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Abstract: Successful algorithms have been developed for computing Nash equilibrium in a variety
of finite game classes. However, solving continuous games—in which the pure strategy space is
(potentially uncountably) infinite—is far more challenging. Nonetheless, many real-world domains
have continuous action spaces, e.g., where actions refer to an amount of time, money, or other resource
that is naturally modeled as being real-valued as opposed to integral. We present a new algorithm for
approximating Nash equilibrium strategies in continuous games. In addition to two-player zero-sum
games, our algorithm also applies to multiplayer games and games with imperfect information. We
experiment with our algorithm on a continuous imperfect-information Blotto game, in which two
players distribute resources over multiple battlefields. Blotto games have frequently been used to
model national security scenarios and have also been applied to electoral competition and auction
theory. Experiments show that our algorithm is able to quickly compute close approximations of
Nash equilibrium strategies for this game.

Keywords: continuous game; national security; Blotto game; imperfect information

1. Introduction

Successful algorithms have been developed for computing approximate Nash equilib-
rium strategies in a variety of finite game classes, even classes that are challenging from a
computational complexity perspective. For example, an algorithm that was recently applied
for approximating Nash equilibrium strategies in six-player no-limit Texas hold’em poker
defeated strong human professional players [1]. This is an extremely large extensive-form
game of imperfect information. Even solving three-player perfect-information strategic-
form games is challenging from a theoretical complexity perspective; it is PPAD-hard1 to
compute a Nash equilibrium in two-player general-sum and multiplayer games, and it is
widely believed that no efficient algorithms exist [2–4]. Strong algorithms have also been
developed for stochastic games, even with multiple players and imperfect information [5].
Stochastic games have potentially infinite duration but a finite number of states and actions.

Continuous games are fundamentally different from finite games in several important
ways. The first is that they are not guaranteed to have a Nash equilibrium; Nash’s theorem
only proved the existence of a Nash equilibrium in finite games [6]. A second challenge is
that we may not even be able to represent mixed strategies in continuous games, as they
correspond to probability distributions over a potentially (uncountably) infinite pure
strategy space. So even if a game has a Nash equilibrium, we may not even be able to
represent it, let alone compute it. Equilibrium existence results and algorithms have been
developed for certain specialized classes; however, there are still many important game
classes for which these results do not hold. Even two-player zero-sum games remain a
challenge. For example, the fictitious play algorithm has been proven to converge to Nash
equilibrium for finite two-player zero-sum games (and certain classes of multiplayer and
nonzero-sum games), but this result does not extend to continuous games [7].

1 PPAD stands for “Polynomial Parity Arguments on Directed graphs”.
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A strategic-form game consists of a finite set of players N = {1, . . . , n}, a finite set of
pure strategies Si for each player i, and a real-valued utility for each player for each strategy
vector (aka strategy profile), ui : S1 × . . .× Sn → R. A two-player game is called zero sum if
the sum of the payoffs for all strategy profiles equals zero, i.e., u1(s1, s2) + u2(s1, s2) = 0
for all s1 ∈ S1, s2 ∈ S2.

A mixed strategy σi for player i is a probability distribution over pure strategies, where
σi(si′) is the probability that player i plays si′ ∈ Si under σi. Let Σi denote the full set of
mixed strategies for player i. A strategy profile σ∗ = (σ∗1 , . . . , σ∗n ) is a Nash equilibrium if
ui(σ

∗
i , σ∗−i) ≥ ui(σi, σ∗−i) for all σi ∈ Σi for all i ∈ N, where σ∗−i denotes the vector of the

components of strategy σ∗ for all players excluding i. It is well known that a Nash equilib-
rium exists in all finite games [6]. In practice, all that we can hope for in many games is the
convergence of iterative algorithms to an approximation of Nash equilibrium. For a given
candidate strategy profile σ∗, define ε(σ∗) = maxi∈N maxσi∈Σi

[
ui(σi, σ∗−i)− ui(σ

∗
i , σ∗−i)

]
.

The goal is to compute a strategy profile σ∗ with as small a value of ε as possible (i.e.,
ε = 0 indicates that σ∗ comprises an exact Nash equilibrium). We say that a strategy profile
σ∗ with value ε constitutes an ε-equilibrium. For two-player zero-sum games, there are
algorithms with bounds on the value of ε as a function of the number of iterations and
game size, and for different variations ε is proven to approach zero in the limit at different
worst-case rates (e.g., [8]).

