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Optimal control theory is a modern extension of the classical calculus of variations.
Converting a calculus of variation problem into an optimal control problem requires one
more conceptual extension—the addition of control variables to state equations. While
the main result of the calculus of variations was the Euler equation, the Pontryagin maxi-
mum principle is the main result of optimal control theory. The maximum principle was
developed by a group of Russian mathematicians in the 1950s and gives the necessary con-
ditions for optimality in a wide range of dynamic optimization problems. At present, for
deterministic control models described by ordinary differential equations, the Pontryagin
maximum principle is used as often as Bellman’s dynamic programming method.

An optimal control problem includes a calculation of the optimal control and the syn-
thesis of the optimal control system. Optimal control, as a rule, is calculated by numerical
methods for finding the extremum of an objective function or by solving a two-point bound-
ary value problem for a system of differential equations. The synthesis of optimal control
from a mathematical point of view is a nonlinear programming problem in function spaces.

This Special Issue gathers research focused on the development of novel analytical and
numerical methods for solutions of optimal control or of dynamic optimization problems,
including changing and incomplete information about the investigated objects, application
to medicine, infectious diseases, and economic or physical phenomena. Investigations
of new classes of optimization problems, optimal control of nonlinear systems, as well
as the task of reconstructing input signals are also presented. For example, the articles
that develop new algorithms to implement some of the principles of regularization using
constructive iterative procedures or papers that create an optimal control model which
can accumulate experience and improve its work on this basis (the so-called learning
optimal control system) are given. Finally, the applied articles focused on control models
of economic, physical, medical or environmental processes or resource allocation on the
specified time interval or on the infinite planning horizon are presented also.

The original research articles of this issue reflect new advances in optimal control
and differential games; deterministic and stochastic control processes; combined methods
of synthesis of both deterministic and stochastic systems with full information about
parameters, states and perturbations. This issue collects the papers that allow the use of
analytical methods to study the various problems of optimal control and its evaluation,
as well as applications of optimal controls and differential games to describe complex
nonlinear phenomena.

A short summary of all the manuscripts placed in an alphabetical order of the first
authors is given below.

Within the framework of the above, Arias-Castro, Martinez-Romero and Vasilieva [1]
focus on the design and analysis of short-term control intervention measures seeking
to suppress local populations of Aedes aegypti mosquitoes, the major transmitters of
dengue and other vector-borne infections. In addition to traditional measures involving
the spraying of larvicides and/or insecticides, a biological control based on the deliberate
introduction of predacious species feeding on the aquatic stages of mosquitoes is included.
From a methodological standpoint, such a study relies on the application of the optimal
control modeling framework in combination with cost-effectiveness analysis. This ap-
proach not only enables the design of optimal strategies for external control intervention
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but also allows for assessment of their performance in terms of the cost–benefit relationship.
By examining numerous scenarios derived from combinations of chemical and biologi-
cal control measures, attempts are made to find out whether the presence of predacious
species at the mosquito breeding sites may (partially) replace the common practices of lar-
vicide/insecticide spraying and thus reduce their negative impact on non-target organisms.
As a result, two strategies exhibiting the best metrics of cost-effectiveness and providing
some useful insights for their possible implementation in practical settings are identified.

Arguchintsev and Poplevko [2] deal with an optimal control problem for a linear
system of first-order hyperbolic equations with a function on the right-hand side deter-
mined from controlled bilinear ordinary differential equations. These ordinary differential
equations are linear with respect to state functions with controlled coefficients. Such prob-
lems arise in the simulation of some processes of chemical technology and population
dynamics. This problem is reduced to an optimal control problem for a system of ordinary
differential equations. Such a reduction is based on non-classic exact increment formulas
for the objective function. This approach allows us to use some efficient optimal control
methods for the analysis of the resulting optimal control problem.

Aseev and Katsumoto [3] develop a new dynamic model of optimal investments in R&D
and manufacturing for a technological leader competing with a large number of identical
followers on the market of a technological product. The model is formulated in the form of
the infinite time horizon stochastic optimization problem. The evolution of new generations
of the product is treated as a Poisson-type cyclic stochastic process. The technology spillover
effect acts as a driving force of technological change. It shows that the original probabilistic
problem that the leader is faced with can be reduced to a deterministic one. This result makes
it possible to perform analytical studies and numerical calculations.

Pursuit-evasion games are used to define guidance strategies for multi-agent planning
problems. Although optimal strategies exist for deterministic scenarios, in the case when
information about the opponent players is imperfect, it is important to evaluate the effect
of uncertainties on the estimated variables. Battistini [4] proposes a method to characterize
the game space of a pursuit-evasion game under a stochastic perspective. The Mahalanobis
distance is used as a metric to determine the levels of confidence in the estimation of the
Zero Effort Miss across the capture zone. This information can be used to gain an insight
into the guidance strategy.

