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Abstract: This note provides two numerical representations of a nested system of strict partial orders.
The first representation is based on utility and threshold functions. We generalize the threshold
representation of menu-dependent preferences by allowing the threshold to depend not only on the
menu but also on the pair of alternatives under comparison. The threshold function can be interpreted
as the distance between alternatives. The second representation is based on the aggregation of multi-
dimensional preference. This representation describes a decision-making procedure where multiple
criteria are gradually aggregated into an overall assessment.
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1. Introduction

In classical economic theory, preference is represented by utility functions. Refs. [1,2]
provide summaries on the finite alternative space and the infinite alternative space respec-
tively. For a preference relation to admit a utility representation, it must be a weak order, i.e.,
complete and transitive. In many contexts, it is necessary to consider preferences that fails
both completeness and transitivity. Refs. [3,4] provide utility representations for incomplete
preferences. Ref. [5] provides utility representations for incomplete and nontransitive prefer-
ences. All of these representations assume that preference is menu independent. However,
there is growing empirical evidence suggesting that the DM’s preference is influenced by the
menu, meaning that menu-independent preference cannot provide an accurate description.
Ref. [6] provides a survey on the empirical evidence. One route to incorporate the empirical
findings is Herbert Simon’s idea of “satisficing” alternative to global maximization, which
is summarized in [7]. Refs. [8,9] model the “satisficing” behavior with a nested system of
menu-dependent preferences. Roughly speaking, a system of menu-dependent preferences
is nested if the DM’s perception of preference is more accurate in smaller menus. Nestedness
captures the central idea of “satisficing”: the DM is bounded by cognitive constraints and
environmental complexity so that they can perceive their preference more accurately in less
complex situations (small menus).

Theorem 7 of [8] takes choice as primitive and provides conditions for the choice
correspondence to be represented by a nested system of strict partial orders. The objective
of this note is to provide two numerical representations of a nested system of strict partial
orders. In other words, our aim is to provide more concrete decision-making procedures
that can generate a nested system of strict partial orders. Ref. [9] provides a numerical
representation of the nested system of semiorders, which are stronger than strict partial
orders. Strict partial orders require the transitivity of strict preference and decrease the
transitivity of indifference. The latter is controversial, as a series of locally indiscernible
alternatives may have discernible extremes. Refs. [10,11] provide further discussion on this
issue. Ref. [12] describes semiorders as a relaxation of weak order by the intransitivity of
indifferences originating from the inability to discern the difference between alternatives.
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We further relax semiorders to strict partial orders for two reasons. First, the numerical
representations offers both support and building blocks for the theory and application
based on the nested system of strict partial orders. For example, theorem 7 of [8] provides
a choice model with a nested system of strict partial orders. As an instrumental work,
generality implies wider applicability. In the second place, we do not attempt to further
generalize to acyclic preferences because there is experimental evidence supporting the
transitivity of strict preference. In a recent study, [13] tested how WARP is violated by
classifying its violation in two categories: pairwise inconsistency and the menu effect.
They authors observed that the menu effect is by far the major source of the violation of
WARP. That is, their study offers support for models postulating pairwise consistency, i.e.,
transitivity of strict preference.

The first representation is a generalization of [9]. Recall that menu-independent weak
order can be encoded in a utility function in a sense that

x � y⇔ u(x)− u(y) > 0

Adding a threshold function to the utility function can represent a nested system of menu-
dependent preferences.

x �S y⇔ u(x)− u(y) > θ(S)

The authors of [9] give representations of the case of weak order and semiorder with
monotonic θ.

Our representation of the case of strict partial order generalizes the threshold function
θ by allowing it to depend not only on the menu but also on the alternatives under
comparison:

x �S y⇔ u(x)− u(y) > θ(x, y, S)

We require θ to be monotone with respect to the menu. This assumption is in line with the
idea of “satisficing”, because the DM can better compare the alternatives when there are
less of them due to the limit of total cognitive resources. We also require θ to be symmetric
and satisfy triangular inequality for the pair of alternatives under comparison. Under
such assumptions, θ can be interpreted as a distance function. The level of difficulty in
comparing x and y may depend on the similarity in utility (in terms of u) and the differences
in terms of which categories x and y belong to. For example, with similar utility levels, it is
easier to compare chocolate bars with candies than chocolate bars with pens. Differences in
categories can then be modeled by a distance function.

