC = [1, 1, . . . , 1]>.
• Full defection (pure strategy): x∗AD = [0, 0, . . . , 0]>.
• Partial cooperation (mixed strategy): x∗AM = [m, m, . . . , m]>, where m ∈ int(∆).

We will refer to them as consensus steady states, and their stability will be deeply
analyzed later in this paper.

Following [24–26,28,44], full cooperation is reached when all members of a social net-
work turn their strategies to cooperation. This concept can be formally defined as follows:

Definition 1. In SR-EGN Equation (8) consensus on full cooperation emerges if

lim
t→+∞

xv(t) = 1 ∀v ∈ V ,

for any initial condition x(0) ∈ S ⊆ ∆N .

Definition 1 corresponds to the asymptotic stability of x∗AC with basin of attraction
S . When dealing with partially cooperative players, a weaker definition of consensus is
required:
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Definition 2. In SR-EGN Equation (8) consensus on partial cooperation emerges if:

lim
t→+∞

xv(t) = m ∀v ∈ V ,

with m ∈ int(∆) for any initial condition x(0) ∈ S ⊆ ∆N .

Definition 2 corresponds to the asymptotic stability of x∗AM with basin of attraction S .
In [34], sufficient conditions for full cooperation and full defection have been found

for the PD game (see Main Results 2 and 3). In the next sections, we will develop results on
cooperation and consensus for SH and CH games. Specifically, we start by analyzing the
asymptotic stability of x∗AC, x∗AD and x∗AM. Finally, an appropriate Lyapunov function is
found, guaranteeing the emergence of cooperation in partial sense starting from any initial
condition in int(∆N) (global asymptotic stability).

3. Results on the Emergence of Cooperative Consensus
3.1. Steady States

A steady state x∗ is a solution of Equation (8) satisfying ẋv = 0 ∀v ∈ V . In order to
be feasible, the steady state components must lay in ∆. Formally, the set of feasible steady
states is:

Θ =
{

x∗ ∈ ∆N : x∗v(1− x∗v)(kv f (x∗v)− βv f (x∗v)) = 0 ∀v ∈ V
}

.

It is clear that all points such that for all v, x∗v = 0 or x∗v = 1 are in the set Θ. They
are 2N and we will refer to them as pure steady states. We denote with ΘP ⊆ Θ their set,
which includes x∗AC and x∗AD among the others.

Mixed steady states may exist when:

kv f (x∗v)− βv f (x∗v) = 0 ∀v ∈ V , (10)

and x∗v ∈ int(∆). We denote the set of mixed steady states with ΘM ⊂ Θ. In [21], it has
been shown that, if 1− T − S 6= 0, the solution of (10) is x∗AM = [m, . . . , m]>, where:

m =
S

S + T − 1
, (11)

feasible when m ∈ int(∆); this is possible only in SH and CH games. In particular:

• SH games: S < 0 and 0 < T < 1. Then, S < S + T − 1 < 0. Thus, m ∈ int(∆);
• CH games: S > 0 and T > 1. Then, 0 < S < S + T − 1. Thus, m ∈ int(∆).

For the sake of completeness, we remark that SR-EGN may also have pure-mixed
steady states, which belong to the set ΘPM = Θ \ (ΘP ∪ΘM). These are not considered in
this work, since they do not represent consensus steady states.

3.2. Linearization of SR-EGN Model

The Jacobian matrix of system (8), J(x) = {jv,w(x)}, is defined as follows:

jv,w(x) =
∂ẋv

∂xw
=



xv(1− xv)(1− T − S), if av,w = 1

−βvxv(1− xv)(1− T − S)
+(1− 2xv)(kv f (xv)− βv f (xv)), if w = v

0, otherwise

. (12)

Evaluating the Jacobian matrix on a generic steady state x∗ ∈ Θ, we have the follow-
ing cases:
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• If x∗v ∈ {0, 1} (player v uses a pure strategy at steady state), then all non-diagonal
entries jv,w(x) in (12) with v 6= w are null, while

jv,v(x∗) =


kv f (x∗v)− βv f (x∗v), if x∗v = 0

−(kv f (x∗v)− βv f (x∗v)), if x∗v = 1

. (13)

