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Abstract: This paper deals with an optimal control problem for a linear system of first-order hyper-
bolic equations with a function on the right-hand side determined from controlled bilinear ordinary
differential equations. These ordinary differential equations are linear with respect to state functions
with controlled coefficients. Such problems arise in the simulation of some processes of chemical
technology and population dynamics. Normally, general optimal control methods are used for these
problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to
an optimal control problem for a system of ordinary differential equations. The reduction is based on
non-classic exact increment formulas for the cost-functional. This treatment allows to use a number
of efficient optimal control methods for the problem. An example illustrates the approach.

Keywords: hybrid systems; hyperbolic equations; non-classic increment formulas; reduction of
optimal control problems

MSC: 49K20

1. Introduction

This paper studies a special class of optimal control problems for linear systems of
first-order hyperbolic equations. In these problems, the function on the right-hand side
of the hyperbolic system is determined from controlled systems of ordinary differential
equations (ODEs). Such problems arise in the simulation of some processes of chemical
technology [1]. They also may be used for solving inverse problems in models of population
dynamics [2].

We consider a case of a linear hyperbolic system and a linear controlled ODE system
with the coefficients of the phase variables depending on controls. Because of the latter
circumstance, the Pontryagin maximum principle is not a sufficient optimality condition.
On the other hand, an attempt to apply general optimization approaches [3] leads to
endless iterative processes. Moreover, at each iteration step, it is required in this case to
repeatedly integrate a system of hyperbolic equations. There is the possibility of applying
ideas of non-classic exact formulas for the increment formula for the cost-functional. The
authors used this idea in [4] for a special type of hyperbolic system with two orthogonal
characteristics and controlled boundary conditions.

In this paper, two symmetric variants of the non-classic exact formulas for the incre-
ment of a linear cost-functional are suggested. The classical method of increments proposed
by Rozonoer [5] allows one to obtain in the considered problem the necessary optimality
condition similar to the Pontryagin maximum principle. The proof essentially uses the local
character of the increment formula. Namely, one estimates the residuals in terms of the
value that characterizes the smallness of the measure of the domain of the needle variation
of a control. Below, for two particular cases of the problem under consideration, we obtain
non-standard, exact (without residuals) increment formulas. The use of these formulas
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allows to reduce the original problem to an optimal control problem for a system of ODE
equations. Note that, under this approach, the hyperbolic system is integrated only two
times: at the beginning of the process (after an initial admissible control has been selected)
and at the end of a computational process. We present a simple example to illustrate the
proposed approach.

2. Problem Statement

We consider an optimization problem for a system of first-order hyperbolic equations
with a linear right-hand side:

∂x
∂t

+ A(s, t)
∂x
∂s

= Φ(s, t)x + f (s, t) + C(t)y (1)

(s, t) ∈ Π, Π = S× T, S = [s0, s1], T = [t0, t1].

Here, x = x(s, t), y = y(t) are n and m–dimensional vector-functions, respectively;
generally speaking, functions x(s, t) are piecewise continuous functions. All components
xi = xi(s, t) are continuously differentiable along any characteristic of the i-th family of
characteristics of system (1); y(t) are absolutely continuous functions; the concepts of
generalized solutions will be discussed below; A(s, t) is a n × n diagonal matrix; C(t),
Φ(s, t) are matrix-functions n × m, n × n, respectively; and f (s, t) is a n—dimensional
vector-function. In addition, we assume that the diagonal elements ai(s, t), i = 1, 2, . . . , n of
the matrix A are continuous and continuously differentiable in Π and do not change signs
in the rectangle Π: ai(s, t) > 0, i = 1, 2, . . . , m1; ai(s, t) = 0, i = m1 + 1, m1 + 2, . . . , m2;
ai(s, t) < 0, i = m2 + 1, m2 + 2, . . . , n. Let A+(s, t) and A−(s, t) be diagonal subma-
trices of A of orders m1 and (n − m2), respectively, composed of its positive and neg-
ative elements. Accordingly, we consider two subvectors x+ = (x1, x2, . . . , xm1) and
x− = (xm2+1, xm2+2, . . . , xn), corresponding to the positive and negative diagonal elements
of A.

Initial and boundary conditions take the form

x(s, t0) = x0(s), s ∈ S; x+(s0, t) = η(t), x−(s1, t) = µ(t), t ∈ T, (2)

where the functions x0(s), µ(t) and η(t) are continuous with respect to their arguments
on the sets S and T, respectively.