Chica-Pedraza, Mojica-Nava and Cadena-Muñoz [5] consider Multi-Agent Systems
(MASs), which have been used to solve several optimization problems in control systems.
MASs allow one to understand the interactions between agents and the complexity of
the system, thus generating functional models that are closer to reality. However, these
approaches assume that information between agents is always available, which means
the employment of a full-information model. Some tendencies have been growing in
importance to tackle scenarios where information constraints are relevant issues. In this
sense, game theory approaches appear as a useful technique that uses a strategy concept
to analyze the interactions of the agents and achieve the maximization of agent outcomes.
In this paper, we propose a distributed control method of learning that allows analyzing
the effect of the exploration concept in a MAS. The dynamics obtained use Q-learning
from reinforcement learning as a way to include the concept of exploration into the classic
exploration-less Replicator Dynamics equation. Then, the Boltzmann distribution is used
to introduce the Boltzmann-Based Distributed Replicator Dynamics as a tool for controlling
behaviors of agents. This distributed approach can be used in several engineering applica-
tions, where communication constraints between agents are considered. The behavior of
the proposed method is analyzed using a smart grid application for validation purposes.
Results show that despite the lack of full information of the system, by controlling some
parameters of the method, it has similar behavior to the traditional centralized approaches.

Grigorenko and Luk’yanova [6] deal with a model for a one-sector economy of pro-
duction funds acquisition, which includes two differential links of the zero order and two
series-connected inertial links. Zero-order differential links correspond to the equations of
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the Ramsey model. These equations contain a scalar-bounded control, which determines
the distribution of the available funds into two parts: investment and consumption. Two
series-connected inertial links describe the dynamics of the changes in the volume of the
actual production at the current production capacity. For the considered control system,
the problem is posed to maximize the average consumption value over a given time in-
terval. The properties of optimal control are analytically established using the Pontryagin
maximum principle. The cases are highlighted when such control is a bang-bang, as well
as the cases when, along with bang-bang (non-singular) portions, control can contain a
singular arc. At the same time, concatenation of singular and non-singular portions is
carried out using chattering. A bang-bang suboptimal control is presented, which is close
to the optimal one according to the given quality criterion. A positional terminal control is
proposed for the first approximation when a suboptimal control with a given deviation of
the objective function from the optimal value is numerically found.

N. Hritonenko, V. Hritonenko and Yatsenko [7] formulate and study a nonlinear game
of several symmetric countries that produce, pollute, and spend part of their revenue on
pollution mitigation and environmental adaptation. The optimal emission, adaptation, and
mitigation investments are analyzed in both Nash equilibrium and cooperative cases. Mod-
eling assumptions and outcomes are compared to other publications in this fast-developing
area of environmental economics. In particular, this analysis implies that: (a) mitigation is
more effective than adaptation in a crowded multi-country world; (b) mitigation increases
the effectiveness of adaptation; (c) the optimal ratio between mitigation and adaptation
investments in the competitive case is larger for more productive countries and is smaller
when more countries are involved in the game.

Idczak and Walczak [8] deal with deriving an extremum principle. It can be treated as
an intermediate result between the celebrated smooth-convex extremum principle due to
Ioffe and Tikhomirov and the Dubovitskii–Milyutin theorem. The proof of this principle is
based on a simple generalization of the Fermat’s theorem, the smooth-convex extremum
principle and the local implicit function theorem.

CAR T-cell immunotherapy is a new development in the treatment of leukemia,
promising a new era in oncology. Although so far, this procedure only helps 50–90% of
patients and, similar to other cancer treatments, has serious side-effects. Khailov, Grigorieva
and Klimenkova [9] propose a controlled model for leukemia treatment to explore possible
ways to improve immunotherapy methodology. This model is described by four nonlinear
differential equations with two bounded controls, which are responsible for the rate of
injection of chimeric cells, as well as for the dosage of the drug that suppresses the so-called
“cytokine storm”. The optimal control problem of minimizing the cancer cells and the
activity of the cytokine is stated and solved using the Pontryagin maximum principle. The
five possible optimal control scenarios are predicted analytically using investigation of the
behavior of the switching functions. Interesting results, explaining why therapies with rest
intervals (for example, stopping injections in the middle of the treatment interval) are more
effective (within the model) rather than with continuous injections, are presented.

Korytowski and Szymkat [10] propose an elementary approach to a class of optimal
control problems with pathwise state constraint. Based on spike variations of control, it
yields simple proofs and constructive necessary conditions, including some new characteri-
zations of the corresponding optimal control.

Zaslavski [11] studies the structure of trajectories of discrete disperse dynamical
systems with a Lyapunov function, which are generated by set-valued mappings. A weak
version of the turnpike property that holds for all trajectories of such dynamical systems,
which are of a sufficient length, is established. This result is usually true for models of
economic growth which are prototypes of our dynamical systems.

The articles of this Special Issue will be of interest not only to specialists in the field of
optimal control, differential games, optimization and their applications, but should be of
interest to those who aspire to become such, namely, graduate students.

Conflicts of Interest: The author declares no conflict of interest.
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