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1. Introduction

Necessary optimality conditions for control problems with pathwise state constraints
have been widely studied since the beginnings of optimal control theory [1], and this do-
main of research is still vivid nowadays [2]. Most of the existing approaches may be di-
vided into two streams [3]. The first one, characterized by the use of classical methods of
analysis with often heuristic proofs, yields results of limited generality (see the review [4],
and [3]). The other is based on the abstract theory of infinite-dimensional optimization
and its results encompass a wide class of problems, with rigorous but demanding proofs
(see [5-9]). However, these results are difficult for practical verification, because of too
general characterizations of the adjoint variables and multiplier functions. Generally, the
existing approaches are hardly constructive, meaning they do not give sufficient indica-
tions how to improve a nonoptimal control.

We propose an elementary approach to necessary optimality conditions for problems
in Mayer form with free final state and a scalar state constraint. The controls are scalar
functions and nontangentiality is assumed at all entry and exit points. As is well known,
the proof of the minimum principle with free final state and without pathwise state con-
straints can be made elementary and simple by considering the cost increment caused by
a single spike variation of control. Our first purpose is to show that a similar proof tech-
nique may be effective when a pathwise state constraint is present, with the difference
that additionally a coordinated pair of spikes is used. A second purpose is to extend the
known results for state constraints of index one, mainly to nonregular problems in which
the optimal control and the corresponding state trajectory may at the same time take val-
ues on the boundaries of their respective admissible sets. In particular, we allow for dis-
crete sets of admissible control values. From a conceptual point of view, this work also
offers a clear geometrical interpretation of the results. On the practical side, an advantage
of our approach is that the obtained conditions are readily verifiable and constructive: if
they are not fulfilled, a gradient optimization procedure can be indicated and initialized
which guarantees an improvement of the control, up to numerical precision (as in the
method of Monotone Structural Evolution [10]). Of course, the other approaches clearly
prevail in a wider perspective, when problems of greater complexity are also taken into
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account. They then produce optimality conditions, which can be effectively used in opti-
mal control computations (see [11-14]).
Consider a control system described by a state equation

x() = f(x(t),u(t)), te[0,T], x(0)=x,, x(t)eR", Q)

with a given initial condition x, and a given time horizon T. The controls u:[0,T]— R
are piecewise continuous functions of time, taking values in a given set U, that is, they
belong to PC(0,T;U). ' The function f:R"xR—R" is of class C' in its both argu-

ments. We make a general assumption that all solutions of (1) appearing in the sequel are
well defined in the whole time interval [0,T]. The state is subject to a scalar pathwise

constraint,
g(x(t))<0, te[0,T]. )

The function g¢:R"—>R is of class C*>, and 0g(&)=#0 if ¢(£)=0. We assume

8(x,)<0. A performance index (or cost),
Q) =q(x(T)),

is minimized on the trajectories of (1). The function g:R" — R is of class C'.
For a control u e PC(0,T;U), let x be the corresponding solution of the initial value

problem (1). The control u is admissible if the trajectory x satisfies the state constraint (2).
The control u is optimal if it is admissible and minimizes the cost Q in the set of all admis-
sible controls. A boundary interval of u is defined as any nonempty and right-open interval
of time in which g(x(t)) =0. Any nonempty and right-open interval of time, such that

8(x(t)) <0 for every tin that interval, is nonboundary. If [t,,t,[ is an inclusion-maximal
boundary interval of u and t, >0, then ¢, iscalled an entry point of u.If t, <T,then t,

is an exit point. Denote

§(£,0)=08(&) f(£,v) for £€R", veR. 3)
The derivative of the function ¢ g(x(t)) along the trajectories of (1) is equal to

(x() u(t)) -

For admissible controls we introduce the concept of verifiability, aiming to distinguish
the controls to which the spike technique of (non)optimality verification, developed be-
low, can be effectively applied. Let u be an admissible control with the corresponding state
trajectory x. We call this control verifiable if

(i) it has a finite number of inclusion-maximal boundary intervals,

(if) an implication holds that if g(x(t))=0 for a certain ¢, then ¢ belongs to the closure
of some boundary interval of u, 2

(iii) the conditions of nontangentiality

(x(t,, ) u(t,=)) >0, gx(t, ) u(t,)) <0 4)

hold at all entry points £ and all exit points ¢, of u,

1 PC(0,T; U) is the space of all functions [0,T7] — U which have a finite number of discontinuities, are right-continuous in [0,T[, left-
continuous at T, and have a finite left-hand limit at every point.

2 Controls leading to state trajectories with boundary touch points are not verifiable.
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(iv) there is an open set X < R" containing all points x(f) such that g(x(t))=0, and

thereisa C' function w: X, — R such that

(w(&) el and g(&,w(&))=0) if (£eX, and g(£)<0).

Note that if (4) is true, then the functions u and > g(x(t),u(t)) are discontinuous at f_
and t_.Claim (iv) may be regarded as a weakened form of the assumption that the state

constraint (2) is of index (or order) one (cf. [3,4,8]). From the implicit function theorem it
follows thatif £eX , g(£)<0 and 0,8(¢,w(&))#0, then

_0,8(&,w(E) | 0 f(6,w(£)3g(£) + YO f(E,w(€)
0,8(&,w($)) 08(£)" 0, f(&,w(£))

For any verifiable control u define a function F:[0,T]xR" - R"

F(t,é):{f(‘f'w(‘f))' te®, ceX,
f(&,u(t)), elsewhere,

ow(g) =

where ©,  denotes the union of all boundary intervals of u. Obviously, the corresponding

state trajectory satisfies x(t)= F(t,x(t)) for almostall t<[0,T].