If σ1
i and σ2

i are two mixed strategies for player i and p ∈ (0, 1), then we can consider
mixed strategy σ′i = pσ1

i + (1− p)σ2
i in two different ways. The first interpretation, which

is the traditional one, is that σ′i is the mixed strategy that plays pure strategy si ∈ Si with
probability pσ1

i (si) + (1− p)σ2(si). Thus, σ′i can be represented as a single mixed strategy
vector of length |Si|. A second interpretation is that σ′i is the mixed strategy that with
probability p selects an action by randomizing according to the probability distribution σ1,
and with probability 1− p selects an action by randomizing according to σ2. Using this
interpretation implementing σ′i requires storing full strategy vectors for both σ1 and σ2,
though clearly the result would be the same as in the first case.

In extensive-form imperfect-information games, play proceeds down nodes in a game
tree. At each node x, the player function P(x) denotes the player to act at x. This player can
be from the finite set N or an additional new player called Chance or Nature. Each player’s
nodes are partitioned into information sets, where the player cannot distinguish between
the nodes at a given information set. Each player has a finite set of available actions at
each of the player’s nodes (note that the action sets must be identical at all nodes in the
same information set because the player cannot distinguish the nodes). When play arrives
at a leaf node in the game tree, a terminal real-valued payoff is obtained for each player
according to utility function ui. Nash equilibrium existence and computational complexity
results from strategic-form games hold similarly for imperfect-information extensive-form
games; e.g., all finite games are guaranteed to have a Nash equilibrium, two-player zero-
sum games can be solved in polynomial time, and equilibrium computation for other game
classes is PPAD-hard.

Randomized strategies can have two different interpretations in extensive-form games.
Note that a pure strategy for a player corresponds to a selection of an action for each of
that player’s information sets. The classic definition of a mixed strategy in an extensive-
form game is the same as for strategic-form games: a probability distribution over pure
strategies. However, in general the number of pure strategies is exponential in the size of
the game tree, so a mixed strategy corresponds to a probability vector of exponential size.
By contrast, the concept of a behavioral strategy in an extensive-form game corresponds to
a strategy that assigns a probability distribution over the set of possible actions at each
of the player’s information sets. Since the number of information sets is linear in the size
of the game tree, representing a behavioral strategy requires only storing a probability
vector of size that is linear in the size of the game tree. Therefore, it is much preferable to
work with behavioral strategies than mixed strategies, and algorithms for extensive-form
games generally operate on behavioral strategies. Kuhn’s theorem states that in any finite
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extensive-form game with perfect recall, for any player and any mixed strategy, there exists
a behavioral strategy that induces the same distribution over terminal nodes as the mixed
strategy against all opponent strategy profiles [9]. The converse is also true. Thus, mixed
strategies are still functionally equivalent to behavioral strategies, despite the increased
complexity of representing them.

Continuous games generalize finite strategic-form games to the case of (uncountably)
infinite strategy spaces. Many natural games have an uncountable number of actions; for
example, games in which strategies correspond to an amount of time, money, or space.
One example of a game that has recently been modeled as a continuous game in the AI
literature is computational billiards, in which the strategies are vectors of real numbers
corresponding to the orientation, location, and velocity at which to hit the ball [10].

Definition 1. A continuous game is a tuple G = (N, S, U) where

• N = {1, 2, 3, . . . , n} is the set of players
• S = (S1, . . . , Sn), where each Si is a (compact) metric space corresponding to the set of

strategies of player i
• U = (u1, . . . , un), where ui : S1 × . . .× Sn → R is the utility function of player i

Mixed strategies are the space of Borel probability measures on Si. The existence of a
Nash equilibrium for any continuous game with continuous utility functions can be proven
using Glicksberg’s generalization of the Kakutani fixed point theorem [11]. The result is
stated formally in Theorem 1 [12]. In general, there may not be a solution if we allow non-
compact strategy spaces or discontinuous utility functions. We can define extensive-form
imperfect-information continuous games similarly to that for finite games, with analogous
definitions of mixed and behavioral strategies.

Theorem 1. Consider a strategic-form game in which the strategy spaces Si are nonempty compact
subsets of a metric space. If the payoff functions ui are continuous, there exists a (mixed strategy)
Nash equilibrium.