We assume the function y(t) in the right-hand side of the system (1) is determined by
a controlled system of ordinary differential equations

dy
dt

= B(u(t), t)y(t) + d(u(t), t), t ∈ T, y(t0) = y0. (3)

Here, B(u(t), t) is a m×m matrix function, and d(u(t), t) is a m-dimensional vector
function. In addition, we assume that the matrices Φ(s, t), B(u, t), and C(t) and the
vectors f (s, t), d(u(t), t) are continuous functions of their arguments everywhere in the
corresponding domains.

The admissible controls are assumed to be bounded, and measurable vector functions
u(t) are determined on the interval T and satisfy, almost everywhere, an inclusion-type con-
straint,

u(t) ∈ U, t ∈ T, (4)

where U is a compact belonging to the Euclidean space Er, and r is a natural number.
We assume that the goal of the optimization problem is to minimize a linear functional,

J(u) =
∫
S

〈α(s), x(s, t1)〉 ds +
∫
Π

∫
〈b0(s, t), x(s, t)〉 ds dt→ min. (5)

Here, the vectors α(s) and b0(s, t) are continuous functions of their arguments ev-
erywhere in the corresponding domains, and 〈., .〉 is a designation of a scalar product in
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Euclidean space of corresponding dimension. The above assumptions are not sufficient for
the existence and uniqueness of a (1)–(5) solution. However, our aim is not in solving this
problem, but it is in reduction to an optimal control problem for a system of ODE equations.

The above assumptions are also insufficient for the existence of a classical (i.e., contin-
uously differentiable) solution of problem (1)–(3), and we use the notion of a generalized
solution [6] (pp. 63–69, 90–94).

This is a solution x = x(s, t), piecewise continuous in Π, for which all components
xi = xi(s, t) are continuously differentiable along any characteristic of the i-th family of
characteristics of system (1).

We introduce the notion of characteristics s(i) = s(i)(ξ, τ; t), defined by the ordinary
differential equations

ds
dt

= ai(s, t), i = 1, 2, . . . , n; s(τ) = ξ.

Thus, we understand a generalized solution of the boundary-value problem (1)–(3) as
a function that satisfies a system of integral equations, where the integration is performed
along characteristics of the initial hyperbolic system (1):

xi(s, t) = xi(ξ
(i)(s, t), τ(i)(s, t)) +

t∫
τ(i)(s,t)

fi(x(ξ, τ), y(τ), ξ, τ)|ξ=s(i)(s,t;τ)dτ,

fi(x, y, s, t) = (Φ(s, t)x + f (s, t) + C(t)y)i ,

(s, t) ∈ Π; i = 1, 2, . . . , n.

Here, (ξ(i)(s, t), τ(i)(s, t)) is the initial point of the i-th characteristic that goes through
the point (s, t).

Instead of the left side of system (1), we consider the differential operator(
dx
dt

)
A
=

((
dx1

dt

)
A

,
(

dx2

dt

)
A

, . . . ,
(

dxn

dt

)
A

)
,

where (dxi/dt)A is the derivative of the i-th component of the state vector along the
corresponding family of characteristic curves.

In principle, we could assume that initial conditions are consistent with boundary
conditions in (2):

(x0(s0))
+ = η(t0), ((x0(s1))

− = µ(t1).

In this case, a solution of (1)–(3) will be continuous, but not necessarily a differentiable
function everywhere. For differentiability, it is necessary to assume the fulfillment of
consistent conditions of a higher order [7] (pp. 70–72). However, these conditions depend
on right-hand sides of hyperbolic systems. In our case, these right-hand sides depend on
control, and it is necessary to introduce additional restrictions for a control function. We
also consider further adjoint differential systems for which such conditions are not satisfied.

Note that generalized solutions of hyperbolic balance laws [8,9] and the concept
of entropy are well-suited to prove existence and uniqueness results in corresponding
functional spaces. However, the approach based on characteristics of hyperbolic systems is
suitable for optimal control methods, estimations of convergence, and so forth.