2. The One-Spike Control Variation and Trajectory Variation

Let u be a verifiable control, and x, the corresponding state trajectory. Denote

{vel:g(x(t),v) <0}, g(x(t)=0
u, g(x(t)) <0.

u =

t

Forany 7€[0,T[,any ve UT , and any sufficiently small ¢ >0, we shall define a control

u® € PC(0,T;U). We also define x° as the solution of the initial value problem
x“(t) = f(x"(t),u’(t)), te[0,T], x*(0)=x,.

We put u(t)=u(t) if t<z, and u’(t)=v if r<t<r+¢ . To define u’(t) for

t>7+¢,suppose first that 7¢O, . Then

(G u(t)=w(x"(t) if g(x°(t,))=0 forsome t <t, and u hasno exit pointsin [t ,¢t],

() w’(t)=u(t,—) if g(x(t))=0 and g(x°(t))<0, where t_ is the greatest entry
point of u less than or equal to ¢,

(i) u®(t)=u(t) otherwise.

Let now 7 belong to @, an inclusion-maximal boundary interval of u, and t>7+¢.

Then u®(t)=w(x’(t)) for te @, and (i), (ii), (iii) are valid for t ¢ 6.

The spike variation of control is the difference u° —u . Note that the control u° is ad-
missible for every sufficiently small positive ¢ .

Lemma 1. The trajectory increment Ax =x° —x satisfies

Ax(t) = e0x(t) + o(¢) (5)

for every t €[z, T], where the trajectory variation 6x:[t,T]— R" is absolutely continuous ex-

cept, possibly, at the entry points of u, and independent of ¢ . For almost every t e[r,T]
SH() = 0,F(t, x(t)) 8x(t), (6)

moreover,
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6x(r) = f(x(7),0) = f(x(7), u(7)) 7)
and at every entry point t_ >7 of u
Sx(t,+) =Z(t,,) ox(t,,—) ®)
Here

g(x(t,) Af(t.,)

At ) = f(x(ty, ) ulte, ) = fx(t, ), w(x(t,,)))-

Proof. If the control u has no entry pointsin ]z,T[, the lemma is obviously true by virtue

of the classical theorems on ordinary differential equations. Suppose that u has exactly
one entry point t_ in ]z +¢,T[. From the mentioned theorems it directly follows that

(5) holds in the time interval [z,f, [, with an absolutely continuous function Jx, satisfy-

ing (7) and (6) in that interval. We shall prove that the relationships (5) and (6) may be
extended to the whole interval [7,T], with the function Jx absolutely continuous in

1t..,T]. To this end, let us first notice that for every sufficiently small &>0 the control

u® has an entry point t° =t _+&dt, +o0(g), where St  is areal number independent

of &.This follows from the verifiability of u (see (4)) and from the construction of u°.Let

At =t: —t_ . To fix attention, assume At _ >0.We then have
x(t5 ) =x(t,, )+ f(x(t,, ) w(x(t, )AL, +o(At,)
xC(tE ) =x(t, )+ f(xf(E, ) ut(t, —)At, +o(At,)

=" (b)) + f(x(ty, ) ult, )AL, +0(AL,),

as f(x“(t, ) u(t,—)= f(x(t, ) u(t, —)) +0, f(x(t,, ),u(t‘en—))T Ax(t, ) +o(Ax(t,,)) . Hence

Ax(t: )= Ax(t, )+ Af(t, )AL, +o(At, ).

By the definition of entry points, g(x(t_ ))=g(x*(t; ))=0.Thus
8(x" () = g(x(t,,,) + Ax(t,,,) + f(x(t,, ), u(t,,—)) At,, +0(At,,))

= 0g(x(t,, ) (Ax(t,,) + f(x(t,, ) u(t,, )AL, ) + o(At, ) =0,
and so

L REOA)
0g(x(t ) F(xlt ) ()

Substituting this into (10), we obtain

Af(t,,) 98(x(t,,))"
0g(x(t)' f(x(te,)ut )

M@F@— %wwwwy-

(10)

As (3g(x(ten))T flx(t,, ) ut,-) =8g(x(ten))TAf(ten) and Ax(t,)=¢eox(t, —)+o(e), we

get
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Ax(t: )= Z(t, ) ox(t, —)+0(e).

Defining Jx(t_+) by (8), we arrive at the extension of (5) and (6) to [z,T] because of the
same classical theorems on differential equations. For Af_ <0, an analogous argument

leads to the same result. The proof can be easily generalized to an arbitrary finite number
of entry points. [

3. The Adjoint Function and The One-Spike Necessary Optimality Condition

As in Section 2, let u be a verifiable control and x, the corresponding solution of (1).
With every such control we associate an adjoint function y :[0,T]— R", defined as a so-
lution of the adjoint equation

absolutely continuous except at the entry points of u and satisfying the final condition
y(T)=0q(x(T)) - (12)

Atevery entry point f_, w(t, )=w(t +) and

l//(ten_) = Z(ten)l/l(ten+) ° (13)

Let 7 be an arbitrary point from [0,T], and Ox, the trajectory variation deter-

mined in Lemma 1. It is easy to notice that the function t > y(t)'Sx(t) is constant in the

whole time interval [r,T]. Indeed, its derivative w(t)' dx(t)+w(t) Sx(t) equals zero at

every t where  and oOx are differentiable, and at the entry points {, >7 we have by

virtue of (13) and (8): w(t, ) ox(t,—)= w(t, +) Z(t, ) Ox(t, —) = w(t, +) Sx(t, +) .
Thus,

(@) (f(x(7),0) = f(x(2),u(r))) = 89(x(T))" 5x(T).

Define the pre-Hamiltonian H:R"xR"xR — R, H(y,x,u)=y' f(x,u), and its incre-
ment

AH(z,v) = H(y (7), x(7),v) - H(y (7), x(7), u(7)) (14)

for any vel and 7 €[0,T] (note that AH is only defined for a uniquely predeter-

mined control #). We can now express the value of cost on the control u*, defined in
Section 2

Q(u) = q(x* (1)) = Q(u) + & 0q(x(T))" 6x(T) + o(¢) = Qu) + £ AH(z,v) + o(e)..