While this existence result has been around for a long time, there has been very
little work on practical algorithms for computing equilibria in continuous games. One
interesting class of continuous games for which algorithms have been developed is separable
games [13]; however, this imposes a significant restriction on the utility functions, and many
interesting continuous games are not separable. Additionally, algorithms for computing
approximate equilibria have been developed for several other classes of continuous games,
including simulation-based games [14], graphical tree-games [15], and continuous poker
models [16]. The continuous Blotto game that we consider does not fit in any of these
classes, and in fact has discontinuous utility functions, so we cannot apply Theorem 1 or
these algorithms.

2. Continuous Blotto Game

The Blotto game is a type of two-player zero-sum game in which the players are
tasked to simultaneously distribute limited resources over several objects (or battlefields).
In the classic version of the game, the player devoting the most resources to a battlefield
wins that battlefield and the gain (or payoff) is then equal to the total number of battlefields
won. The Blotto game was first proposed and solved by Borel in 1921 [17] and has been
frequently applied to national security scenarios. It has also been applied as a metaphor
for electoral competition, with two political parties devoting money or resources to attract
the support of a fixed number of voters: each voter is a “battlefield” that can be won by
one party. The game also finds application in auction theory where bidders must make
simultaneous bids [18].

Initial approaches derived analytical solutions for special cases of the general problem.
Borel and Ville proposed the first solution for three battlefields [19], and Gross and Wagner
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generalized this result for any number of battlefields [20]. However, they assumed that
colonels have the same number of troops. Roberson computed optimal strategies of the
Blotto games in the continuous version of the problem where all of the battlefields have
the same weight, for models with both symmetric and asymmetric budgets [21]. Hart
considered the discrete version, again when all battlefields have equal weight, and solved
it for certain special cases [22]. It was not until 2016 that the first algorithm was provided to
solve the general version of the game. Initially a polynomial-time algorithm that involved
solving exponential-sized linear programs was presented [23], which was later improved
to a linear program of polynomial size [24]. These polynomial-time algorithms are for
the discrete version of the game; however, no general algorithm has been devised for
the original continuous Blotto game. As described earlier, there are many challenges
present for solving continuous games that do not exist for finite games, even for two-player
zero-sum games.

Most of the prior approaches solve perfect-information versions of the game in which
all players have public knowledge of the values of the battlefields. Adamo and Matros
studied a Blotto game in which players have incomplete information about the other
player’s resource budgets [25]. Kovenock and Roberson studied a model where the players
are subject to incomplete information about the battlefield valuations [26]. In both of these
works, all players are equally uninformed about the parameters. Recently some work has
provided analytical solutions for certain settings with asymmetric information, in which
both players know the values of the battlefields but one player knows their order while the
other player only knows a distribution over the possible orders [27,28]. This model is an
imperfect-information game in which player 1 must select a strategy without knowing the
order, while player 2 can select a different mixed strategy conditional on the actual order.
We study and present an algorithm for the asymmetric imperfect-information continuous
version of the Blotto game, which is perhaps the most challenging variant. Note that our
approach also applies to the perfect information version as well.

A continuous Blotto game is a tuple G = (N, F, O, p, v, B, S, δ, u):

• Set of players N = {1, 2}
• Set F = {1, 2, . . . , |F|} of battlefields
• Set of slots Q = F
• Set O of outcomes, which is a subset of the set of permutations of elements of F, where

o(q) denotes the battlefield in slot q for o ∈ O, q ∈ Q. Let M = |O|.
• Probability mass function p with p(o) for each o ∈ O
• Positive real value v f for each battlefield f ∈ F
• Positive real-valued budget Bi for each player i ∈ N
• Pure strategy space of player 1 S1 is {(xq) ∈ R|Q||∑q xq = B1, xq ≥ 0 ∀q ∈ Q}. Let

s1(q) denote the probability of selecting slot q for s1 ∈ S1.
• Pure strategy space of player 2 S2 is {(xo,q) ∈ R|O||Q||∑q xo,q = B2, xo,q ≥ 0 ∀o ∈

O ∀q ∈ Q}. Let s2(o, q) denote the probability of selecting slot q under outcome o for
s2 ∈ S2.