• If x∗v ∈ (0, 1) (player v uses a mixed strategy at steady state), then, according to
Equations (10) and (12), the entries of the v-th row of J(x∗) are:

jv,w(x∗) =



x∗v(1− x∗v)(1− T − S), if av,w = 1

−βvx∗v(1− x∗v)(1− T − S), if w = v

0, otherwise

. (14)

3.3. Stability of Pure Consensus Steady States x∗AC and x∗AD

Recall that the spectrum of J(x∗) characterizes the linear stability of a steady state x∗

of the SR-EGN Equation (see [45]). Therefore, the eigenvalues of the Jacobian matrix J(x∗)
are related to the emergence of cooperation, provided that x∗ is a consensus steady state.

According to Equation (13), the Jacobian matrices evaluated at the consensus steady
states x∗AC and x∗AD are both diagonal, and they read as:

J(x∗AC) = −(1− T) · diag(k− β), (15)

and
J(x∗AD) = S · diag(k− β). (16)

The following results hold.

Theorem 1.

• SH game. If βv < kv ∀v ∈ V then x∗AC is asymptotically stable for Equation (8);
• CH game. If βv > kv ∀v ∈ V then x∗AC is asymptotically stable for Equation (8).

Proof. The diagonal elements of the Jacobian matrix evaluated at x∗AC (Equation (15))
correspond to its eigenvalues and they read as:

jv,v(x∗AC) = λv = −(1− T)(kv − βv).

In SH Game, T < 1 and βv < kv, hence, all eigenvalues are negative. In CH Game,
T > 1 and βv > kv, and again all eigenvalues are negative. Thus, x∗AC is asymptotically
stable in both cases.

Notice that Theorem 1 is an extension of the Main result 1 of [34] to SH and CH games.
Additionally, Theorem 2 stated in [21], ensures that any asymptotically stable pure steady
state is also a Nash equilibrium. Then, under the hypotheses of Theorem 1, x∗AC is a Nash
equilibrium of the networked game.

Theorem 2.

• SH game. If βv < kv ∀v ∈ V then x∗AD is asymptotically stable for Equation (8);
• CH game. If βv > kv ∀v ∈ V then x∗AD is asymptotically stable for Equation (8).
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Proof. The eigenvalues of the Jacobian matrix relative to the steady state x∗AD (Equation (16)) are:

jv,v(x∗AD) = λv = S(kv − βv).

In SH game, S < 0 and βv < kv, hence all eigenvalues are negative. In CH game, then
S > 0 and βv > kv, hence all eigenvalues are negative. Thus, x∗AD is an asymptotically
stable steady state in both cases.

Theorem 2 represents an extension of Main Result 1 on PD in [34] to SH and CH games.
Following Theorems 1 and 2, when x∗AC and x∗AD are unstable, it is interesting to

investigate the presence of other asymptotically stable steady states in int(∆N). In the next
Section 3.4, we find the conditions for which the state x∗AM is asymptotically stable, and
prove that it is also globally asymptotically stable. This means that no other attractive
states exists in int(∆N).

3.4. Stability of Mixed Consensus Steady State x∗AM

According to Equations (11) and (14) the Jacobian matrix for the mixed steady state
x∗AM is:

J(x∗AM) = m(1−m)(1− T − S)(A− diag(β)) =
S(T − 1)
1− T − S

A′(β). (17)

The following result holds.

Theorem 3.

• SH game. If βv > kv ∀v ∈ V then x∗AM is asymptotically stable for Equation (8);
• CH game. If βv < −kv ∀v ∈ V then x∗AM is asymptotically stable for Equation (8).

Proof. If |βv| > kv ∀v ∈ V , then A′(β) is a strictly diagonally dominant matrix. Indeed, kv
corresponds to the sum of all non-diagonal entries of the v-th row of A′(β), while −βv is
the diagonal entry of A′(β).