A sufficient condition for the existence of spike variations which improve the cost is a
straightforward consequence.

Lemma 2. Assume that 7 €[0,T[, vel_, and AH(z,v)<0. Then the control u’ is admis-
sible and Q(u®) <Q(u) for every sufficiently small > 0.

A theorem on optimal control of the minimum principle type follows from Lemma 2.
Theorem 1. Assume that the control u is optimal. Then:

(i) AH(t,v)20 forevery te[0,T] andevery vell,,
(if) the function [0,T]>t > x(t)=H(w(t),x(t),u(t)) is constant.
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Proof. Conclusion (i) is a direct consequence of Lemma 2. Conclusion (ii) for the non-
boundary intervals is proved exactly as in the classical proofs of the minimum principle
without pathwise state constraints. In the interior of every boundary interval, the function
x is of class C' with the derivative identically zero. The continuity of y at entry
points readily follows from (13) and (9). Let now f_ be an exit point of u. By (i) and (4),
there is a o6>0 such that AH(tu(f, ))=0 for all te[t —o,t, [ , and
AH(t,w(x(t,))) =0 forall te]t

passages: t—>t_— for the first of these inequalities, and t —¢t_+ for the second. [

t,+06]. The continuity of y at f,_ is shown by limit

ex’

Corollary 1. Assume that the control u is optimal and g(x(t))=0 for some t €[0,T]. Then
AH(t,0)20 or g(x(t),v)20 forevery vel.

4. The Two-Spike Necessary Optimality Condition

For a verifiable control u and the corresponding state trajectory x, we shall define a
two-spike control variation. Let € be an inclusion-maximal boundary interval of u. For
any quintuple t,,7,,v,,,,7 such that 7,7,€60, 7,<7,, v,v,elU, n>0, and for
any sufficiently small &>0 we define a control u* € PC(0,T;U) (not to be confused
with the control #° defined in Section 2) and the corresponding state trajectory x°. We
put u’(t)=u(t) if t<r, u’(t)=v, if 7, <t<r +¢, u'(t)=v, if 7,<t<7,+ns, and
u’(t)= w(x°(t)) for any other tin & . Points (i), (ii) and (iii) of the definition in Section 2
apply to all the remaining values of ¢. The two-spike control variation is the difference
u—-u.

The control # may sometimes be improved even if it fulfills the necessary optimality
condition (i) of Theorem 1. We shall now give conditions, sufficient for the existence of a

two-spike control variation in # which is admissible and guarantees a cost improve-
ment.

Lemma 3. Assume that 7,,7,€0, r,<t,, v,,0,el, n>0,and

8(x(z,),v,) <0 (15)
§(x(z)),0,) +18(x(z,),v,) <0 (16)
AH(z,,v,)+nAH(z,,v,)<0. (17)

Then for every sufficiently small & >0 the control u® is admissible, and Q(u®) <Q(u).

Proof. It follows from the definition of #° and the inequalities (15), (16) that for every
sufficiently small &>0 the function > g(x°(f)) is negative in the time interval

]z,,supf] and constant in the intervals [z, +¢,7,] and [z, +77¢,5upd],

g(x*(t)) =eg(x(z,),v,)+o(¢e), telr, +¢,1,],

g(x*(t)) = e(g(x(z,),v,) +n8(x(,),v,)) +o(e) , t €[z, + ne, supb].

From this we infer that the control u° is admissible for all sufficiently small ¢ > 0. Rea-
soning similarly as in Section 3 and using the adjoint function defined therein, we estimate
the value of the performance index on the control u*

Q(u®)=Q(u) +&(AH(z,,v,) +nAH(z,,v,)) +o(g) .
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Hence, (17) is a sufficient condition for the two-spike control variation to reduce the cost
for every sufficiently small ¢>0.0

Lemma 4. Assume that 7,7, €0, 7, <t,, v,v,elU, and

8(x(z,),v,)<0, AH(z,,v,)20

8(x(z,),v,)>0, AH(z,,v,)<0 (18)
Assume also that if §(x(z,),v,) >0, then

AH(z,,v,) S AH(z,,v,)
g.(x(rl )/ U]) g(x(TZ )’ 02)

(19)

Under these assumptions there is an 1 >0, such that for every sufficiently small & >0 the con-
trol u® is admissible, and Q(u®) < Q(u).

Proof. We shall show that the assumptions of Lemma 3 follow from the assumptions of
Lemma 4. Denote

n, = _AHE ) and 7, = —m for g(x(z,),v,)>0.
AH(z,,v,) 8(x(z,),v,)
Of course 77, 20 and 7, > 0. The inequality (15) is obvious. In view of (18), (17) is true
forevery n>n,.If g(x(z,),v,)=0, then (16) holds for every 7 >0, and the assumptions
of Lemma 3 are satisfied. If ¢(x(z,),v,)>0, then the inequality (16) holds for 7 <7,. We
thus have a two-sided bound on 7, 7, <77 <7,. The interval of admissible values of 7
is nonempty if 77, <7,, and this inequality follows from (19). L

By contradicting the sufficient nonoptimality conditions of Lemma 4 we obtain new
necessary conditions of optimality.

Theorem 2 (main result). Assume that the control u is optimal and verifiable, and has a boundary
interval 0. Let also t,t,el, t <t,, and v ,v, eU. Under these assumptions:

(i) if g(x(t,),v,)<0 and AH(t,,v,)=0, then AH(t,,v,)>0,
(i) if g(x(t,),v,)=0 and AH(t,,v,)<0, then §(x(t,),v,)=0,
(i) if g(x(t,),v,)<0 and AH(t,,v,)<0, then g(x(t,),v,)>0 and

AH(t,,v,) < AH(t,,v,)
§(x(t,),v,) - 8(x(t,),v,) .