The second representation is based on the aggregation of multi-dimensional preference.
Consider a DM who cares about multiple properties delivered by alternatives. Properties
can be represented by real value functions u1, . . . , un. For example, when choosing a laptop,
the DM may care about CPU performance, GPU performance, portability, and screen size.
In other words, the DM possesses multiple criteria to assess the laptop. Facing large menus,
aggregating all criteria into an overall assessment requires excessive cognitive resources.
Therefore, the DM may only try to aggregate related properties, e.g., combining CPU and
GPU performance into the overall performance. As the number of alternatives decreases,
the DM may have enough resources for further aggregation. Consequently, smaller menus
are associated with fewer dimensions. The DM then considers x to be considerably better
than y in S if x is better in all dimensions. Our second representation result shows that this
gradual aggregation procedure corresponds to a nested system of strict partial orders. To
our knowledge, the gradual aggregation procedure is novel in the literature. In a different
framework, refs. [14,15] provide a procedure where the choice is conducted in two stages
and additive aggregation rule is applied to generate a complete preference in the second
stage. However, the aggregation is not a gradual process.

The remainder of this note is organized as follows: Section 2 introduces the prelimi-
naries, and Section 3 provides the representation results.
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2. Preliminaries

Let X be a finite set of alternatives. A binary relation � on S ⊆ X is a subset of S× S.
When we define a binary relation without referring to S, we mean a binary relation on X.
We write (x, y) ∈� and x � y interchangeably throughout this note.

A binary relation � is asymmetric if x � y⇔ y 6� x. A binary relation � is transitive
if x � y � z⇒ x � z. It is negatively transitive if x 6� y 6� z⇒ x 6� z. A binary relation �
is connected if for all x 6= y, either x � y or y � x holds. A binary relation is semi-transitive
if x � y � z, then either x � w or w � z for any w. It satisfies the interval order property if
x � z and y � w imply either x � w or y � z.

An asymmetric and transitive binary relation is called a strict partial order. A nega-
tively transitive strict partial order is called a weak order. A connected weak order is called
a linear order. An asymmetric and semi-transitive binary relation satisfying the interval
order property is called a semiorder.

A menu-dependent preference �S is a collection of preferences where �S is a binary
relation on S. Given �S, we define its base relation as follows:

�b= {(x, y) : x �xy y}

We deem a menu-dependent preference to be nested if �S ∩S′ × S′ ⊆�S′ for all S′ ⊆ S.
We are interested in the numerical representations of menu-dependent strict partial orders
when their base relation is acyclic. Acyclicity of �b is equivalent to the existence of a
linear-order extension � of �b. Because of nestedness,⋃

S⊆X
�S⊆�

Therefore, it is equivalent to discuss numerical representations of the pair <�S,�> where
�S is a nested menu-dependent strict partial orders and� is a linear order such that�S⊆�
for all S ⊆ X. We call such pair a nested system of strict partial orders.

3. Results
3.1. Threshold Representation

Ref. [9] introduces the following representation for the nested system of semiorders
<�S,�>:

x �S y⇔ u(x)− u(y) > θ(S)

where θ(S) ≤ θ(S′) for all S′ ⊆ S.
We show that the nested system of strict partial order can be represented by a utility

function and a more general threshold function that depends on both the menu and the
alternatives under comparison. Let Φ = {(x, y, S) ∈ X × X × Pow(X) : x, y ∈ S}. We
deem <�S,�> to admit a general threshold representation if there exist a utility function
u : X → R and a threshold function θ : Φ→ R+ such that

S ⊆ S′ ⇒ θ(x, y, S) ≤ θ(x, y, S′) (1)

θ(x, y, S) = θ(y, x, S) (2)

θ(x, y, S) + θ(y, z, S) ≥ θ(x, z, S) (3)

and
For x, y ∈ S, x �S y⇔ u(x)− u(y) > θ(x, y, S) (4)

x � y⇔ u(x)− u(y) > 0 (5)

Equation (1) is a monotone requirement in the same spirit of [9]. Equations (2) and (3)
are symmetry and triangular inequality properties. These properties are compelling if
the threshold depends on the distance between two alternatives, i.e., θ(x, y, S) = θ(µ ∗
d(x, y), S), where d is the distance function and µ is some positive real number.
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Proposition 1. Given a preference system <�S,�>, the followings are equivalent.

