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1. Introduction

Necessary optimality conditions for control problems with pathwise state constraints
have been widely studied since the beginnings of optimal control theory [1], and this
domain of research is still vivid nowadays [2]. Most of the existing approaches may be
divided into two streams [3]. The first one, characterized by the use of classical methods of
analysis with often heuristic proofs, yields results of limited generality (see the review [4],
and [3]). The other is based on the abstract theory of infinite-dimensional optimization
and its results encompass a wide class of problems, with rigorous but demanding proofs
(see [5-9]). However, these results are difficult for practical verification, because of too
general characterizations of the adjoint variables and multiplier functions. Generally, the
existing approaches are hardly constructive, meaning they do not give sufficient indications
how to improve a nonoptimal control.

We propose an elementary approach to necessary optimality conditions for problems
in Mayer form with free final state and a scalar state constraint. The controls are scalar
functions and nontangentiality is assumed at all entry and exit points. As is well known, the
proof of the minimum principle with free final state and without pathwise state constraints
can be made elementary and simple by considering the cost increment caused by a single
spike variation of control. Our first purpose is to show that a similar proof technique may
be effective when a pathwise state constraint is present, with the difference that additionally
a coordinated pair of spikes is used. A second purpose is to extend the known results
for state constraints of index one, mainly to nonregular problems in which the optimal
control and the corresponding state trajectory may at the same time take values on the
boundaries of their respective admissible sets. In particular, we allow for discrete sets
of admissible control values. From a conceptual point of view, this work also offers a
clear geometrical interpretation of the results. On the practical side, an advantage of our
approach is that the obtained conditions are readily verifiable and constructive: if they
are not fulfilled, a gradient optimization procedure can be indicated and initialized which
guarantees an improvement of the control, up to numerical precision (as in the method
of Monotone Structural Evolution [10]). Of course, the other approaches clearly prevail
in a wider perspective, when problems of greater complexity are also taken into account.
They then produce optimality conditions, which can be effectively used in optimal control
computations (see [11-14]).
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Consider a control system described by a state equation
x(t) = f(x(t),u(t)), t € [0,T], x(0) = xo, x(t) € R", (1)

with a given initial condition x( and a given time horizon T. The controls u : [0, T| — R
are piecewise continuous functions of time, taking values in a given set U, that is, they
belong to PC(0, T; U). ! The function f : R" x R — R" is of class C! in its both arguments.
We make a general assumption that all solutions of (1) appearing in the sequel are well
defined in the whole time interval [0, T]. The state is subject to a scalar pathwise constraint,

g(x(t) <0, t € [0, T]. @

The function g: R" — R is of class C2, and dg(¢) # 0 if ¢(&) = 0. We assume
g(xp) < 0. A performance index (or cost),

is minimized on the trajectories of (1). The function g : R” — R is of class C 1

For a control u € PC(0, T; U), let x be the corresponding solution of the initial value
problem (1). The control u is admissible if the trajectory x satisfies the state constraint (2). The
control u is optimal if it is admissible and minimizes the cost Q in the set of all admissible
controls. A boundary interval of u is defined as any nonempty and right-open interval
of time in which g(x(t)) = 0. Any nonempty and right-open interval of time, such that
g(x(t)) < 0 for every t in that interval, is nonboundary. If [t1, 5[ is an inclusion-maximal
boundary interval of u and t; > 0, then ¢; is called an entry point of u. If t; < T, then t; is
an exit point. Denote

§(&0) =0g(&) f(&,v) for ¢ € R", v € R. ®)

The derivative of the function t — g(x(t)) along the trajectories of (1) is equal to
§(x(t),u(t)).

For admissible controls we introduce the concept of verifiability, aiming to distinguish
the controls to which the spike technique of (non)optimality verification, developed below,
can be effectively applied. Let u be an admissible control with the corresponding state
trajectory x. We call this control verifiable if
(i) ithas a finite number of inclusion-maximal boundary intervals,

(i) animplication holds that if g(x(¢)) = 0 for a certain t, then t belongs to the closure of

some boundary interval of u, 2
(iii) the conditions of nontangentiality

g(x(ten), u(ten—)) >0, g(x(tex) u(tex)) <0 4)
hold at all entry points fen and all exit points fex of u,

(iv) there is an open set X, C R" containing all points x(t) such that g(x(t)) = 0, and
there is a C! function w : X,, — R such that

(w(¢) € Uand §(&w(Z)) =0) if (& X, and g(¢) <0).

Note that if (4) is true, then the functions u and t — g(x(t), u(t)) are discontinuous
at fen and fex. Claim (iv) may be regarded as a weakened form of the assumption that the

1

PC(0,T; U) is the space of all functions [0,T] — U which have a finite number of discontinuities, are right-continuous in [0, T, left-continuous at T,

and have a finite left-hand limit at every point.

2

Controls leading to state trajectories with boundary touch points are not verifiable.
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state constraint (2) is of index (or order) one (cf. [3,4,8]). From the implicit function theorem
it follows that if ¢ € X, ¢(&) < 0and 0,¢(¢, w({)) # 0, then

dw (&) __%g(Gw(@)) _ _a1f(§,W( ¢))9g(¢) +2°¢ (C)J)’( w(@))

98(& w(E)) 9g(&) 0 f (&, w(E)

For any verifiable control u define a function F : [0, T] x R" — R"

_ [ f(Gw(d)), te®y ¢ X,y
Ft,¢) = { f(& u(t)), elsewhere,

where ©, denotes the union of all boundary intervals of u. Obviously, the corresponding
state trajectory satisfies x(t) = F(t,x(t)) for almost all t € [0, T].

2. The One-Spike Control Variation and Trajectory Variation

Let u be a verifiable control, and x, the corresponding state trajectory. Denote

_ € U:g(x(t),v) <0}, g(x(t))=0
Uf—{{v T } 5(;(t))<o.