(20)

Proof. Let first f, <t,. Suppose, contrary to (i), that g(x(t,),v,)<0, AH(t,,v,)=0 and
AH(t,,v,)<0. From Corollary 1, ¢(x(t,),v,)=0. By Lemma 4, this contradicts the as-
sumption that u is optimal. The implication (ii) is similarly proved. Let g(x(¢,),v,)=0,
AH(t,,v,)<0 and g(x(t,),v,)<0. By Corollary 1, AH(t,,v,)>0 and the assumptions
of Lemma 4 are fulfilled (with 7 :=t and r,:=t, ). To prove (iii), assume that
g(x(t,),v,)<0 and AH(t,,v,)<0. It follows from Corollary 1 that AH(f,,v,)=20 and
§(x(t,),v,)20.If g(x(t,),v,)=0, the assumptions of Lemma 4 hold. If g(x(t,),v,)>0,

the inequality opposite to (19), that is (20), is true.
Letnow ¢, =t, =7,. The proof goes similarly, however, we additionally have to use

a simple observation (rc): the functions > g(x(t),v) and t+> AH(t,v) are right-con-
tinuous in [0,T[ for every vel . Let g(x(7,),v,)<0 , AH(r,7v,)=0 and
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AH(z,,v,)<0 . By virtue of (rc) and Corollary 1, there is a 7, >7, such that
AH(z,,v,)<0 and g(x(r,),v,)=0. Lemma 4 then gives a contradiction. To prove (ii),
assume ¢(x(r,),v,)=0, AH(r,,v,)<0 and g(x(,),v,)<0. By (rc) and Corollary 1,
AH(r,,v,)>0 and there is a 7€f , 7r>r, , such that AH(r,,v,)<0 and
$(x(z,),0,)20 for every 7, elr,,7]. If §(x(z,),v,)=0 for some 7, €]r,,7], Lemma 4
again yields a contradiction. If §(x(z,),v,)>0 for every 7, €]r,,7], then (19) holds for
every 7,>7, sufficiently close to 7, since ¢(x(z,),v,) >0 as 7, >+, and so
Lemma 4 gives a contradiction. We shall now prove (iii). Let ¢(x(z,),v,)<0 and
AH(z,,v,)<0. It follows from (rc) and Corollary 1 that AH(z,,v,)=0 and there is a
tef, t>1,, such that AH(z,,v,)<0 and ¢(x(z,),v,)20 for every 7, €]z, 7]. If
§(x(z,),v,)=0 for some 7, €]z,,7], a contradiction follows from Lemma 4. Similarly,
Lemma 4 gives a contradiction if for some 7, €]z,,7] the relationships ¢(x(z,),v,)>0
and (19) are fulfilled. In consequence, the inequalities g(x(z,),v,)>0 and (20) with
t,:=7, and t,:=7, hold trueforevery 7, €lz,,7].By (rc) AH(z,,v,)—> AH(z,,v,)<0
and ¢(x(z,),v,) = ¢(x(7,),v,)20 as 7, > 7,+.

If g(x(z,),v,)=0, then (19) is true for all 7, >7,, sufficiently close to 7,. We have thus
come to a contradiction. Hence g(x(z,),v,)> 0, and the inequality (20) holds by virtue of
(rc). O

5. A Geometrical Interpretation and a Minimum Condition

Let u be a verifiable control with a boundary interval . The corresponding state
and adjoint trajectories are denoted by x and y , respectively. Define a family of sets

C,={yeR*:y, =g(x(t),v), y, =AH(t,v),vel}, teb.

It readily follows from this definition that 0 C . for every te@.In the sequel we im-
plicitly assume that |C t| >1.
We shall now characterize the properties of the sets Ct which result from control

optimality. For an arbitrary nonzero vector y € R*, define argy as the angle between
col(1,0) and y, measured anticlockwise and taking values in the interval ]—m,7]. Let

also
¢ . (H=inflargy:yeC,\{0}}, ¢ (t)=suplargy:yeC, \{0}}

for every t e 6. Corollary 1 says that if u is optimal, then C, has no points in quadrant
IIT of the coordinate system y,y,. The following theorem is a straightforward conse-

quence of that corollary and of Theorem 2.
Theorem 3. Assume that the control u is optimal. Then

i) -3n<qg., . (B< (t)<m forevery teb,
i) ¢..(t)-9¢..(t)<n foreverypair t ,t, €60 suchthat t <t,.

From this it easily follows that if the control u is optimal and ¢__ (f)=¢_. (f)+7n for
every te@,then Jn<g (t)<m forevery te@, and thefunction 4, isnondecreas-

ingin 6.
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It proves useful to describe the consequences of control optimality in terms of the
straight lines supporting the sets C, at zero. This allows easier verification of the neces-

sary conditions of optimality, and also expressing a partial optimality criterion as a mini-
mum condition imposed on the extended pre-Hamiltonian. We say that a straight line is
a supporting line of C, at the origin (SLO) if it is given by p'y=0 with p,yeR*, p#0
,and p'y20 for every yeC,. Generally, the set C, may have many SLOs, whether
the control is optimal or not. If u is optimal, then every set C,, t €@, has an SLO with
p20.Theset C, hasaunique SLOifand onlyif ¢__ (t)=¢  (f)+=.

The equality ¢ (t)=¢_. (t)+m occursin two practically important situations (mu-

tually nonexclusive). One of them, in which the right-hand side of the system equation (1)
is affine in control, will be discussed in Section 7. Here we consider the other situation, in
which C, has a tangent at the origin. A sufficient condition for that reads

u(t) eintl and 10,g(x(t), u(t))l +10,AH(t,u(t))! >0 (21)
Under this condition, the tangent has the equation p'y =0 with
P = azAH(tlu(t)) ’ Pr= _azg(x(t)/u(t)) .