• δ ∈ R > 0
• Utility function u1(s1, s2) = ∑o p(o)∑q C1(s1(q), s2(o, q)) for s1 ∈ S1, s2 ∈ S2, where

– C1(s1(q), s2(o, q)) = vo(q) if s1(q) ≥ s2(o, q) + δ,
– C1(s1(q), s2(o, q)) = −vo(q) if s1(q) ≤ s2(o, q),
– C1(s1(q), s2(o, q)) = 0 otherwise

• Utility function u2(s1, s2) = ∑o p(o)∑q C2(s1(q), s2(o, q)) for s1 ∈ S1, s2 ∈ S2, where

– C2(s1(q), s2(o, q)) = −vo(q) if s1(q) ≥ s2(o, q) + δ,
– C2(s1(q), s2(o, q)) = vo(q) if s1(q) ≤ s2(o, q),
– C2(s1(q), s2(o, q)) = 0 otherwise

Each player must select a real-valued amount of resources to put on the battlefield in
slot q ∈ Q, subject to the constraint that the total does not exceed the player’s budget Bi.
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Player 1 does not know the outcome o, which defines the order of the battlefields; they only
know that the outcome is o ∈ O with probability p(o). Player 2 knows the order and is able
to condition their strategy on this additional information. For each slot q, if player 1 uses an
amount of resources s1(q) that exceeds player 2’s amount s2(o, q) by at least δ, then player
1 “wins” the battlefield o(q) in slot q and receives its value vo(q) (and player 2 receives
−vo(q)); if s2(o, q) ≥ s1(q) then player 2 wins vo(q) and player 1 loses vo(q); otherwise, both
players get zero. This game is clearly zero sum because player 1 and player 2’s payoff sum
to zero for each situation.

Note that the utility function is discontinuous: payoffs for a given slot can shift
abruptly between vo(q), 0, and −vo(q) with arbitrarily small changes in the strategies. This
means that Theorem 1 does not apply, and the game is not necessarily guaranteed to have
a Nash equilibrium. The game does also not fall into the specialized classes of games
such as separable games for which prior algorithms have been developed. Note that often
the Blotto game is presented without the δ term; typically player 1 wins the battlefield if
s1(q) > s2(o, q), and player 2 wins if s2(o, q) ≥ s1(q). We add in the δ term because our
algorithm involves the invocation of an optimization solver, and optimization algorithms
typically cannot handle strict inequalities. We can set δ to a value very close to zero.

3. Algorithm

Fictitious play is an iterative algorithm that is proven to converge to Nash equilibrium
in two-player zero-sum games (and in certain other game classes), though not in general
for multiplayer or non-zero-sum games [7,29]. While it is not guaranteed to converge in
multiplayer games, it has been proven that if it does converge, then the average of the
strategies played throughout the iterations constitute an equilibrium [30]. Fictitious play
has been successfully applied to approximate Nash equilibrium strategies in a three-player
poker tournament to a small degree of approximation error [5,31]. More recently, fictitious
play has also been used to approximate equilibrium strategies in multiplayer auction [32,33]
and national security [34] scenarios. Fictitious play has been demonstrated to outperform
another popular iterative algorithm, counterfactual regret minimization, in convergence to
equilibrium in a range of multiplayer game classes [35].

In classical fictitious play, each player plays a best response to the average strategies
of his opponents thus far. Strategies are initialized arbitrarily (typically they are initialized
to be uniformly random). Then each player uses the following rule to obtain the average
strategy at time t:

σt
i =

(
1− 1

t

)
σt−1

i +
1
t

σ′ti ,

where σ′ti is a best response of player i to the profile σt−1
−i of the other players played at time

t− 1. The final strategy output after T iterations σT is the average of the strategies played
in the individual iterations (while the best response σ′ti is the strategy actually played at
iteration t).

The classical version of fictitious play involves representing two strategies per player;
the current strategy σt

i and the current best response σ′ti . Note that once we compute the
next round strategy σt+1

i from σt
i and σ′t+1

i , we no longer need to maintain either σt
i or σ′t1

i
in memory. We interpret σt

i as a single mixed strategy that selects action sj with probability(
1− 1

t

)
σt−1

i (sj) +
1
t σ′ti (sj).