Forany T € [0,T[, any v € U, and any sufficiently small ¢ > 0, we shall define a
control u® € PC(0, T; U). We also define x° as the solution of the initial value problem

# () = FE(), uE (1), £ € [0,T], x(0) = xo.

We put u®(t) = u(t) ift < 7, and u®(t) = vif T < t < T+ ¢e. To define u®(t) for
t > T+ ¢, suppose first that T ¢ ©,,. Then
(1) uf(t) = w(x®(t)) if g(x°(t1)) = 0 for some #; < t, and u has no exit points in [t1, t],
(i) u®(t) = u(ten—) if g(x(t)) = 0and g(x°(t)) < 0, where tep, is the greatest entry point

of u less than or equal to ¢,
(iii) uf(t) = u(t) otherwise.

Let now T belong to 6, an inclusion-maximal boundary interval of u, and t > 7 +e.
Then u®(t) = w(x*(t)) for t € 0, and (i), (ii), (iii) are valid for ¢ ¢ 6.

The spike variation of control is the difference u® — u. Note that the control u® is
admissible for every sufficiently small positive e.

Lemma 1. The trajectory increment Ax = x* — x satisfies
Ax(t) = ebx(t) + o(e) ()

for every t € [T, T|, where the trajectory variation éx : [t,T] — R" is absolutely continuous
except, possibly, at the entry points of u, and independent of €. For almost every t € [T, T|

Sx(t) = 9o F (¢, x(1)) Tox(t), (6)

moreover,
ox(t) = f(x(1),0) = f(x(7), u(7)) )

and at every entry point ten > T of u

5x(ten+) = Z(ten) 0% (fen—)- ®)

Here
2t — 1 28(ten)) A (ten)” o

ag(x(ten)) f(ten)

Af(ten) = f(x(ten), u(ten—)) — f(x(ten), w(x(ten)))-
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Proof. If the control u has no entry points in |7, T[, the lemma is obviously true by virtue
of the classical theorems on ordinary differential equations. Suppose that u has exactly one
entry point ten in |7 + ¢, T[. From the mentioned theorems it directly follows that (5) holds
in the time interval [T, fen[, with an absolutely continuous function dx, satisfying (7) and
(6) in that interval. We shall prove that the relationships (5) and (6) may be extended to
the whole interval [, T], with the function dx absolutely continuous in |fen, T|]. To this end,
let us first notice that for every sufficiently small ¢ > 0 the control u® has an entry point
t&h = ten + €0ten + 0(€), where dtep is a real number independent of €. This follows from
the verifiability of u (see (4)) and from the construction of u®. Let Aten = t&, — ten. To fix
attention, assume Afen > 0. We then have

x(tgn) = x(ten) +f(x(ten)/w(x(ten)))Aten + O(Aten)
x(ten) = x*(ten) + f(x*(fen), u(fen—)) Aten + 0(Aten)
= x%(ten) + f(x(ten), (ten—))Aten + 0(Aten),
as f(x*(ten), u(ten—)) = f(x(ten), t(ten—))+01f(x(fen), ”(ten_))TAx(ten)+0(Ax(ten))-

Hence
Ax(t,) = Ax(ten) + Af (fen)Aten + 0(Aten). (10)

By the definition of entry points, g(x(ten)) = g(x°(£5,)) = 0. Thus

g(xs(tgn)) g(x(ten) + Ax(ten) + f(x(ten)/u(ten_))Aten + O(Aten))
= ag(x(ten))T(Ax(ten) + f(x(ten), u(ten—))Aten) + 0(Aten) =0,

and so
ag(x(ten))TAx(ten)

ag(x(tEﬂ))Tf(x(ten)/ u (ten_)>
Substituting this into (10), we obtain

£ Af(ten)ag(x(ten))T >
Ax(ten) = (I — Ax(ten) + 0(Aten).
{fn) ( ag(x(ten))Tf(x(ten)/”(ten_)) (fen) + ol )

As 9g(x(ten)) T F(x(ten), t(ten—)) = 9g(x(ten)) Af(ten) and Ax(ten) = €6x(ten—)
+o0(¢), we get

+ 0o(Aten).

en —

Ax(£) = eZ(ten)  6x(ten—) + 0(e).

Defining dx(ten+) by (8), we arrive at the extension of (5) and (6) to [t, T| because of
the same classical theorems on differential equations. For Aten < 0, an analogous argument
leads to the same result. The proof can be easily generalized to an arbitrary finite number
of entry points. U

3. The Adjoint Function and The One-Spike Necessary Optimality Condition

As in Section 2, let u be a verifiable control and x, the corresponding solution of
(1). With every such control we associate an adjoint function ¢ : [0, T] — R", defined as a
solution of the adjoint equation

() = —0aF (£, x(1))9 (), (11)
absolutely continuous except at the entry points of u and satisfying the final condition
$(T) = 9q(x(T)). (12)

At every entry point fen, P(fen) = P(ten+) and

lp(ten_) = Z(ten)lp(ten+)~ (13)
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Let T be an arbitrary point from [0, T[, and dx, the trajectory variation determined in
Lemma 1. It is easy to notice that the function ¢ — w(t)Téx(t) is constant in the whole time

interval [t, T]. Indeed, its derivative ()" 6x(t) + lp(t)Téjc(t) equals zero at every t where
¥ and dx are differentiable, and at the entry points ten > T we have by virtue of (13) and

®): Y(ten—) 6x(ten—) = P(ten+)" Z(ten) 6x(ten—) = P(ten+) 6% (ten+). Thus,

$(0) (f(x(1),0) = f(x(),u(1))) = 9 (x(T))" 6x(T).

Define the pre-Hamiltonian H:R" x R" x R — R, H(¢,x,u) = ¢ f(x,u), and
its increment
AH(t,v) = H((1), x(1),v) — H(y(1), x(7), (7)) (14)

forany v € U and 7 € [0, T] (note that AH is only defined for a uniquely predetermined
control u#). We can now express the value of cost on the control u, defined in Section 2

Q) = q(x*(T))= Q(u) +€dq(x(T))"6x(T) + o(e)= Q(u) + eAH(7,v) + 0(e).