Of course, if C, has both an SLO and a tangent at the origin, they coincide.

Suppose u is optimal and ¢@__ (t)=¢_, (t)+7 for every te 6. Then every set C,,
t €0, has a unique SLO. The SLO is vertical if ¢_ (t)=1m; if @ (t)>37, the SLO
equation may be written as y, =p(t)y, with a nonpositive directional coefficient
p(t)=tang__ (). If, additionally, the condition (21) is fulfilled with 0,g(x(t),u(t))#0,
then

p(t) = lim AH(t,v) _ 0,AH(t,u(t)) _ O, H(w (1), x(t),u(t))
o G(x(),0) 0,8 u(®)  0,8(x(),u(t))

v#u(t)

(22)

The function p thus defined is nondecreasing in all that part of § where it is determined.
Define the extended pre-Hamiltonian H (w,p,x,0) =y f(x,0)—pg(x,v) . If the control

u is optimal and the function p is determined as above in all the interval &, then the fol-
lowing minimum condition is straightforward by the properties of SLO

H(w (1), p(t), x(t), u(t)) < Hw (t), p(t), x(t),0) YoelU Vted. 23)

This necessary optimality condition is similar to the minimum condition of indirect ad-
joining. We postpone a discussion of relations with the classical results to Section 9.

6. Example 1

In this example we apply the above necessary conditions to verify optimality of two
controls, the first of which is optimal, and the second is not. We show that the nonopti-
mality is easily detected. The control system is described by state equations

X, =2—2x +(x, =2)x, +au(b-u), x,=u,

with the initial conditions x,(0)=x,(0)=1. The set of admissible control values consists
of three elements, U={-1,0,1} . The state is subject to a pathwise constraint
8(x)=x, —=1<0 . The cost to be minimized is given by Q(u)=7(x,(T)~ 6)* + %xz(T)2 .We
take 2=0.125, b=1.025, T =4.

Let u be a verifiable control, and x and y , respectively, the corresponding state tra-
jectory and adjoint function. Let us write the pre-Hamiltonian
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H(y,x,u) =y, (2—3x, +(x, = 2)x, +au(b —u)) + y,u
and the adjoint equations in nonboundary intervals of time
V=G ¥, =25y
The adjoints satisfy the final conditions ,(T)=x,(T)-6, w,(T)=x,(T) . As

g(x,u)=u, we have w(x)=0. In consequence, the state and adjoint equations in the
boundary intervals take the form

Vi =—3¥ Vo =2-x)y,.

To determine the behavior of the adjoint function at entry points, we calculate the matrix

©)

7t Yo 1 0
Co) = aue, -1y 0]

Hence by (13), y,(t,—)=w,(t,,+) and w,(t, —)=a(u(t,—)-b)y,(t,+). In accordance
with (14), AH(t,v) = (aby,(t) +,(t))v—ay,(t)0* in every boundary interval.
It is evident that the nontangentiality conditions (4) are fulfilled at all entry and exit

points. The optimality of u should be verified with Theorem 1(i) in the whole interval
[0,T], and additionally with Theorem 2 or 3 in the boundary intervals. Every set C, in-

troduced in Section 5 consists of three points, C, = {y(t),0,z(t)} , where y,(t)=-1,
y,(t)=AH(t,-1), z,(t)=+1,and z,(t)=AH(t,+1).If the control u is optimal, then it fol-
lows from part (i) of Theorem 3 that y,(t) 20 Vt <@, and from part (ii), that -y, (t,) <
z,(t,) for every pair t ,t, €6 suchthat t <t,.By Lemmas 2 and 4, u is nonoptimal if

Y,(£)<0 forsome te@ or -y,(t)>z(t,) forsome t,t,€0, t <t,.

Example 1a. A numerically computed approximation of optimal control and optimal state
trajectory is presented in Figure 1. The control has discontinuities at s, =0.49483839,

s, =0.99973751, s, =1.4945759 and s, =3.1366809 . Figure 2 shows the correspond-

ing adjoint trajectory. Let us verify the necessary conditions of optimality. Figure 3 shows
that the condition of Theorem 1(i) is fulfilled. In the boundary interval &=[s,,s,[, we

additionally have to verify the conditions of Theorem 2 or 3. It can be seen in Figure 3 that
AH(t,-1)>0 forall te 6. Thus, implications (i) and (ii) of Theorem 2 are vacuously true

for all v ,v,,t,t, satisfying the assumptions of the theorem, and so is (iii) except the
case where v, =-1, v,=1 and AH(t,,1)<0. In that case, g(x(f,),v,)=1 and (20)
reads —AH(t,-1)<AH(t,,1) . As can be checked by inspection, (20) holds for all
t,t,ed, t <t,, and so (iii) is true. Alternatively and equivalently, we can use Theorem
3. We see in Figure 4 that —in<g_ . (£)<d  (t) and ¢ (1)-n<0 for every te@,
then conclusion (i) of Theorem 3 is true. It can be also seen that ¢, __ (t,)—-n <4, . (t,) for
every t, €6 and t, €[t,,s,[, and so conclusion (ii) holds too. Thus, the necessary opti-

mality conditions of Theorems 1, 2 and 3 are satisfied.
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1 . . .

2
t

Figure 1. Optimal control (left scale) and optimal state trajectory (right scale).
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—
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Figure 3. Verifying conditions of Theorems 1 and 2.
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Figure 4. Verifying the conditions of Theorem 3.