1. <�S,�> is a nested system of strict partial order.
2. <�S,�> admits a general threshold representation.

Proof. 2⇒ 1: Suppose <�S,�> has a general threshold representation with u and θ. We
need to establish nestedness, asymmetry, and transitivity.

Suppose x, y ∈ S′ ⊆ S and x �S y. By (4), u(x)− u(y) > θ(x, y, S). By (1), u(x)−
u(y) > θ(x, y, S′). This establishes nestedness.

Suppose x �S y. By (4), u(x) − u(y) > θ(x, y, S). By (2), θ(x, y, S) = θ(y, x, S).
Therefore, u(x)− u(y) > θ(y, x, S). By (4), y 6�S x. This establishes asymmetry.

Suppose x �S y �S z. By (4), u(x)− u(y) > θ(x, y, S) and u(y)− u(z) > θ(y, z, S).
Combining these inequality gives u(x)− u(z) > θ(x, y, S) + θ(y, z, S). By (3), θ(x, y, S) +
θ(y, z, S) ≥ θ(x, z, S). Therefore, u(x) − u(z) > θ(x, z, S). By (4), x �S z. This estab-
lishes transitivity.

1 ⇒ 2: Suppose <�S,�> is a nested system of strict partial order. We construct
the representation.

Suppose |X| = m and enumerate X = {x1, . . . , xm} such that xi � xj for all i > j. This
is possible because � is a linear order. Construct a utility function u to represent � by
u(xi) = i. That is, the utility difference equals to 1 for adjacent alternatives. Let

δ =
1

4m

For all i > j, let
δ+ij = (m− (i− j)) ∗ δ

and
δ−ij = (i− j) ∗ δ

Note that δ+ij , δ−ij < 1/4 for all i, j. That is, δ+ij , δ−ij is always smaller than the minimal utility
gap of distinct alternatives (which is 1).

For xi, xj ∈ S and i > j, construct the threshold function as follows:

θ(xi, xj, S) = θ(xj, xi, S) =

{
(i− j)− δ−ij , xi �S xj

(i− j) + δ+ij , otherwise.

Note that θ is always non-negative by construction.
For xi, xj ∈ S, suppose xi �S xj. Because �S⊆�, we must have i > j. By construction,

u(xi)− u(xj) = i− j > (i− j)− δ−ij = θ(xi, xj, S)

Reversely, suppose u(xi)− u(xj) > θ(xi, xj, S). Note that we must have i > j; other-
wise, we will have a negative number bigger than a non-negative number. By construction,
we must have θ(xi, xj, S) = (i− j)− δ−ij and in turn xi �S xj.

We have shown that u and θ can represent <�S,�>. By construction, θ is symmetric;
i.e., (2) is satisfied.

Suppose xi, xj ∈ S ⊆ S′ and assume i > j without loss of generality. If θ(xi, xj, S′) =
(i− j) + δ+ij , then θ(xi, xj, S′) ≥ θ(xi, xj, S) by construction. If θ(xi, xj, S′) = (i− j)− δ−ij ,

then xi �S′ xj. By nestedness, xi �S xj. By construction, θ(xi, xj, S) = (i − j) − δ−ij =

θ(xi.xj, S′). This establishes (1).
Now, triangular inequality must be established, i.e., (3). This is equivalent to showing

that given xi, xj, xk ∈ S such that i > j > k, the following inequalities hold:

θ(xi, xj, S) + θ(xj, xk, S) ≥ θ(xi, xk, S) (6)
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and
θ(xi, xk, S) ≥ |θ(xi, xj, S)− θ(xj, xk, S)| (7)

This is because (7) implies that

θ(xi, xk, S) + θ(xj, xk, S) ≥ θ(xi, xj, S)

and
θ(xi, xk, S) + θ(xi, xj, S) ≥ θ(xj, xk, S)

We verify (6) first.
Case 1: xi 6�S xk. By transitivity, either xi 6�S xj or xj 6�S xk. If xi 6�S xj, then

θ(xi, xj, S) + θ(xj, xk, S)− θ(xi, xk, S) ≥ δ+ij − δ−jk − δ+ik

= ((m− (i− j))− (j− k)− (m− (i− k))) ∗ δ

= 0

If xj 6�S xk, then

θ(xi, xj, S) + θ(xj, xk, S)− θ(xi, xk, S) ≥ −δ−ij + δ+jk − δ+ik

= (−(i− j) + (m− (j− k))− (m− (i− k))) ∗ δ

= 0

Case 2: xi �S xk.