An alternative, and seemingly nonsensical, way to implement fictitious play would be
to separately store each of the pure strategies that are played σ′ti , rather than to explicitly
average them at each step. Using this representation, the best response can be computed
by selecting the pure strategy that maximizes the average (or sum) of the utilities against
σ′0−i, . . . , σ′t−1

−i . This method of implementing fictitious play seems nonsensical for several
reasons. First, it involves picking a strategy that maximizes the sum of utilities against t
different opponent strategies as opposed to maximizing the utility against a single strategy.
And second, it involves storing t pure strategies for each player, which would require
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using significantly more memory than the original approach when t exceeds |Si|. Despite
these clear drawbacks, nonetheless it is apparent that this approach is still equivalent to
the original approach and results in the same sequence of strategies being played. When
the algorithm is applied to an imperfect-information game, we can view it as operating
with mixed as opposed to behavioral strategies (in contrast to prior algorithms for solving
imperfect-information games). We refer to this new approach as “Redundant fictitious
play” due to the fact that it “redundantly” stores all of the strategies played individually
instead of storing them as a single mixed strategy. Redundant fictitious play is depicted in
Algorithm 1.

Algorithm 1 Redundant fictitious play for two-player games
Inputs: Number of iterations T

Initialize strategy arrays S1[T], S2[T]
S1[0], S2[0]← InitialValues()
v∗1 [0]← u1(S1[0], S2[0])
v∗2 [0]← u2(S1[0], S2[0])
for t = 1 to T do

S1[t]← BestResponse1(Mix(S2, 0, t− 1))
S2[t]← BestResponse2(Mix(S1, 0, t− 1))
ε1[t]← u1(S1[t], Mix(S2, 0, t− 1))− v∗1 [t− 1]
ε2[t]← u2(Mix(S1, 0, t− 1), S2[t])− v∗2 [t− 1]
ε[t]← maxi εi[t]
v∗1 [t]← u1(Mix(S1, 0, t), Mix(S2, 0, t))
v∗2 [t]← u2(Mix(S1, 0, t), Mix(S2, 0, t))

In Algorithm 1, we store T strategies for each player, where T is the total number
of iterations. We can initialize strategies arbitrarily for the first iteration (e.g., to uniform
random). For all subsequent iterations the strategy Si[t] is a pure strategy best response
to a strategy of the opponent.2 The notation Mix(Si, 0, t− 1) refers to the mixed strategy
for player i that plays strategy Si[u] with probability 1

t , for 0 ≤ u ≤ t− 1; that is, it mixes
uniformly over the strategies Si[0], . . . , Si[t− 1]. The algorithm then computes the game
value to player i under the current iteration strategies as well as the exploitability of each
player (difference between best response payoff and game value). This determines the
maximum amount that each player can gain by deviating from the strategies; we can
then say that the strategies computed at iteration t− 1 constitute an εt-equilibrium, where
εt = maxi εi[t].

Now, suppose that G is a continuous game and no longer a finite game. Assuming
that we initialize the strategies Si[0] to be pure strategies, all of the strategies Si[t] are now
pure strategies and the algorithm does not need to represent any mixed strategies. This is
very useful, since for continuous games a mixed strategy may be a probability distribution
that puts weight on infinitely many pure strategies and cannot be compactly represented.
However, pure strategies can typically be represented compactly in continuous games.
For example, if the strategy spaces are compact subsets of Rn, then each pure strategy
corresponds to a vector of n real numbers, which can be easily represented assuming that
n is not too large. For example in continuous Blotto player 1 must select an amount of
resource to use for each of |F| battlefields, and therefore storing a pure strategy requires
storing |F| real numbers, which is easy to do. Thus, Redundant Fictitious Play can be
feasibly applied to continuous games, while the classical version cannot.

The only remaining challenge for continuous games is the best response computation,
which may be challenging for certain complex utility functions. However, for the com-
mon assumptions that the pure strategy spaces are compact and the utility functions are
continuous, this optimization is typically feasible to compute.

2 Note that there always exists at least one pure-strategy best response to any mixed strategy.
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For the continuous Blotto game, we present optimization formulations for computing
player 1 and 2’s best response below. Both of these are mixed integer linear programs (with
a polynomial number of variables and constraints). Note that we are able to construct
efficient best response procedures for this game despite the fact that the utility function
is discontinuous.