In the SH game, since βv > kv ∀v ∈ V and A has null diagonal, then diagonal
entries of A′(β) are negative. Therefore, from the strict diagonal dominance of A′(β) it
follows that all eigenvalues of A′(β) are negative. Moreover, since T < 1 and S < 0, then
1− T − S > 0 and S(T − 1) > 0. Thus, according to Equation (17), the eigenvalues of
J(x∗AM) are all negative.

In the CH game, for the same reasons as above, since βv < −kv ∀v ∈ V , then all
eigenvalues of A′(β) are positive. Moreover, since T > 1 and S > 0, then 1− T− S < 0 and
S(T − 1) > 0. Thus, according to Equation (17), the eigenvalues of J(x∗AM) are all negative.

In both cases, x∗AM is an asymptotically stable steady state for Equation (8).

The results of Theorems 1, 2 and 4 are synthesized in Figure 3. In PD game, if βv > kv
for all members of the population, x∗AD is destabilized and x∗AC becomes attractive (subplot
a of Figure 3). Conversely, βv < kv ∀v ∈ V defection is dominant (subplot b of Figure 3),
while x∗AM is not feasible.

A SH game naturally exhibits bistability, which is a common feature of many social
and biological systems [13,41–43]. Indeed, in the natural case where β = 0 we have a
repulsive equilibrium x∗AM standing between two attractive equilibria x∗AC and x∗AD. In the
SR-EGN, thanks to Theorems 1 and 2, for βv < kv ∀v ∈ V , x∗AC and x∗AD are both attractive,
while they are both unstable for βv > kv ∀v ∈ V (subplots a,b of Figure 3). Moreover,
according to Theorem 4, when βv > kv ∀v ∈ V , then x∗AM is asymptotically stable (subplot
c of Figure 3).

CH games represent an important class of social dilemmas [12,13,25,41], where coop-
erators and free riders coexist. In the standard replicator equation, total cooperation and
total defection are now repulsive equilibria, while the mixed steady state is attractive. In
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the the SR-EGN model, when β = 0, the mixed stead state x∗AM, x∗AC and x∗AD are present
and repulsive. When self-regulation is active, and in particular βv > kv ∀v ∈ V , then
for Theorems 1 and 2 x∗AC and x∗AD are asymptotically stable (subplots a,b of Figure 3),
while for βv < kv ∀v ∈ V they are unstable. Moreover, according to Theorem 4, when
βv < −kv ∀v ∈ V , then x∗AM is asymptotically (subplot c of Figure 3). In the interval
(−kv, kv) other steady states belonging to ΘPM are asymptotically stable.

0 1 2
T

−1

0

1

S

SH PD

CHHA

βv < kv βv > kv

βv > kv

a
x∗AC is as. stable if ∀v ∈ V

0 1 2
T

SH PD

CHHA

βv < kv βv < kv

βv > kv

b
x∗AD is as. stable if ∀v ∈ V

0 1 2
T

SH PD

CHHA

βv > kv

βv < −kv

c
x∗AM is as. stable if ∀v ∈ V

Figure 3. Graphical representation of Theorems 1 (subplot a), 2 (subplot b) and 3 (subplot c).

3.5. Global Stability of x∗AM

The consensus on full cooperation can emerge under the condition of Theorem 1.
Anyway, the basin of attraction of x∗AC does not correspond to the whole set int(∆N), since
x∗AD is asymptotically stable for the same parameters. Hence, we cannot expect to reach
global consensus towards full cooperation. Moreover, we showed in Theorem 3 that x∗AM is
asymptotically stable for suitable conditions. Then, we further check if there are conditions
for which it is also globally asymptotically stable.

Hereafter we introduce a Lyapunov function V(x) allowing us to prove that x∗AM is
globally asymptotically stable:

V(x) =
N

∑
v=1

(
m log

(
m
xv

)
+ (1−m) log

(
1−m
1− xv

))
, (18)

for x ∈ int(∆N). First of all, notice that V(x∗AM) = 0. Moreover, the gradient of V(x) is null
for x∗AM. Indeed, the partial derivatives of V(x) with respect to x are:

∂V(x)
∂xv

= − m
xv

+
1−m
1− xv

=
xv −m

xv(1− xv)
.