θ(xi, xj, S) + θ(xj, xk, S)− θ(xi, xk, S) ≥ −δ−ij − δ−jk + δ−ik

= (−(i− j)− (j− k) + (i− k)) ∗ δ

= 0

Next, we verify (7). Recall that δ+ij , δ−ij < 1/4 < 1/2 ∗ |u(xk)− u(xs)| for all i, j, k, s.
Case 1: θ(xi, xj, S) ≥ θ(xj, xk, S).

|θ(xi, xj, S)− θ(xj, xk, S)| = θ(xi, xj, S)− θ(xj, xk, S)

≤ (i− j)− (j− k) + δ+ij + δ−jk

< (i− j) + δ+ij + δ−jk

< (i− j) + 1/2

≤ (i− k)− 1/2

< (i− k)− δ−ik
≤ θ(xi, xk, S)

Case 2: θ(xi, xj, S) < θ(xj, xk, S).

|θ(xi, xj, S)− θ(xj, xk, S)| = θ(xj, xk, S)− θ(xi, xj, S)

≤ (j− k)− (i− j) + δ+jkj + δ−jk

< (i− j) + δ+ij + δ−ij

< (j− k) + 1/2

≤ (i− k)− 1/2

< (i− k)− δ−ik
≤ θ(xi, xk, S)

This concludes the proof.



Games 2021, 12, 57 6 of 9

This result can be used to give numerical representations of choice procedures involved
in nested systems of strict partial orders. For example, combining Proposition 1 and
Theorem 7 of [8] leads to the following corollary.

We use Pow(X) to denote all nonempty subsets of X. A choice correspondence c on X
is a function c : Pow(X) → Pow(X) such that c(S) ⊆ S for all S ⊆ X. We define the base
relation �b associated with c by

�c
b= {(x, y) ∈ X× X : c({x, y}) = {x}}

A choice correspondence satisfies Weak Expansion if

c(S1) ∩ c(S2) ⊆ c(S1 ∪ S2)

A choice correspondence satisfies Aizerman Expansion if for all S′ ⊂ S

c(S) ⊆ S′ ⇒ c(S′) ⊆ c(S)

Corollary 1. Given a choice correspondence c, the followings are equivalent.

1. c satisfies Weak Expansion AND Aizerman Expansion, and its associated base relation is
acyclic.

2. There exist a utility function u : X → R and a threshold function θ : Φ → R+ satisfying
(1), (2), and (3) such that

c(S) = {y ∈ S : 6 ∃x ∈ S, s.t. u(x)− u(y) > θ(x, y, S)}

Let us turn to the identification of θ. It is observable that we can reveal that θ(x, y, S) > 0
by

x �xy y

and
x 6�S y

For the choice procedure of Corollary 1, we can reveal θ(x, y, S) > 0 by

c({x, y}) = {x}

and
y ∈ c(S)

Therefore, we can have θ(x, y, S) > 0 and θ(w, z, S) = 0. Only if θ depends on S can we
reveal that θ(S) > 0 whenever we can reveal θ(x, y, S) > 0 for some x, y ∈ S.

We impose no requirement on the functional form of θ(x, y, S). A natural question is
whether it is possible to decompose θ additively, that is,

θ(x, y, S) = θ(x, y) + θ(S)

We illustrate by the following example that the decomposition is not always possible.