A sufficient condition for the existence of spike variations which improve the cost is a
straightforward consequence.

Lemma 2. Assume that T € [0, T[, v € Uy, and AH(7,v) < 0. Then the control u® is admissible
and Q(u®) < Q(u) for every sufficiently small ¢ > 0.

A theorem on optimal control of the minimum principle type follows from Lemma 2.

Theorem 1. Assume that the control u is optimal. Then:

(i) AH(t,v) > 0foreveryt € [0, T] and every v € Uy,
(i) the function [0,T] > t — x(t) = H((t), x(t),u(t)) is constant.

Proof. Conclusion (i) is a direct consequence of Lemma 2. Conclusion (ii) for the non-
boundary intervals is proved exactly as in the classical proofs of the minimum principle
without pathwise state constraints. In the interior of every boundary interval, the function
X is of class C! with the derivative identically zero. The continuity of x at entry points
readily follows from (13) and (9). Let now tex be an exit point of u. By (i) and (4), there is a
6 > Osuch that AH(t, u(tex)) > 0 forall t € [tex — 6, tex], and AH(t, w(x(tex))) > 0 for all
t €]tex, tex + 6]. The continuity of x at tex is shown by limit passages: t — tex— for the first
of these inequalities, and ¢ — tex+ for the second. [

Corollary 1. Assume that the control u is optimal and g(x(t)) = 0 for some t € [0, T]. Then
AH(t,v) > 0or g(x(t),v) > 0 for every v € U.

4. The Two-Spike Necessary Optimality Condition

For a verifiable control # and the corresponding state trajectory x, we shall define a
two-spike control variation. Let 6 be an inclusion-maximal boundary interval of u. For
any quintuple 1y, T2, v1,v2, 77 such that 71, » € 6, 71 < T, v1,v2 € U, > 0, and for any
sufficiently small ¢ > 0 we define a control u* € PC(0, T; U) (not to be confused with
the control u® defined in Section 2) and the corresponding state trajectory x*. We put
ut(t) =u(t)ift <, u(t) =v1ifg <t <m+eu(t) =vmifn <t < m+ne and
ut(t) =w(x%(t)) for any other t in 6. Points (i), (ii) and (iii) of the definition in Section 2
apply to all the remaining values of t. The two-spike control variation is the difference
ut —u.

The control # may sometimes be improved even if it fulfills the necessary optimality
condition (i) of Theorem 1. We shall now give conditions, sufficient for the existence of a
two-spike control variation in § which is admissible and guarantees a cost improvement.
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Lemma 3. Assume that 7,7 € 0, 71 < T, v1,v2 € U, 7 > 0, and

g(x(m),v1) <0 (15)
g(x(m),v1) +ng(x(1),v2) <0 (16)
AH(t,v1) + 1AH(1,v2) < 0. (17)

Then for every sufficiently small € > 0 the control u® is admissible, and Q(u®) < Q(u).

Proof. It follows from the definition of u® and the inequalities (15), (16) that for every
sufficiently small € > 0 the function t — g(x*(t)) is negative in the time interval |1y, sup6)|
and constant in the intervals [1; + ¢, 2] and [T + ¢, supf)],

g(x*(1)) = eg(x(m),01) +o(e), t € [1 +& 1),

g(x*(t)) = e(g(x(n1),v1) +18(x(12),02)) + 0(e), £ € [12 + 7€, sup)].

From this we infer that the control ° is admissible for all sufficiently small € > 0. Reasoning
similarly as in Section 3 and using the adjoint function defined therein, we estimate the
value of the performance index on the control u*.

Q(uf) = Q(u) + e(AH(T,v1) + nAH(12,v2) + 0(¢).

Hence, (17) is a sufficient condition for the two-spike control variation to reduce the cost
for every sufficiently smalle > 0. O

Lemma 4. Assume that 11, o € 0, 11 < T, 01,0 € U, and

g(x(m),v1) <0, AH(13,v1) >0

2(x(m),v2) >0, AH(12,v2) < 0. (18)
Assume also that if g(x(12),v2) > 0, then

AH(Tl,'Ul) > AH(TQ,Z)Q)
g(x(m),v1) = &(x(m),v2)

(19)

Under these assumptions there is an 17 > 0, such that for every sufficiently small € > 0 the control
u® is admissible, and Q(u®) < Q(u).

Proof. We shall show that the assumptions of Lemma 3 follow from the assumptions of
Lemma 4. Denote

AH(Tl,Ul)

_ §(x(m),v1)
" AH(1,v2)

and 1p = (x(12), ) for ¢(x(12),v2) > 0.

Of course 771 > 0 and 77, > 0. The inequality (15) is obvious. In view of (18), (17) is true
for every 1 > 1. If g(x(12),v2) = 0, then (16) holds for every # > 0, and the assumptions
of Lemma 3 are satisfied. If ¢(x(12),v2) > 0, then the inequality (16) holds for 7 < 7,. We
thus have a two-sided bound on 1, 171 < 77 < #72. The interval of admissible values of 7 is
nonempty if 771 < 772, and this inequality follows from (19). O

By contradicting the sufficient nonoptimality conditions of Lemma 4 we obtain new
necessary conditions of optimality.