It is straightforward to see that the Hessian matrix H(x) = {hv,w(x)} of V(x) is diagonal:

hv,v(x) =
∂2V(x)

∂x2
v

=
x2

v − 2mxv + m
x2

v(1− xv)2 . (19)

From (19) it follows that V(x) ∈ C2 for all x and it is definite positive ∀x ∈ int(∆N).
Indeed, the denominator of hv,v(x) is always positive as its numerator:

x2
v − 2mxv + m = x2

v − 2mxv + m2 + m−m2 = (xv −m)2 + m(1−m) > 0.

This proves that V(x) is a strictly convex function in the set int(∆N). Thus, x∗AM is a
global minimum of V(x) in the set int(∆N).
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The time derivative of V(x) is:

V̇(x) =
∂V(x)

∂t
=

N

∑
v=1

∂V(x)
∂xv

ẋv

=
N

∑
v=1

xv −m
xv(1− xv)

xv(1− xv)[kv f (xv)− βv f (xv)]

=
N

∑
v=1

(xv −m)[kv f (xv)− βv f (xv)]. (20)

Notice that the function f defined in Equation (7), can be rewritten using the explicit
value of m in Equation (11) as follows:

f (xv) = (1− T − S)xv + S = (1− T − S)
(

xv +
S

1− T − S

)
= (1− T − S)(xv −m).

Similarly:
f (xv) = (1− T − S)(xv −m).

Then, Equation (20) becomes:

V̇(x) = (1− T − S)
N

∑
v=1

(xv −m)[kv(xv −m)− βv(xv −m)].

Notice that:

kv(xv −m) = kvxv − kvm

= kv

(
1
kv

N

∑
w=1

av,wxw

)
−
(

N

∑
w=1

av,w

)
m

=
N

∑
w=1

av,wxw −
N

∑
w=1

av,wm

=
N

∑
w=1

av,w(xw −m).

This yields to:

V̇(x) = (1− T − S)
N

∑
v=1

(xv −m)

[
N

∑
w=1

av,w(xw −m)− βv(xv −m)

]
.

= (1− T − S)
N

∑
v=1

(
N

∑
w=1

av,w(xw −m)(xv −m)− βv(xv −m)2

)
= (1− T − S)(x− x∗AM)>(A− diag(β))(x− x∗AM)

= (x− x∗AM)>
(
(1− T − S)A′(β)

)
(x− x∗AM)

= (x− x∗AM)>M(x− x∗AM).

Indeed, V̇(x) is a quadratic form, where M = (1− T− S)A′(β) is a symmetric matrix.
Additionally, notice that V̇(x∗AM) = 0.

We now prove that x∗AM is globally asymptotically stable.

Theorem 4.
Consider the set int(∆N).
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• SH game. If βv > kv ∀v ∈ V then x∗AM is globally asymptotically stable for Equation (8);
• CH game. If βv < −kv ∀v ∈ V then x∗AM is globally asymptotically stable for Equation (8).

Proof. According to Equation (17), the matrix M is related to the the Jacobian matrix
evaluated at the internal steady state x∗AM as follows:

M =
1

m(1−m)
J(x∗AM). (21)

Since m(1−m) > 0, then using the same arguments of Theorem (3), we have that all
eigenvalues of M are negative. Therefore, the quadratic form V̇(x) is negative definite in
the set int(∆N), and then V(x) in Equation (18) is a Lyapunov function in the set int(∆N).
Thus, x∗AM is a global attractor in the set int(∆N).

Theorem 4 states that the system (8) shows consensus towards partial cooperation.
Notice that under the assumptions of Theorem 4, both Theorems 1 and 2 are not satisfied,
and hence both x∗AC and x∗AD are unstable.

4. Discussion and Numerical Results

The theoretical results presented in the previous Section have been numerically tested
by means of several simulation experiments.