Example 1. Let X = {x, y, z, w, u} and consider the following preferences

�xyz= {(x, y), (x, z)}

�xyzw= {(x, z)}

�xyzu= {(x, y)}

These preferences can be revealed from the following choice correspondence satisfying the conditions
of Corollary 1.

c({x, y}) = c({x, z}) = c({x, y, z}) = {x}
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c({x, y, z, w}) = {x, y}

c({x, y, z, u}) = {x, z}

and for all other S,
c(S) = S

If the threshold function is additively decomposable, then we must have

u(x)− u(y)− θ(x, y) ≤ θ({x, y, z, w}) < u(x)− u(z)− θ(x, z)

and
u(x)− u(z)− θ(x, z) ≤ θ({x, y, z, u}) < u(x)− u(y)− θ(x, y)

which is a contradiction.

3.2. Multi-Dimensional Utility and Aggregation

The second representation is based on aggregation of multi-dimensional preference.
Let U denote all real-value injective functions on the domain of X. Given a set A, a
partition PAA of A is a collection of disjoint subsets of A such that

⋃
S∈PAA

S = A. We deem

a preference system <�S,�> to admit a multi-utility aggregation representation if there
exist (i) a set of real-value injections {u1, . . . , un} = Û ⊂ U on X and an aggregation
function F : Pow(Û)→ U satisfying

F({u}) = u (8)

and

F(û)(x) > F(û)(y) & F(û′)(x) > F(û′)(y)⇒ F(û ∪ û′)(x) > F(û ∪ û′)(y) (9)

(ii) For each S ⊆ X, there exists a partition PAS = {û1
S, . . . , ûm

S } of Û such that if S ⊆ S′,
then

ûS′ ∈ PAS′ ⇒ ∃ûS ∈ PAS s.t. ûS′ ⊆ ûS (10)

such that for all S with PAS = {û1
S, . . . , ûm

S }

For x, y ∈ S, x �S y⇔ [∀1 ≤ i ≤ m, F(ûi
S)(x) > F(ûi

S)(y)] (11)

and
x � y⇔ F(Û)(x) > F(Û)(y) (12)

The set {u1, . . . , un} is the collection of utility functions each representing one criterion
(e.g., portability, battery life, and performance). The aggregation function F(û) gives a new
criterion that represents the overall assessment of alternatives based on the collection û of
criteria. F(û)(x) is the “utility” of alternative x according to criterion F(û). For example,
when û contains the criteria of CPU performance, GPU performance, and SSD performance,
F gives an overall performance index. The aggregation function is required to satisfy the
basic property of (9), which is satisfied by all reasonable aggregation rules (e.g., additive
and lexicographical maximin). PAS partitions all criteria such that criteria in the same
partition can be aggregated by F into a single measure when the menu is S. Equation (10)
requires that the partition is more coarse in smaller menus. This property guarantees that
the number of remaining criteria becomes smaller when the menu shrinks. Finally, �S is
generated by the remaining criteria via the unanimity rule. The unanimity rule is used
because it is the least demanding in terms of cognitive cost, as Herbert Simon points out
himself ([7], p. 295):

Frequently, a course of action satisfying a number of constraints, even a sizeable
number, is far easier to discover than a course of action maximizing some function.
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Proposition 2. Given a preference system <�S,�>, the followings are equivalent.

1. <�S,�> is a nested system of strict partial order.
2. <�S,�> admits a multi-utility aggregation representation.

Proof. 2⇒ 1: Suppose <�S,�> admits a multi-utility aggregation representation. Note
that (11) implies that �S is the intersection of linear orders, which in turn implies that �S
must be a strict partial order. Now suppose x, y ∈ S ⊆ S′ and x �S′ y. By (11), for all
ûi

S′ ∈ PAS′ , F(ûi
S′)(x) > F(ûi

S′)(y). Because PAS′ and PAS are partitions of Û, (10) implies
that for all ûS ∈ PAS can be partitioned into û1

S′ , . . . , ûm
S′ ∈ PAS′ for some positive integer

m. By (8) and (9), we must have for all ûi
S ∈ PAS, F(ûi

S)(x) > F(ûi
S)(y). By (11), x �S y.

1⇒ 2: Suppose <�S,�> is a nested system of strict partial order. We construct the
representation. The case when �=�X is trivial, because by nestedness, it is reduced to
menu-independent preference. Such a case can be represented by a utility representation u
of �, an additive aggregation rule, and a trivial partition containing {u} for all S. We thus
focus on cases where �X⊂�.