Example 1b. Consider a nonoptimal control

0, 0<t<
u(t) = .
-1, 5, <t<T,

where s, =3.2429037 . It is plotted in Figure 5 together with the corresponding state tra-

jectory. The adjoint function is depicted in Figure 6. As follows from Figure 7, the neces-
sary optimality condition of Theorem 1(i) is satisfied and in consequence, there are no one-
spike variations described in Section 2 which guarantee an improvement of the cost. Let
us now check the conditions of Theorem 3 in the boundary interval #=[0,s,[. To this end

(tH)=inf{g . (s):t<s<s} and q;max(t):sup{¢max(s):0Ss<t} for ted.

The inequalities ¢ (£)<¢__ (t) <7 in conclusion (i) of Theorem 3 directly follow from

max

we define ¢

the definitions. Figure 8 shows that ¢7mm(t) >—1m, and the more so ¢, (t)>—3n for
every te@ . Let us rewrite conclusion (ii) of the theorem in an equivalent form,
qgmax (t)—-n< ggmm(t) Vt € 0 . Figure 8 shows that this inequality holds only in [t",s [, with
t* > 0. This proves that the control u is not optimal and there are two-spike variations in
the boundary interval (defined in Section 4) which yield a cost reduction for any suffi-

ciently small positive value of the parameter &. A closer analysis of the conditions of
Lemma 4 shows that the difference 7, —7,, that is, the distance between the spikes in such

a variation cannot be arbitrarily small.

T T
—1T 6
—_—y

Figure 5. Control (left scale) and state trajectory (right scale).
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02 1,
0
-0.2
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Figure 6. Adjoint trajectory.
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Figure 7. Verifying the condition of Theorem 1(i).
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Figure 8. Verifying the conditions of Theorem 3.

7. The Control Affine Case

Consider the system (1) with the function f affine in control, f(x,u)=a(x)+b(x)u.

Many of the results obtained so far may then be significantly simplified, or even strength-
ened. In this section, u stands for a certain verifiable control, x for the corresponding state

trajectory, and y for the corresponding adjoint. We also denote
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o, (t) = 8g(x(t) "D (x(t)), e, () =y (1) b(x(t)).

In consequence we have AH(t,v) = a,(t)(v—u(t)), where t€[0,T] and velU.The
formula (3) in every boundary interval 6 of u may be written as g(x(t),v)=
a,(t)(v—-u(t)), for ted and vel. The equality (9) is simplified to

21,)-1- 280l )()tbo)c(ten)f .

It follows from (13) that the left-hand limit of the switching function «, equals zero

(24)

at every entry point t_, oa,(t,—)=0.If the control u is optimal, then «, vanishes at

every exit point t_, a,(t,)=0.Indeed, a,(t, )u(t —)=a,(t, )u(t,) by Theorem 1(ii),
and u(t, —)=u(t,) by (4).

We shall now formulate the results of Section 3 for the control affine case, beginning
with Lemma 2.

Lemma 5. Assume that 7 €[0,T[, vel , and a,(r)(v—u(r)) <0. Then for every sufficient-
ly small &> 0, the control u® defined in Section 2 is admissible and Q(u®) <Q(u).

Theorem 1(i) takes the following form.

Theorem 4. Assume that the control u is optimal. Then o, (t)(v—u(t)) 20 for every t €[0,T]

and every vel,.

Corollary 2. Assume that u is optimal and t €[0,T]. Then the following implications hold:

(i) if (§(x(t)<0and a,(t)>0) or (te®,,a,(t)>0and a,(t)>0), then minU exists
and u(t)=minlU,

(i) if (g(x(t)<0and a,(t)<0) or (t€®,, e (t) <0 and a,(t)<0), then maxU exists
and u(t)=maxU .

From here till the end of this section, u is a verifiable control with a boundary interval
0 . Let us pass to the results of Section 4. For all t €[0,T] such that «,(t)#0, define

a,(t)
a,(t)

Note that this is an extension of the function p given by (22). The following lemma is
an immediate consequence of Lemma 4.

p(t) = (25)

Lemma 6. Assume that 7,7, €0, r,<t,, v,v,el,and
al(Tl)(U1 - M(T1 )) < O/ 0[2(‘[1)(01 - u(Tl )) =20

a,(z,)(v, —u(z,)) 20, a,(z,)(v, —u(r,)) <0.
Let also p(z,)>p(z,) if a,(z,)#0. Then there is an >0, such that for every sufficiently
small &>0 the control u’ defined in Section 4 is admissible and Q(u*) < Q(u).
The question arises how to choose 7 in the construction of u° under the assump-
tions of Lemma 6. It follows from the proof of Lemma 4 that if «,(7,)=0, then 1 may

be any positive number, whereas if ¢, (7,)#0, then 7, <n<n, with
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_ (z))(v, —u(z,)) _ a, (7)) (v, —u(z,))
), —u(r) T (), - u(r,) (26)

If the control u has nonextremal values in the boundary interval &, a simple conse-
quence follows from Lemma 6.

Corollary 3. Assume that v<u(t)<0 and a,(t)a,(t)<0 for some v,0eU and every
t € 0. Let also the function p be strictly decreasing in 6 . Then there exist t,,7,€8, v,,v, €U
and 1 >0, such that the control u® defined in Section 4 is admissible and Q(u®) <Q(u) for
every sufficiently small &>0.

The following theorem is a straightforward consequence of Theorem 2.

Theorem 5. Assume that the control u is optimal, t ,t, €0, t <t,, and v ,v, eU. Under
these assumptions:

G if o) (v, —u(t))<0 and a,(t))=0, then a,(t,)(v,—u(t,))=0,
() if a(t,)=0 and a,(t,)(v, —u(t,)) <0, then a,(t)(v, —u(t,)) =0,

(i) if o (t)v, —u(t,))<0 and a,(t,)(v,-u(t,)<0 , then oa,t,)#0 and
p(t) < p(t,) <0.