Theorem 2 (main result). Assume that the control u is optimal and verifiable, and has a boundary
interval 0. Let also t1,t; € 0, t1 < tp, and vy, vy € U. Under these assumptions:

(i) if g(x(t1),v1) < 0and AH(t1,v1) = 0, then AH(tp,vp) > 0,
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(i) if g(x(t2),v2) = 0and AH(tp,vp) <O, then g(x(t1),v1) >0,
(i) if g(x(t1),v1) < 0and AH(tp,v2) <0, then g(x(t2),v2) > 0and
AH(tl,Ul) < AH(l’z, 02) (20)

g(x(t1),01) = g(x(t2),v2)

Proof. Let first t1 < t,. Suppose, contrary to (i), that ¢(x(t1),v1) < 0, AH(t;,v1) = 0
and AH(t,v2) < 0. From Corollary 1, ¢(x(t2),v2) > 0. By Lemma 4, this contradicts the
assumption that u is optimal. The implication (ii) is similarly proved. Let g(x(tz),v2) =0,
AH(ty,v3) < 0 and g(x(t1),v1) < 0. By Corollary 1, AH(t;,v1) > 0 and the assump-
tions of Lemma 4 are fulfilled (with 73 := #; and . := f;). To prove (iii), assume that
g(x(t1),v1) < 0and AH(t,v2) < 0. It follows from Corollary 1 that AH(t;,v1) > 0 and
Q(x(t2),v2) > 0. If g(x(t2),v2) = 0, the assumptions of Lemma 4 hold. If ¢(x(t),v2) > 0,
the inequality opposite to (19), that is (20), is true.

Let now t; = t, = 71. The proof goes similarly, however, we additionally have to use a
simple observation (rc): the functions t — ¢(x(t),v) and t — AH(t,v) are right-continuous
in [0, T[ for every v € U. Let ¢(x(11),v1) < 0, AH(my,v1) = 0 and AH(7,v;) < 0.
By virtue of (rc) and Corollary 1, there is a » > 71 such that AH(1,v;) < 0 and
¢(x(1),v2) > 0. Lemma 4 then gives a contradiction. To prove (ii), assume g (x(71),v2) = 0,
AH(7,v2) < 0and g(x(11),v1) < 0. By (rc) and Corollary 1, AH(1y,v1) > 0 and there
isat €6, t > 7, such that AH(1,v2) < 0 and g(x(1),v2) > 0 for every 1, €]7y,1].
If ¢(x(1),v2) = O for some 7, € [7,T], Lemma 4 again yields a contradiction. If
¢(x(1),v2) > 0 for every 1T, €)1y, 7], then (19) holds for every 7, > Ty sufficiently close
to 7y, since ¢(x(12),v2) — 0 as T» — 11+, and so Lemma 4 gives a contradiction. We
shall now prove (iii). Let ¢(x(7),v1) < 0 and AH(7,v2) < 0. It follows from (rc) and
Corollary 1 that AH(1y,v1) > 0 and thereisa t € 6, T > 7, such that AH(1,vp) < 0 and
¢(x(m),v2) > 0 for every T, €]1y, t]. If g(x(12),v2) = 0 for some 1, €]1y, t], a contradic-
tion follows from Lemma 4. Similarly, Lemma 4 gives a contradiction if for some 1, €]y, 1]
the relationships g(x(1),v2) > 0 and (19) are fulfilled. In consequence, the inequalities
¢(x(1),v2) > 0 and (20) with t; := 7y and ; := T hold true for every 7, €]y, %]. By
(rc), AH(1p,v3) = AH(T,v2) < 0and ¢(x(m),v2) = ¢(x(11),v2) > 0as » — 1y+. If
¢(x(m),v2) = 0, then (19) is true for all 7, > T, sufficiently close to 77. We have thus
come to a contradiction. Hence ¢(x(7),v2) > 0, and the inequality (20) holds by virtue
of (rc). O

5. A Geometrical Interpretation and a Minimum Condition

Let u be a verifiable control with a boundary interval 6. The corresponding state and
adjoint trajectories are denoted by x and 1, respectively. Define a family of sets

C = {y € R2:yp = g(x(t),0), yo = AH(t,v), v € u}, teo.

It readily follows from this definition that 0 € C; for every t € 6. In the sequel we
implicitly assume that |C| > 1.

We shall now characterize the properties of the sets C; which result from control
optimality. For an arbitrary nonzero vector y € R?, define argy as the angle between
col(1,0) and y, measured anticlockwise and taking values in the interval [—7, 7|. Let also

Pmin(t) = inf{argy : y € C:\{0}}, Pmax(t) = sup{argy : y € C:\{0}}

for every t € 6. Corollary 1 says that if u is optimal, then C; has no points in quadrant III of
the coordinate system y;1>. The following theorem is a straightforward consequence of
that corollary and of Theorem 2.
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Theorem 3. Assume that the control u is optimal. Then

(1) —%7‘( < Pmin(t) < Pmax(t) < 7T forevery t € 6,
(i)  Pmax(t1) — Pmin(t2) < 7T for every pair ty,t, € 0 such that t; < t.

From this it easily follows that if the control u is optimal and ¢max () = ¢Pmin(t) + 77 for
every t € 6, then %7’( < ¢pmax(t) < mforevery t € 6, and the function ¢max is nondecreasing
in 0.

It proves useful to describe the consequences of control optimality in terms of the
straight lines supporting the sets C; at zero. This allows easier verification of the necessary
conditions of optimality, and also expressing a partial optimality criterion as a minimum
condition imposed on the extended pre-Hamiltonian. We say that a straight line is a
supporting line of Cy at the origin (SLO) if it is given by pTy = 0 with p,y € R?, p # 0, and
pTy > 0 for every y € C;. Generally, the set C; may have many SLOs, whether the control
is optimal or not. If u is optimal, then every set C;, t € 8, has an SLO with p > 0. The set C;
has a unique SLO if and only if ¢max(f) = Pmin(t) + 7.

The equality ¢max(t) = ¢Pmin(t) + 7T occurs in two practically important situations
(mutually nonexclusive). One of them, in which the right-hand side of the system equation
(1) is affine in control, will be discussed in Section 7. Here we consider the other situation,
in which C; has a tangent at the origin. A sufficient condition for that reads

u(t) € intl and |0,8(x(t), u(t))|+|92AH(t, u(t))|> 0. (21)
Under this condition, the tangent has the equation p’y = 0 with
o1 = AH(Lu(t)), p2 = —3p(x(1), u(t)).