Player 1’s best response function is the following, where Xq is a variable denoting the
amount of resources put on slot q, and Yt,o,q is the amount of resources put on slot q under
outcome o by player 2’s fixed strategy at iteration t:
Maximize ∑t ∑o ∑q

(
p(o) · bt,o,q · vo(q)

)
subject to:

bt,o,q = 1→ Xq ≥ Yt,o,q + δ for all t, o, q (1)

∑
q

Xq = B1 (2)

0 ≤ Xq ≤ B1 for all q (3)

bt,o,q binary in {0, 1} for all t, o, q (4)

The constraints in Equation (1) are called indicator constraints and state that if the
binary variable bt,o,q has value equal to 1, then the linear constraint Xq ≥ Yt,o,q + δ must
hold. Indicator constraints are supported by many integer-linear program optimization
solvers, such as CPLEX and Gurobi. We could additionally impose indicator constraints
bt,o,q = 0→ Xq ≤ Yt,o,q; however, these are unnecessary and would significantly increase
the size of the problem. To see the correctness of the procedure, suppose that Xq ≥ Yt,o,q + δ
and ∑q Xq = B1 but that bt,o,q = 0. Then the objective clearly increases by setting bt,o,q = 1
instead to include the additional term p(o) · bt,o,q · vo(q). So there cannot exist another
solution satisfying the budget and indicator constraints with higher objective value.

While player 1 must assume that the outcome is distributed according to p, player 2 is
aware of the outcome and therefore can condition their strategy on it. Therefore, player 2
solves a separate optimization for each value of o ∈ O to compute the best response to the
strategy of player 1.

Player 2’s best response function given outcome o ∈ O is the following, where Yq is a
variable denoting the amount of resources put on slot q and Xt,q is the amount of resources
put on slot q according to player 1’s fixed strategy at iteration t:
Maximize ∑t ∑q

(
bt,q · vo(q)

)
subject to:

bt,q = 1→ Yq ≥ Xt,q for all t, q (5)

∑
q

Yq = B2 (6)

0 ≤ Yq ≤ B2 for all q (7)

bt,q binary in {0, 1} for all t, q (8)

Correctness of player 2’s best response function follows by similar reasoning to that of
player 1’s. Player 1’s best response optimization has T′M|Q| binary variables bt,o,q, where
T′ is the current algorithm iteration and M = |O| denotes the number of outcomes, and |Q|
continuous variables Xq. Since the number of indicator constraints is also T′M|Q|, the size
of the formulation is O(TM|Q|) = O(TM|F|), which is polynomial in all of the input
parameters. Similarly, player 2 must solve M optimizations, each one with size O(T′|Q|).
Note that in practice this algorithm could be parallelized by solving each of these M + 1
optimizations simultaneously on separate cores as opposed to solving them sequentially (in
our implementation we solve them sequentially). However, since player 1’s optimization is
much larger than each of player 2’s, the bottleneck step is player 1’s optimization, and such
a parallelization may not provide a significant reduction in the runtime.

Note that as we run successive iterations of Algorithm 1, the size of these optimization
problems becomes larger, since the opponent’s strategy is a mixture over t pure strategies,
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where t is the current algorithm iteration. We have seen that the number of variables and
constraints scales linearly in t. Therefore, we expect earlier iterations of the algorithm to run
significantly faster than later iterations. We will see the exact magnitude of this disparity
in the experiments in Section 4. A potential solution to this issue would be to include an
additional parameter K in Algorithm 1. Instead of computing a best response to the mixture
over all t of the opponent’s pure strategies, a subset of K of them is selected by sampling
and a best response is computed just to a uniform mixture over the pure strategies in the
sampled subset. This sampling would occur for each iteration, so a potentially different
subset of size K would be selected at each iteration. This would ensure that the complexity
of the best response computations remains constant over all iterations and does not become
intractable for later iterations. This approach would be unbiased and produces the same
result in expectation over the sampling outcomes. However, it may lead to high variance
in results and lead to poor convergence in practice. Perhaps this could be mitigated by
performing multiple runs of the sampling algorithm in parallel and selecting the run with
lowest value of ε.

Note that Algorithm 1 can be applied to extensive-form imperfect-information games
in addition to simultaneous strategic-form games (in fact the continuous Blotto game that
we apply it to has imperfect information for player 1, since player 1 does not know the value
of o while player 2 does). As long as pure strategies can be represented and best responses
can be computed efficiently (which are both the case for imperfect-information games),
the algorithm can be applied. Also note that while we presented the algorithm just for a two-
player game, it can also be run on multiplayer games (just as for standard fictitious play).
The best response computations are still just a single agent optimization problem given
fixed strategies for the opposing players. In fact, fictitious play has been demonstrated to
obtain successful convergence to Nash equilibrium in a variety of multiplayer settings [35],
despite the fact that it is not guaranteed to converge to Nash equilibrium in general for
games that are not two-player zero-sum.