The first experiment is shown in Figure 4 for SH and CH games, where the reported
numerical solutions of Equation (8) are evaluated over a Scale-Free (SF) network composed
by 20 nodes (players) and average degree 4. Subplots a,d of Figure 4 have been carried out
using βv = −2kv ∀v ∈ V ; in subplots b,e of Figure 4, we fixed βv = 0 ∀v ∈ V ; finally, for
subplots c,f of Figure 4, we have set βv = 2kv ∀v ∈ V . In all cases, the first and third slices
show the dynamics obtained using random initial conditions (i.c.s) close, for all players, to
defection and cooperation, respectively. The central slice is obtained using i.c.s randomly
chosen in int(∆N). The bistable dynamics of the two games is visible: i.c.s close to 0 lead to
defective asymptotic states, while i.c.s near 1 drive towards cooperation (subplots a,b,f of
Figure 4). In these three cases, both Theorems 1 and 2 are satisfied. Subplot e of Figure 4
shows that the solutions converge to pure-mixed steady states (βv = 0 ∀v ∈ V). Finally, the
parameters used to obtain the subplots c,d of Figure 4 satisfy the hypotheses of Theorems 3
and 4, thus ensuring the consensus towards partial cooperation.

In order to evaluate the performance of players decisions, in Figure 5 (first row) we
draw the payoffs φ(xv, xw) obtained by each individual in a two-players game at the stable
steady state x∗AM as a function of parameters T and S. The steady state itself is reported in
the second row of the same figure. Subplots a,b of Figure 5 show that in a PD game, the
reward for full cooperation φ(xv, xw) is equal to 1 (white line), while φ(xv, xw) > 1 for SH
and CH games (green regions). At the same time, x∗AM < x∗AC (subplots c,d of Figure 5). A
larger payoff is retrieved by paying the cost of a lower level of cooperation, which in turn
is more realistic and achievable. This fact highlights the importance of studying SH and
CH games with respect to the over-exploited PD game.

Further experiments, aimed at analyzing the distribution of altruism for different
topologies of the population network, have been realized. In particular, we considered
populations of of N = 100 individuals arranged on Erdös-Rényi (ER) or Scale free (SF)
random networks with average degree equal 10. The ER networks are characterized by
a binomial distribution of the degrees, that are evenly distributed close to the average.
The SF networks are characterized by a power-law distribution of the degrees p(k) ∼ k−3,
where there are several peripheral individuals (small kv) and few hubs (high kv).
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Figure 4. Simulations of the SR-EGN Equation (8) for the SH game (T = 0.5 and S = −0.5) and CH
game (T = 1.5 and S = 0.5). In subplots (a,d), βv = −2kv < −kv ∀v ∈ V , in (b,e), βv = 0 ∀v ∈ V ,
and in (c,f), βv = 2kv > kv ∀v ∈ V (f). In all subplots, the first slice refers to simulations with random
initial conditions close to full defection, the middle one refers to simulations with random initial
conditions in int(∆N), while the last one refers to simulations with random initial conditions close to
full cooperation. The numerical simulations have been performed using the build-in ODE solver
ode45 explicit Runge–Kutta (4,5) of Matlab R2020b.

Figure 5. Payoff φ(xv, xw) (Equation (3)) and mixed equilibrium x∗AM (Equation (11)). SH game
(subplots a,c): T ∈ [0, 1] and S ∈ [−1, 0]. CH game (subplots b,d): T ∈ [1, 2] and S ∈ [0, 1]. The white
lines indicate the locus of values S and T for which the players choose full cooperation (subplots a,b)
and the corresponding values of x∗AM (subplots c,d).