Of course, if C; has both an SLO and a tangent at the origin, they coincide.

Suppose u is optimal and Pmax () = Pmin(t) + 7T forevery t € 0. Then every set Gy, t € 6,
has a unique SLO. The SLO is vertical if ¢max(t) = %71; if Pmax(t) > %n, the SLO equation
may be written as y = p(t)y; with a nonpositive directional coefficient p(t) = tan ¢max(t).
If, additionally, the condition (21) is fulfilled with d,g(x(t), u(t)) # 0, then
o m AHOLD | BAHGY)  BHEOO)

v — u(t) §(x(t),0)  9ag(x(t),u(t)) 928 (x(t),u(t))
v # u(t)

The function p thus defined is nondecreasing in all that part of 6 where it is determined.

Define the extended pre-Hamiltonian H(, p, x,v) = ¢! f(x,v) — pg(x,v). If the control
u is optimal and the function p is determined as above in all the interval 6, then the
following minimum condition is straightforward by the properties of SLO

A

H(y(t), p(t), x(t),u(t)) < H(p(t), p(t),x(t),v) Yo € UVt €. (23)

This necessary optimality condition is similar to the minimum condition of indirect
adjoining. We postpone a discussion of relations with the classical results to Section 9.

6. Example 1

In this example we apply the above necessary conditions to verify optimality of two
controls, the first of which is optimal, and the second is not. We show that the nonoptimality
is easily detected. The control system is described by state equations

. 1 .
xp=2-— Fx1+ (x1 =2)xa+au(b—u), xo =1u,

with the initial conditions x1(0) = x2(0) = 1. The set of admissible control values consists
of three elements, U = {—1, 0, 1}. The state is subject to a pathwise constraint g(x) =
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xp —1 < 0. The cost to be minimized is given by Q(u) = 3 (x1(T) — 6)* + %xz(T)z. We
takea =0.125,b = 1.025, T = 4.

Let u be a verifiable control, and x and 1, respectively, the corresponding state trajec-
tory and adjoint function. Let us write the pre-Hamiltonian

H(yp,x,u) = ¢1(2 — %xl + (x1 = 2)xp +au(b—u)) + ou

and the adjoint equations in nonboundary intervals of time

. 1 .
Y1= G —2)pu = 2-x)yr.

The adjoints satisfy the final conditions ¥1(T) = x1(T) — 6, y»(T) = x(T). As
g(x,u) = u, we have w(x) = 0. In consequence, the state and adjoint equations in the
boundary intervals take the form

. 1 .
X1 = EXL X2 =0

. 1 .
1= 5% ¥ = (2 —x1)¢r.

To determine the behavior of the adjoint function at entry points, we calculate the
matrix (9)
1 0
a(u(ten—) —b) 0

Hence by (13), 1 (ten—) = ¢1(ten+) and o (ten—) = a(u(ten—) — b)P1(ten+). In
accordance with (14), AH(t,v) = (aby(t) + ¢ (t))v — apy (t)v? in every boundary interval.

It is evident that the nontangentiality conditions (4) are fulfilled at all entry and exit
points. The optimality of u should be verified with Theorem 1(i) in the whole interval [0, T],
and additionally with Theorem 2 or 3 in the boundary intervals. Every set C; introduced in
Section 5 consists of three points, C; ={y(t),0,z(t)}, where y1 (t) = —1, y2(t) = AH(t, —1),
z1(t) = +1, and z(t) = AH(t, +1). If the control u is optimal, then it follows from part (i)
of Theorem 3 that y»(t) > 0Vt € 6, and from part (ii), that —y»(t1) <z»(tz) for every pair
ty,tp € 0 such that t; < f,. By Lemmas 2 and 4, u is nonoptimal if y»(¢) < 0 for some t € 6
or —ya(t1) > zp(t2) for some t1,tp € 6, t1 < tp.

Z(ten) =

Example 1a. A numerically computed approximation of optimal control and optimal state
trajectory is presented in Figure 1. The control has discontinuities at s; = 0.49483839,
sp = 0.99973751, s3 = 1.4945759 and s = 3.1366809. Figure 2 shows the corresponding
adjoint trajectory. Let us verify the necessary conditions of optimality. Figure 3 shows
that the condition of Theorem 1(i) is fulfilled. In the boundary interval 6 = [s3,s4[, we
additionally have to verify the conditions of Theorem 2 or 3. It can be seen in Figure 3 that
AH(t,—1) > Ofor all t € 0. Thus, implications (i) and (ii) of Theorem 2 are vacuously true
for all v1,v,t1,tp satisfying the assumptions of the theorem, and so is (iii) except the case
where v1 = —1, v; = 1 and AH(f;,1) < 0. In that case, ¢(x(t2),v2) = 1 and (20) reads
—AH(t;,—1) < AH(ty,1). As can be checked by inspection, (20) holds for all t1,t, € 6,
t; < tp, and so (iii) is true. Alternatively and equivalently, we can use Theorem 3. We
see in Figure 4 that —%71 < Pmin(t) < Pmax(t) and Pmax(t) — 7 < 0 for every t € 0,
then conclusion (i) of Theorem 3 is true. It can be also seen that ¢max(#1) — 7T < Pmin(t2)
for every t; € 6 and tp € [t1,s4], and so conclusion (ii) holds too. Thus, the necessary
optimality conditions of Theorems 1, 2 and 3 are satisfied.
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Figure 1. Optimal control (left scale) and optimal state trajectory (right scale).
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Figure 3. Verifying conditions of Theorems 1 and 2.
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Figure 4. Verifying the conditions of Theorem 3.