We can compute v∗1 [t] and ε1[t] for Algorithm 1 in the continuous Blotto game using
the procedures depicted in Algorithms 2 and 3 (and analogously for v∗2 [t] and ε2[t]).

Algorithm 2 Procedure to compute v∗1 [t] in continuous Blotto

v∗1 [t]← 0
for t1 = 0 to t do

for t2 = 0 to t do
for o ∈ O do

for q ∈ Q do
if S1[t1](q) ≥ S2[t2](o, q) + δ then

v∗1 [t]← v∗1 [t] + p(o)vo(q)
else if S1[t1](q) ≤ S2[t2](o, q) then

v∗1 [t]← v∗1 [t]− p(o)vo(q)

v∗1 [t]←
v∗1 [t]
(t+1)2

return v∗1 [t]
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Algorithm 3 Procedure to compute ε1[t] in continuous Blotto

ε1[t]← 0
for t2 = 0 to t− 1 do

for o ∈ O do
for q ∈ Q do

if S1[t](q) ≥ S2[t2](o, q) + δ then
ε1[t]← ε1[t] + p(o)vo(q)

else if S1[t](q) ≤ S2[t2](o, q) then
ε1[t]← ε1[t]− p(o)vo(q)

ε1[t]← ε1[t]
t

ε1[t]← ε1[t]− v∗1 [t− 1]
return ε1[t]

4. Experiments

We experimented on a game with three battlefields f1, f2, f3, with values v1 = 0.7,
v2 = 0.2, v3 = 0.1, and three outcomes (each with probability 1

3 ):

• Outcome 1 has f1 in slot 1, f2 in slot 2, f3 in slot 3.
• Outcome 2 has f3 in slot 1, f1 in slot 2, f2 in slot 3.
• Outcome 3 has f2 in slot 1, f3 in slot 2, f1 in slot 3.

We assume that player 2 observes the outcome while player 1 does not. We used a
budget B1 = 10 for player 1 and B2 = 7 for player 2. We used δ = 0.0001. We used the
default feasibility tolerance in Gurobi, which is 1.0× 10−6. We ran our algorithm for 5000
iterations and computed εi for each player every 10 iterations. Recall that we defined the
exploitability of the computed strategies at iteration t as ε[t] = maxi εi[t]. The experiments
did not use any sampling and computed the best response against the opponent’s full
mixed strategy at each iteration using the mixed-integer linear programs described in
Section 3. We used the parallel version of Gurobi’s mixed integer linear programming
solver [36] with six cores on a laptop.

The results are shown in Figure 1. It took slightly under 25,000 s (around 6.9 h) to
run 5000 iterations of our algorithm. The final strategies had an exploitability of 0.0307 for
player 1 and 0.0292 for player 2, indicating that the strategies constitute an ε-equilibrium for
ε = 0.0307. (After 5000 additional iterations ε decreased further to 0.021.) The exploitability
values are not monotonically decreasing, and the lowest value in these experiments was
actually obtained with ε = 0.0259 at iteration 4480. The expected value for player 1 in the
final strategies is −0.10969. The exploitability fell below 0.05 for the first time after 1759.4 s
(29.3 min), obtaining ε = 0.0494 on iteration 1400. From the figure we can also see that the
runtimes varied for the different iterations, as expected (nearly half of the 5000 iterations
were completed in the first 5000 s).
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Figure 1. Exploitability (ε) vs. runtime (seconds) and algorithm iteration for continuous imperfect-
information Blotto game.

5. Conclusion

We presented a new algorithm for computing Nash equilibrium in a broad class of
continuous games. The algorithm is based on integrating a novel variant of fictitious play
in which the strategies from all iterations are stored with custom best response functions.
Solving continuous games is particularly challenging as a Nash equilibrium is not even
guaranteed to exist and mixed strategies may put weight on infinitely many pure strategies;
yet for many realistic games it is more natural to model strategies as subsets of real numbers
than as integers. We implemented our algorithm on a continuous imperfect-information
model of the Blotto game, a well-studied model of resource allocation with applications
to national security. We created a new mixed-integer linear program formulation for the
best response function. We demonstrated that the algorithm converged quickly to an
ε-equilibrium for ε equal to 0.03 after 5000 iterations of the algorithm (several hours),
which corresponds to 30% of the minimum battlefield value. While the Blotto game has
been studied analytically and efficient algorithms have been developed for the discrete
case, this is the first algorithm for solving the continuous case.
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