Corollary 4. Assume that u is optimal, v,v,el , o (t) (v, —u(t))<0 and

a,(t,)(v, —u(t,)) <0 forevery te@. Then the function p is negative and nondecreasing in 6

The analysis of Section 5 applied to the control affine case leads to the following con-
clusions. Every set C, is included in a certain straight line in R?, passing through the
origin. If 0(1(15)2 +a2(t)2 >0, this line has parametric equations y,(s)= «,(¢)s, y,(s)=
a,()s , seR . If |C|=2, then 4 _(t)=4, (), and if |C|>2, then either
g =4 . (t)+n or ¢ (t)=¢_ . (t). Theorem 3 remains unchanged.

Suppose that the control u is optimal. We then have by Theorem 3 that for every
te@ the set C, has an SLO given by p'y=0 with p>0.If a,(t) +a,(t)? >0, we
can put p, =la,(f)l and p, =la,(t)!. Let us now assume that for every te @ there are
v,0elU such that v<u(t)<?, and in consequence ¢_ (t)=¢, . (H)+m . Let also
in<g  (t)y<m . It then follows from the reasoning in Section 5 that the equality
y, =p(t)y, holdsforevery te@ andevery yeC,, withthe functionp (25) negative and

nondecreasing in the interval 6.
Finally, note that the minimum condition on the extended pre-Hamiltonian (23) is
trivially satisfied with equality (independently of whether the control u is optimal or not).

8. Example 2: the Pendulum on a Cart

We shall now consider a problem with the right-hand side of the state equation (1)
affine in control. The system is described by state equations

X, =X
=X

4

2 . .
u—x, sinx, +sinx, cosx,

X, = f(x,u)=

1+sin’x,
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2 . .
(u—x, sinx,)cosx, +2sinx,

X, = fi(ou)= 27)

1+sin’x,
The initial state x(0) = x, and the time horizon T are fixed. The performance index
Q) =5 x(T) x(T)
is minimized subject to control bounds and a pathwise state constraint
u . <ut)<u_, g(x(t)=x,(t)-x,, . <0, te[0,T].
We write the pre-Hamiltonian

H=yx;, +y,x, 'H//afs +'//4f4

and the adjoint equations in the nonboundary time intervals

v, =0
- o %

V2=V ox, Va ox,

v, =y,

) 2x, sinx, (y,+y, COsX,)
W, =, + 4 2\73 4 2 ,

1+ sinzx2
where

2 .
of, _ €082x, —X; COs X, - f,sin2x,

02
ox, 1+sin"x,

. 2 .
o, _2cosx, —usinx, —x, cos2x, — f, sin2x,

s a2
ox, 1+sinx,

The adjoint function satisfies the final condition y(I)=x(T). The state equations in the
boundary intervals are obtained by the substitution u=w(x)= (xi —cosx,)sinx, in (27),
which gives

X, =x, x,=x,, x,=0, x, =sinx,.
Hence the pre-Hamiltonian and the adjoint equations in the boundary intervals read

H=yx, +y,x, +y, sinx,
v, =0, ¥, =—y,Cosx,, W,=—W, ¥,=,.

At every entry point t_ the jump condition (13) is valid with the matrix (24), whence

vt -)=w (. +), i=1,2,4, y,(t, —)=—cosx,(t, v, (t, +). We further compute

a,(f)=(1+sin’x,(t)) ",

a,(t) = (v, (1) +y,(t) cosx, (1)) (1 +sin’x, (1)) ",

and from (25), p(t)=w,(t)+y,(t)cosx,(t) for every t<[0,T]. Note that o,(t) is al-

ways positive, and p(t) and «,(t) have the same sign.
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Assume that the control u is optimal. It follows from Corollary 2 that for every ¢ in
any nonboundary interval of u
u_., a(t)>0
u( t) — { min 2( )

u_. ., a,(t)<O0.

Letnow @ be aboundary interval of u. We infer from Corollary 2 that if t € &, then
u(ty=u_, or a,(t)<0.If these relations are not satisfied at some ¢t € 8, then the control

u can be improved in accordance with Lemma 5, by means of a spike control variation
described in Section 2. We deduce from Theorem 5 that if ¢,t, €6, t <t,, and

u(t,)>u_, , then
() ut,)=u_ if o,(t,)=0 and a,(t,)<0,

(i) u(ty) =u,, if a,(t)=0 and a,(t,)>0,

(i) p(t,)<p(t,)<0 if a,(t,)#0 and u_,

i

L<u(t,)<u

ax *

If some of the necessary conditions of Theorem 5 or Corollary 4 are not fulfilled, then
— as follows from Lemma 6 — the control u can be improved with the use of a two-spike
control variation (Section 4).

We shall now numerically analyze two cases, taking x, =col(-0.4,3.5,1,-1.1),

u, =4, u =4, T=15,and x, =1.

Example 2a. The optimal control in the considered problem is of the form

u,., 0<t<s,
u_, s, <t<s
u(t) — max 1 2
w(x(t)), s, <t<s,
Ui s, <t<T,

where s, =0.20359164, s, =0.36709680, s, =1.1925492, with Q(u) =2.6850568 . Fig-
ure 9 shows the control u, the switching function «,, and the function p (25). It is easy to
see that the necessary optimality conditions of Theorems 4 and 5 are fulfilled in the whole
interval [0,T]. The optimal state trajectory is depicted in Figure 10. Notice the cusps of

x, at t, =s, and t,_ =s,,indicating that u satisfies the nontangentiality conditions and

is verifiable.