Example 1b. Consider a nonoptimal control

. 0,0§t<51
u(t)_{ _1151St§T/

where 51 = 3.2429037. It is plotted in Figure 5 together with the corresponding state
trajectory. The adjoint function is depicted in Figure 6. As follows from Figure 7, the
necessary optimality condition of Theorem 1(i) is satisfied and in consequence, there are
no one-spike variations described in Section 2 which guarantee an improvement of the
cost. Let us now check the conditions of Theorem 3 in the boundary interval 6 = [0, s1][.

— —
To this end we define ¢, (f) = inf{pmin(s) : t < s < 51} and ¢, ., (f) = sup{Pmax(s) :
0 <s <t} fort € 6. The inequalities Pmin(t) < Pmax(t) < 7T in conclusion (i) of Theorem
—)
3 directly follow from the definitions. Figure 8 shows that ¢ . (f) > —%n, and the more
SO Ppmin () > —%n for every t € 0. Let us rewrite conclusion (ii) of the theorem in an

equivalent form, ;max(t) - < gmin(t) Vt € 0. Figure 8 shows that this inequality holds
only in [t¥,s1[, with * > 0. This proves that the control u is not optimal and there are
two-spike variations in the boundary interval (defined in Section 4) which yield a cost
reduction for any sufficiently small positive value of the parameter €. A closer analysis of
the conditions of Lemma 4 shows that the difference » — 79, that is, the distance between
the spikes in such a variation cannot be arbitrarily small.

— I 6
— 9

Figure 5. Control (left scale) and state trajectory (right scale).
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Figure 6. Adjoint trajectory.

Figure 8. Verifying the conditions of Theorem 3.
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7. The Control Affine Case

Consider the system (1) with the function f affine in control, f(x,u) = a(x) + b(x)u.
Many of the results obtained so far may then be significantly simplified, or even strength-
ened. In this section, u stands for a certain verifiable control, x for the corresponding state
trajectory, and  for the corresponding adjoint. We also denote

wi(t) = 3g(x(£) Tb(x(1)), aa(t) = () b(x(1)).

In consequence we have AH(t,v) = ay(t)(v — u(t)), where t € [0, T] and v € U. The
formula (3) in every boundary interval 6 of u may be written as g(x(t),v) =a;(t)(v — u(t)),
fort € 6 and v € U. The equality (9) is simplified to

_ ag(x(ten))b(x(ten))T
=1- x1 (ten) ' (24)

Z(ten)

It follows from (13) that the left-hand limit of the switching function «; equals zero at
every entry point ten, a3 (ten—) = 0. If the control u is optimal, then «, vanishes at every
exit point fex, #2(tex) = 0. Indeed, ap (tex)u(tex—) = ¥2(tex)U(tex) by Theorem 1(ii), and

u(tex—) # u(tex) by (4).
We shall now formulate the results of Section 3 for the control affine case, beginning
with Lemma 2.

Lemma 5. Assume that T € [0, T[, v € U, and ap(7)(v — u(t)) < 0. Then for every sufficiently
small € > 0, the control u® defined in Section 2 is admissible and Q(u®) < Q(u).

Theorem 1(i) takes the following form.

Theorem 4. Assume that the control u is optimal. Then ay(t)(v — u(t)) > 0 for every t € [0, T|
and every v € Uy.

Corollary 2. Assume that u is optimal and t € [0, T|. Then the following implications hold:

(1) if (g(x(t)) <O0and ay(t) > 0) or (t € Oy, aq(t) > 0and ay(t) > 0), then minU exists
and u(t) = minU,

() if (g(x(t)) < 0anday(t) <0)or (t € Oy, a1(t) < 0and ay(t) < 0), then maxU exists
and u(t) = maxU.

From here till the end of this section, u is a verifiable control with a boundary interval
6. Let us pass to the results of Section 4. For all ¢ € [0, T| such that a4 (t) # 0, define

p(t) = : (25)

Note that this is an extension of the function p given by (22). The following lemma is
an immediate consequence of Lemma 4.

Lemma 6. Assume that 71, € 0, 1 < T, 01,02 € U, and
a1 (7)) (o1 —u(m)) <0, az(m)(v1 —u(m)) >0

a1()(va —u(tr)) >0, ax(w2)(v2 —u(tr)) < 0.

Let also p(11) > p(12) if a1(72) # 0. Then there is an nj > 0, such that for every sufficiently small
e > 0 the control u® defined in Section 4 is admissible and Q(u®) < Q(u).
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The question arises how to choose 7 in the construction of u* under the assumptions
of Lemma 6. It follows from the proof of Lemma 4 that if a1 (72) = 0, then 7 may be any
positive number, whereas if a1 (1) # 0, then 177 < 7 < 1, with

w(n)(vr—u(m)) — w(n)(or —u(n)) (26)

N () (o —u@) ? T a(w) (o —u(w)

If the control u has nonextremal values in the boundary interval 6, a simple consequence
follows from Lemma 6.

Corollary 3. Assume that v < u(t) < 0 and a1(t)ap(t) < 0 for some v,o € U and every t € 6.
Let also the function p be strictly decreasing in 0. Then there exist 71, T € 0, v1,v, € Uandy > 0,
such that the control u® defined in Section 4 is admissible and Q(u®) < Q(u) for every sufficiently
small e > 0.

The following theorem is a straightforward consequence of Theorem 2.

Theorem 5. Assume that the control u is optimal, t1,t, € 0, t1 < t, and v1, v, € U. Under these

assumptions:

(1)  if ay(t1)(v1 —u(ty)) < 0and ay(ty) =0, then ap(tp)(v2 — u(tz)) >0,

(i) if aq(t2) = 0and ap(ty)(v2 — u(tz)) <O, then ay(t1)(v1 — u(ty)) >0,

(i) if aq(ty)(v1 —u(ty)) < 0and ay(tp)(va — u(ty)) < O, then aq(ty) # 0and p(t;) <
p(t2) <O.