For each network type, and for each game type, SH (T = −1 and S = −1) and CH
(T = 2 and S = 2), we simulate 500 instances of the problem in order to obtain robust
results. More specifically, for each instance, the starting i.c.s are randomly chosen in the
set int(∆N), the network is randomly generated, and for all members of the population
the same value of βv is set: βv = 10 ∀v ∈ V for SH, and βv = −5 ∀v ∈ V for CH. For each
simulation, the indicator

cv = xv(∞)− xv(∞),
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has been evaluated for each simulation and each player. These values are reported with
colored dots in Figure 6. This indicator measures the difference between the cooperation
xv of player v and the average cooperation xv of its neighbors, at steady state. If cv > 0,
then player v is considered as an altruist since it cooperates more than the average of its
neighbors, while cv < 0 indicates a more selfish behavior. In each subplot, we also depict
the degree distributions of the underlying connection networks with superposed gray
lines. The subdivision into two subgroups (non-central players and hubs) is observed for
all considered games, especially for the SF case, where hubs with very high degree are
present. In the SH case (subplots a,c of Figure 6), this subdivision is coherent with the
players connectivity: poorly connected individuals (blue dots) present negative cv (selfish
behavior), while high connectivity drives players to adopt an altruistic strategy as indicated
by positive cv (purple dots). For the CH case (subplots b,d of Figure 6), the relationship
between the degree kv and cv vanishes: indeed, altruistic as well as selfish players are
present, independently of their connectivity. This phenomenon is more prominent in the
SF case due to the higher number of hubs with respect to the ER network.

Figure 6. Altruistic and selfish behavior at steady state. The indicator cv is evaluated for SH
(subplots a,c) and CH (subplots b,d) games in both ER (subplots a,b) and SF (subplots c,d) networks.
βv has been set equal for all players: values of kv lower and larger than βv are reported in blue
and pink colors, respectively. In the simulation, the parameters used for the SH game are: T = −1,
S = −1 and βv = 10 ∀v ∈ V , while the ones of the CH game are: T = 2, S = 2 and βv = −5 ∀v ∈ V .
The numerical simulations have been performed using the build-in ODE solver ode45 explicit Runge–
Kutta (4,5) of Matlab R2020b.

5. Conclusions

In this paper, the emergence of cooperative consensus for SH and CH games has
been tackled in the framework of the SR-EGN equation, which describes the behavior of a
population of randomly interconnected individuals, driven by game theoretic mechanisms,
jointly with internal self-regulating factors.

We proved that in both SH and CH games, consensus over the fully cooperative state
is asymptotically stable for feasible values of the self-regulating parameters. Unfortunately,
the same conditions also ensure the asymptotic stability of the fully defective consensus.
Starting from this point, the possibility to observe a global convergence of the SR-EGN
towards different consensus steady states has also been investigated. In particular, we
found a Lyapunov function to show that the unique partially cooperative consensus is
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globally asymptotically stable. An important consequence of our findings is that, the fully
cooperative consensus is reached only from a suitable set of initial conditions, while for the
weaker one the basin of attraction corresponds to the whole feasible set of strategies. We
showed that partially cooperative consensus of SH and CH games is more rewarding than
the full one of a PD game.

The global asymptotic stability of the partially cooperative steady state and, on the
other hand, the simultaneous stability of full cooperation and full defection, inducing
bistable behavior, can be fruitfully exploited for planning good policies taking into account
the actual state of the population described by the initial state of the SR-EGN equation.
Indeed, in the first case, the cooperation is independent of the initial state, while, in the
second case, a more aware population is required in order to observe a full cooperation.
Indeed, the control parameters βv indicate how strong is the ability of individuals to look
at their interactions from the point of view of the others, which in turn depends on the
awareness of social dilemmas and conflicts. Hence, improving the education and culture
of individuals is the best way to make human populations able to clearly understand the
society problems, with the direct consequence that a diffused wellness can be achieved. In
this direction, further investigations are required. Currently, the authors are working on
the capability of the presented model to reproduce real-world cooperation and awareness
of people by means of data collected in several European countries. Additionally, the
authors are investigating how strong is the impact of self regulating mechanisms in the
personal decision making process on the control measures adopted to contrast the COVID-
19 pandemic, assuming that the parameter βv is influenced by the available information
on infected and death people. All the above results highlight the importance of studying
SH and CH games, which can be exploited to understand more deeply the mechanisms
fostering cooperation in social networks.
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