Let |X| = m. Let E = {�1, . . . ,�n} be the set of all linear order extensions of �X . In
particular, �∈ E .

For each �j∈ {�1, . . . ,�n} \ {�}, enumerate X = {xj
1, . . . , xj

m} in ascending order
with respect to �j, i.e., xs �j xk if and only if s > k. Construct uj to represent �j by letting

uj(xj
k) = k. Let the set of constructed utility functions be {u1, . . . , un−1}.
For�, enumerate X = {x1, . . . , xm} in ascending order with respect to� and construct

ū by letting u(xk) = m ∗ n ∗ k. Let Û = {u1, . . . , un−1, ū}.
Let us turn to partition PAS of Û. Given S, construct PAS as follows. Let

PS = {{u} ⊂ Û \ {ū} : 6 ∃x, y ∈ S′ ⊇ S, s.t. x �S′ y & u(y) > u(x)}

PAS = PS ∪ {u ∈ Û : {u} /∈ PS} (13)

That is, for all u, except ū, not contradicting �S′ for any superset S′ of S, we leave it in a
singleton partition. We then put all other u, including ū, in one partition. Let us refer to the
partition containing ū as û∗. Note that (10) is satisfied by construction.

Finally, let FS(u1, . . . , ut)(x) = ∑
0≤j≤t

uj(x), i.e., the additive aggregation rule. The

additive function clearly satisfies (8) and (9).
Equations (11) and (12) must now be established.
Equation (12) is verifiable by noting that combining all u additively is equivalent to ū.

To see this, recall that the minimal utility difference with respect to ū is m ∗ n, whereas the
largest utility difference with respect to any other u ∈ Û is m− 1. Therefore, if ū(x) > ū(y),
then

∑
u∈Û

u(x)− ∑
u∈Û

u(y) ≥ m ∗ n− (m− 1) ∗ (n− 1) > 0 (14)

The reverse is also true because ū is constructed to represent �.
Finally, we verify (11). Suppose x �S y and thus x � y. Via the construction of PAS,

all u such that u(y) > u(x) is in the same partition with ū. By (14),

F(û∗)(x)− F(û∗)(y) = ∑
u∈û∗

u(x)− u(y) > 0

Because singleton partitions agree with �S by construction, (11) must hold.
Note that because�X is a strict partial order, for any acyclic�′ such that (x, y) ∈�X⇒

(x, y), (y, x) /∈�′, there exists �∗∈ E such that �′⊆�∗.
Now suppose ∀û ∈ PAS, ∑

u∈û
u(x) > ∑

u∈û
u(y). This implies x � y. Assume the

contrary that x 6�S y. This implies that x 6�X y by nestedness. Let

Eyx = {�∈ E : y � x}
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By construction, for all �i∈ Eyx, there exist zi, wi ∈ Si ⊇ S such that wi �i zi and
zi �Si wi. Let us enumerate such Eyx as {�1, . . . ,�t}. We also enumerate the corresponding
pairs (wi, zi) and sets Si as {(w1, z1), . . . , (wt, zt)} and {S1, . . . , St}, respectively. Let

�′= tc(�X ∪{(z1, w1), . . . , (zt, wt)})

where tc(�) is the transitive closure of �. By definition and because �S⊆� for all S, �′ is
a strict partial order extension of �X . We show that (x, y), (y, x) /∈�′. First, (y, x) /∈�′ be-
cause (x, y) ∈�⊇�′. Second, if (x, y) ∈ tc(�X ∪{(z1, w1), . . . , (zt, wt)}, then by transitivity
and nestedness, (x, y) ∈�S1∩···∩St . However, this is impossible, because S ⊆ S1 ∩ · · · ∩ St

and x 6�S y. This establishes that (x, y), (y, x) /∈�′.
Because (x, y), (y, x) /∈�′ and �′ is a strict partial order extension of �X, there ex-

ists �∗∈ E such that �′ ∪{(y, x)} ∈�∗. By definition, �∗∈ Eyx. However, for any
(wi, zi) ∈ {(w1, z1), . . . , (wt, zt)}, we cannot have wi �∗ zi, because �′⊆�∗, which is a
contradiction.
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