Corollary 4. Assume that u is optimal, v, v, € U, a1 (t)(v1 —u(t)) < 0and ap(t)(vy — u(t)) <0
for every t € 0. Then the function p is negative and nondecreasing in 0.

The analysis of Section 5 applied to the control affine case leads to the following conclu-
sions. Every set C¢ is included in a certain straight line in R?, passing through the origin. If
a1 (t)* 4+ az(t)* > 0, this line has parametric equations y; (s) = a;(t)s, y2(s) = az(t)s, s € R.
If |C¢| = 2, then Pmax(t) = Pmin(f), and if |C;| > 2, then either ¢pmax(t) = ¢Pmin(t) + 7T or
Pmax(t) = Pmin(t). Theorem 3 remains unchanged.

Suppose that the control u is optimal. We then have by Theorem 3 that for every t € 6
the set C; has an SLO given by pTy = 0 with p > 0. If a; (£)* + ap(t)* > 0, we can put
p1 =|a2(f)| and pp =|aq(f)|. Let us now assume that for every t € 6 there are v, € U such
that v < u(t) < %, and in consequence Pmax () = Pmin(t) + 77. Let also 37 < Pmax(t) < 7.
It then follows from the reasoning in Section 5 that the equality y, = p(t)y; holds for
every t € 6 and every y € C;, with the function p (25) negative and nondecreasing in the
interval 6.

Finally, note that the minimum condition on the extended pre-Hamiltonian (23) is
trivially satisfied with equality (independently of whether the control u is optimal or not).

8. Example 2: The Pendulum on a Cart

We shall now consider a problem with the right-hand side of the state Equation (1)
affine in control. The system is described by state equations

5c1=x3
X2:X4

u — x4 sinx; + sin x; cos xp

J.C3 :f3(xru) = 1+sin2x2

(u — x7sinxy) cos xp 4 2sin x;

xy = fox,u) = (27)

1+ sin? xp
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The initial state x(0) = x( and the time horizon T are fixed. The performance index

Q) = 5x(T)Tx(T)

is minimized subject to control bounds and a pathwise state constraint
Umin < U(t) < Umax, §(x(t)) = x3(t) — X3max < 0, £ € [0, T).
We write the pre-Hamiltonian
H = 1x3+ Yoxs + P3f3 + Pafa

and the adjoint equations in the nonboundary time intervals

=0
¢2 = f%% - 1/)4%
. V3= -1
lP4 _ —le + 2x4s1naii£fi3n-;—f;cosx2),
where
dfs  cos2x; — xﬁ cosxpy — f3sin2x;
TXZ a 1+ sin2 X2

dfy  2cosxp —usinxy — x3cos2xy — fy$in2xy
oxy 1+ sin? xp '

The adjoint function satisfies the final condition ¢(T) = x(T). The state equations in
the boundary intervals are obtained by the substitution u = w(x) = (x§ — cos x2) sin x, in
(27), which gives

X1 = X3, Xp = Xy, x3 = 0, x4 = sinxp.

Hence the pre-Hamiltonian and the adjoint equations in the boundary intervals read
H = 1x3 4+ Poxg + Py sin xp

Y1 =0, Y, = —acosxy, Py = —9p1, Py = — 2.
At every entry point fen the jump condition (13) is valid with the matrix (24), whence
Pi(ten—) = Pi(ten+),1 =1, 2,4, P3(ten—) = — c0s X2 (ten ) Pa(ten+). We further compute

ar(H) = (1+sin?xa (1)),

(1) = (P3(F) + pa(t) cos xa(£)) (1 +sin® 12 (),

and from (25), p(t) = P3(t) + P4(t) cos xo(t) for every t € [0, T]. Note that aq () is always
positive, and p(t) and a,(t) have the same sign.

Assume that the control u is optimal. It follows from Corollary 2 that for every ¢ in
any nonboundary interval of u

Umin, “Z(t) >0
u(t) = { Umax, a2(t) <O0.

Let now 6 be a boundary interval of u. We infer from Corollary 2 that if t € 8, then
u(t) = Umin or ap(t) < 0. If these relations are not satisfied at some ¢ € 6, then the
control u can be improved in accordance with Lemma 5, by means of a spike control
variation described in Section 2. We deduce from Theorem 5 that if f1,t, € 0, t; < tp, and
u(t1) > Umin, then
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(1) u(tz) = Umay if Déz(tl) = 0and (Xz(fz) <0,
(i) u(t2) = umin ifaa(t;) = 0and ay(t2) > 0,
(iii) P(ﬁ) < p(tz) <0if wz(tz) £ 0 and Upin < u(tz) < Umax-

If some of the necessary conditions of Theorem 5 or Corollary 4 are not fulfilled, then—
as follows from Lemma 6—the control u can be improved with the use of a two-spike
control variation (Section 4).

We shall now numerically analyze two cases, taking xo = col(—04, 3.5, 1, — 1.1),
Umin = —4, Umax = 4, T = 1.5, and x3pax = 1.

Example 2a. The optimal control in the considered problem is of the form

Umin, 0 <t <51
Umax, $1 < £ < 82
w(x(t)), s <t <s3
Umin, 3 St < T,

u(t) =

where s; = 0.20359164, s, = 0.36709680, s3 = 1.1925492, with Q(u) = 2.6850568. Figure 9
shows the control u, the switching function «, and the function p (25). It is easy to see
that the necessary optimality conditions of Theorems 4 and 5 are fulfilled in the whole
interval [0, T]. The optimal state trajectory is depicted in Figure 10. Notice the cusps of
x3 at ten = sp and tex = s3, indicating that u satisfies the nontangentiality conditions and
is verifiable.