Example 2b. Consider a verifiable, but nonoptimal control with a boundary interval

M”:{w@0»0£t<%

, 5, =1.1825443
u s <t<T

min /

The corresponding value of costis Q(u) = 2.7408438 . Figure 11 presents the control
u, the switching function «,, and the function p (25). It can be seen that the necessary
conditions of Theorem 4 and Corollary 2 are satisfied, which means that there are no one-
spike control variations described in Section 2, guaranteeing an improvement of the cost.
Figure 12 shows the state trajectory. The plot of x, has a cusp at the exit point t, =s,,
and so the control u is verifiable. We can also see in Figure 11 that in the time interval [0,
0.2948] the function p is decreasing, hence it is possible to construct a two-spike control
variation in that interval (according to Section 4) which reduces the cost. In order to verify
this numerically, consider also Figure 13 which presents a contour plot of the difference
p(z,) —p(z,). Let for instance 7, =0, 7,=0.2948, v, =—4, v, =4 (red cross on the left

y-axis). By (26), the parameter 7 may have an arbitrary value from the interval
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10.5410, 0.7134[ ; we choose 7 =0.713. Figure 14 demonstrates the dependence of the

cost increment on the width of the first spike ¢ . The greatest improvement takes place at
£=0.073 . For &=0.073, Figure 15 shows the state trajectory, and Figure 16, an enlarge-

ment of the plot of x;.

— U,
—10(12
45 — —a {1
3 —p
0 ~— 0
4 ‘ ‘ ‘ A
0 05 1

t

Figure 9. Optimal control (left scale), switching function and p (right scale).

t

Figure 10. Optimal state trajectory.

0 0.5 1
t

Figure 11. Control (left scale), switching function and p (right scale).
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Figure 13. Contour plot of p(z,)-p(z,).
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Figure 14. Cost increment vs. width of first spike.
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t

Figure 15. State trajectory x°.

1 L,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1@92}{
081 1
a3
06l . : J
0 0.5 1 15

Figure 16. Blow-up of x;.

9. Connections with Some Classical Results

There are essential connections between some of our results presented in Sections 5
and 7, and certain classical results obtained by the so called indirect adjoining method, da-
ting back to the works of R.V. Gamkrelidze, A.E. Bryson, H. Maurer, D.H. Jacobson, and
many others (see [1,3-5]). As we have no space to discuss all similarities and analogies
that can be found in the vast literature, we shall concentrate on one representative theorem
due to H. Maurer [3]. We shall use a reduced version of that theorem, specialized to the
case of state constraint of order one, verifiable control, fixed initial state and free final
state.

Consider the optimal control problem formulated in Section 1, with the additional
assumption that U is a closed interval with nonempty interior. Define

H'(x,u, A" n"y=(A") f(x,u)+n'¢(x,u), A'eR", n' eR.

Theorem 6 ([3], Theorem 5.1). Let u be a verifiable optimal control and x, the corresponding
state trajectory. Suppose that f and g are of class C*, and let 0,g(x(t),u(t))#0 and
u(t) eintU for every t in any boundary interval. Additionally, assume that there are finitely
many entry points. Then there exist a number A 20 and functions A':[0,T]—>R",

7' :[0,T]— R such that

A'=—0,H' (x,u, A',") = =0, f(x,u) A" —17'0,§(x, 1) (28)
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AN(T) = A,09(x(T)) . (29)

The following jump condition holds
At ) =2t ) - B (t,)08(x(t,),  B(t,)=0, (30)

at every entry point t_, and A' is continuous at every exit point. The function n' satisfies

en”’

7' ()g(x(t))=0 on [0,T] andisa C' function in the interior 1t,,t,[ of every boundary in-

terval, given by

Ty _ g1 1 O f (x(t), u(t))
PO gy ey

Moreover, n'(t)>0 and 1'(t)<0 for t, <t<t,.Italso holds that for a.e. t<[0,T]

min H' (x(t),0, 2" (£),7' (£) = H' (x(t), u(t), A'(£), 7' (£)) = const. (32)

Let us first notice that if A' in (31) is identical with the adjoint y/, then the multi-
plier 7' is equal to the function —p given by (22) in Section 5. The function —p, simi-

larly to 7', is nonnegative and nonincreasing in every boundary interval. The adjoint

equation (28) is then identical with (11) almost everywhere. Indeed, in every boundary
interval the equation (11) takes the form

=0, f(x, w(x)y — ow(x) 0, f(x,w(x)) v .

By virtue of Section 1 and (22),

08y yo,f(xu)

=5 s’ P agmu

Henceif ' =-p, then 7' 0,8(x,u) = ow(x)o, f(x,w(x))T!// . The final condition (29) coin-

cides with (12) if A, =1. This last equality is ensured in [3] by special regularity condi-

tions. Further, it is evident that the jump condition (13) can be written in the form

AH(t,, ut.,~))
8(te, u(t,, =)

Thus, in this case (30) is identical with (13) if

w(t,—)=w(t,+)- og(x(t,,)) -

AH(t (k) |
8t ult, =)

In the control affine case discussed in Section 7 the condition (13) is readily transformed
to

B(t,) =

Y (te=) =yt ) —plt,+) 8(x(t,,)) ,

with p determined by (25). Hence, we have S'(t,)=—p(t, +)=0 by Corollary 4. We skip
the proof of the inequality sign in the general case, which is more complicated. The iden-
tity of the adjoints A' and y entails the equivalence between the minimum conditions
(32) and (23). In conclusion, the results obtained in this work for the case where in the
boundary intervals u(t)eintlU, ¢ _ (t)=¢ . (t)+7n and p(t) is given by (22) or (25),

are in agreement with Theorem 5.1 in [3].



Games 2021, 12,9 22 of 22

Finally, note that this work’s approach does not require that the optimal control in
the boundary intervals takes values in the interior of U, whereas that assumption is essen-
tial in [3]. Also, in contrast to [3], we give an explicit representation of the jump of the
adjoint function (Section 3, see also [11,12]).
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