—_—
——10as

4+ —_— Q2 11
Y

0 ~—— 0

-4 -1

t

Figure 9. Optimal control (left scale), switching function and p (right scale).

qLBBmex
N
0
p /\_/
0 0.5 1 1.5

t

Figure 10. Optimal state trajectory.
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Example 2b. Consider a verifiable, but nonoptimal control with a boundary interval

<
u(t) = { wix(t));lo<,t t<<Tsl | 51 = 11825443
mins = =

The corresponding value of cost is Q(u) = 2.7408438. Figure 11 presents the control
u, the switching function a,, and the function p (25). It can be seen that the necessary
conditions of Theorem 4 and Corollary 2 are satisfied, which means that there are no
one-spike control variations described in Section 2, guaranteeing an improvement of the
cost. Figure 12 shows the state trajectory. The plot of x3 has a cusp at the exit point
tex = 51, and so the control u is verifiable. We can also see in Figure 11 that in the time
interval [0, 0.2948] the function p is decreasing, hence it is possible to construct a two-spike
control variation in that interval (according to Section 4) which reduces the cost. In order
to verify this numerically, consider also Figure 13 which presents a contour plot of the
difference p(1) — p(71). Let for instance 71 = 0, T, = 0.2948, v; = —4, v, = 4 (red cross
on the left y-axis). By (26), the parameter # may have an arbitrary value from the interval
10.5410, 0.7134[; we choose 11 = 0.713. Figure 14 demonstrates the dependence of the
cost increment on the width of the first spike e. The greatest improvement takes place at
€ = 0.073. For ¢ = 0.073, Figure 15 shows the state trajectory, and Figure 16, an enlargement
of the plot of x5.

1-0.5

t

Figure 11. Control (left scale), switching function and p (right scale).

Figure 12. State trajectory.



Games 2021,12,9 18 of 21

0 0.2 0.4 0.6 0.8 1
T

Figure 13. Contour plot of p(1) — p(11).
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0.02f | 1
—Q)-Qw) |
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Figure 14. Cost increment vs. width of first spike.

Figure 15. State trajectory x°.
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0.6 : ‘
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Figure 16. Blow-up of x5.

9. Connections with Some Classical Results

There are essential connections between some of our results presented in Sections 5
and 7, and certain classical results obtained by the so called indirect adjoining method, dating
back to the works of R.V. Gamkrelidze, A.E. Bryson, H. Maurer, D.H. Jacobson, and many
others (see [1,3-5]). As we have no space to discuss all similarities and analogies that can
be found in the vast literature, we shall concentrate on one representative theorem due to
H. Maurer [3]. We shall use a reduced version of that theorem, specialized to the case of
state constraint of order one, verifiable control, fixed initial state and free final state.

Consider the optimal control problem formulated in Section 1, with the additional
assumption that U is a closed interval with nonempty interior. Define

HY(x,u, AL pt) = (AD f(x,u) + yle(x,u), AL € R", ! € R.

Theorem 6 ([3], Theorem 5.1). Let u be a verifiable optimal control and x, the corresponding state
trajectory. Suppose that fand g are of class C?, and let 9,§(x(t),u(t)) # 0and u(t) € int U for
every t in any boundary interval. Additionally, assume that there are finitely many entry points.
Then there exist a number Ay > 0 and functions AL [0,T] — R", 171 : [0, T] — R such that

.1 .
A== H (xu, AL ) = —af(x, u) Al — ' g (x, u) (28)

AN(T) = 202q(x(T)). (29)
The following jump condition holds

Al(terﬁ‘) =A! (ten—) — ,31 (ten)0g(x(ten)), ,Bl(ten) >0, (30)

at every entry point ten, and A is continuous at every exit point. The function n' satisfies
7t (H)g(x(t)) = 00n [0, T and is a C' function in the interior |ty, 5| of every boundary interval,
given by
daf (x(t), u(t))
1 1T 92
() = =AN(E) == : (31)
928 (x(8), u(t))

Moreover, ' (t) > 0 and 1'71(1‘) < 0fort; <t < ty. It also holds that for a.e.t € [0, T|

rvréialHl(x(t),v, M), 7t (1) = HY(x(t), u(t), AX(t), 7 (t)) = const. (32)
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Let us first notice that if A in (31) is identical with the adjoint 1, then the multiplier
1! is equal to the function —p given by (22) in Section 5. The function —p, similarly to !,
is nonnegative and nonincreasing in every boundary interval. The adjoint Equation (28)
is then identical with (11) almost everywhere. Indeed, in every boundary interval the
Equation (11) takes the form

$ = —0nf (x, w(x))p — dw(x)3xf (x, w(x))"y.

By virtue of Section 1 and (22),

du(x) = Caglw)  ploaf(xu)

niouw) T T T aa(xu)

Hence if #1 = —p, then 5191¢(x, u) = dw(x)df(x, w(x))Tq). The final condition (29)
coincides with (12) if Ag = 1. This last equality is ensured in [3] by special regularity
conditions. Further, it is evident that the jump condition (13) can be written in the form
AH (ten, tt(ten—))

g(ten/ u(ten—))

Thus, in this case (30) is identical with (13) if

P(ten—) = P(tent) — 9g(x(ten))-

~ AH(fen, u(ten—))
§(ten, u(ten—))

In the control affine case discussed in Section 7 the condition (13) is readily transformed to

> 0.

51(ten) =

P(ten—) = P(tent) — p(tent+)0g(x(ten)),

with p determined by (25). Hence, we have B! (fen) = —p(ten+) > 0 by Corollary 4. We
skip the proof of the inequality sign in the general case, which is more complicated. The
identity of the adjoints A! and ¢ entails the equivalence between the minimum conditions
(32) and (23). In conclusion, the results obtained in this work for the case where in the
boundary intervals u(t) € intU, pmax(t) = ¢min(f) + 7T and p(t) is given by (22) or (25), are
in agreement with Theorem 5.1 in [3].

Finally, note that this work’s approach does not require that the optimal control in the
boundary intervals takes values in the interior of U, whereas that assumption is essential
in [3]. Also, in contrast to [3], we give an explicit representation of the jump of the adjoint
function (Section 3, see also [11,12]).
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