3. The Cost-Functional Increment Formulas

Although Equation (1) is linear with respect to x, the Pontryagin maximum principle
is not a sufficient optimality condition. This is explained by the dependence of the matrix
of coefficients in (3) on controls. Let us construct a non-classical exact increment formula
of (5).
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Consider two admissible controls, u and ũ = u + ∆u . Let x, y be the corresponding
solutions of (1), (3) for u , and x̃ = x + ∆x, ỹ = y + ∆y be corresponding solutions
of (1)–(3) for ũ = u + ∆u . Then, the system (1)–(3) takes the following form:(

d∆x
dt

)
A
= Φ(s, t)∆x + C(t)∆y, (6)

∆x(s, t0) = ∆x+(s0, t) = ∆x−(s1, t) = 0.

d∆y
dt

= B(ũ(t), t)ỹ(t)− B(u(t), t)y(t) + ∆d(u(t), t), ∆y(t0) = 0. (7)

Here, ∆d(u(t), t) = d(ũ(t), t)− d(u(t), t). By transforming the right-hand side of (7)
with respect to the representation

B(ũ(t), t)ỹ− B(u(t), t)y = ∆B(u(t), t)ỹ + B(u(t), t)∆y,

where ∆B(u(t), t) = B(ũ(t), t)− B(u(t), t). Then, the increment of (5) is written as

∆J(u) = J(ũ)− J(u) =
∫
S

〈α(s), ∆x(s, t1)〉 ds

+
∫
Π

∫
〈b0(s, t), ∆x(s, t)〉 dsdt +

∫
Π

∫
〈ψ(s, t),

(
d∆x
dt

)
A

−Φ(s, t)∆x− C∆y〉 dsdt +
∫
T

〈p(t), d∆y
dt
− ∆B(u(t), t)ỹ

−B(u(t), t)∆y− ∆d(u(t), t)〉 dt.

Functions ψ = ψ(s, t) and p = p(t) are still arbitrary vector functions with the same
smoothness properties as x(s, t) and y(t).

It is obvious that∫
Π

∫
〈ψ(s, t),

(
d∆x
dt

)
A
−Φ(s, t)∆x− C∆y〉 dsdt = 0,

∫
T

〈p(t), d∆y
dt
− ∆B(u(t), t)ỹ− B(u(t), t)∆y− ∆d(u(t), t)〉 dt = 0

for arbitrary functions ψ(s, t) and p(t).
By applying the ordinary and generalized formulas of integration by parts [3] (Chap-

ter 8, Section 3) to the following terms, respectively,∫
T

〈p(t), d∆y
dt
〉 dt,

∫
Π

∫
〈ψ(s, t),

(
d∆x
dt

)
A
〉 dsdt,

we obtain
∆J(u) =

∫
S

〈α(s), ∆x(s, t1)〉 ds +
∫
Π

∫
〈b0(s, t), ∆x(s, t)〉 dsdt

+
∫
S

(〈ψ(s, t1), ∆x(s, t1)〉 − 〈ψ(s, t0), ∆x(s, t0)〉) ds



Games 2021, 12, 23 5 of 9

−
∫
T

(〈ψ(s0, t), A(s0, t)∆x(s0, t)〉 − 〈ψ(s1, t), A(s1, t)∆x(s1, t)〉) dt

−
∫
Π

∫
〈
(

dψ

dt

)
A
+

∂

∂s
A(s, t)ψ + ΦTψ, ∆x〉 dsdt−

∫
Π

∫
〈ψ(s, t), C∆y〉dsdt

+〈p(t1), ∆y(t1)〉 −
∫
T

〈 ṗ(t), ∆y(t)〉 dt

−
∫
T

〈p(t), ∆B(u(t), t)ỹ + B(u(t), t)∆y + ∆d(u, t)〉 dt.

In the last integral, we will not transform the integrand to that in terms of the un-
perturbed solution y = y(t, u) (the expedient that is traditionally used in the proof of the
pointwise maximum principle). Instead, we require that the functions ψ(s, t) and p(t) are
solutions of the following adjoint problem:(

dψ

dt

)
A
+

∂

∂s
A(s, t)ψ = −ΦTψ + b0(s, t), (s, t) ∈ Π; (8)

ψ(s, t1) = −α(s), s ∈ S,

ψ−(s0, t) = 0, ψ+(s1, t) = 0, t ∈ T;

ṗ = −BT(u, t)p(t)− (s1 − s0)CTψ+(s0, t), p(t1) = 0. (9)

A boundary value problem (8) has the same structure as (1) and (2). The cost-
functional (5) does not contain addends depending on unfixed components (x(s0, t))− and
(x(s1, t))+. Therefore, the corresponding boundary conditions in (8) are equal to zero.

Function ψ(s, t) is a solution of (8), piecewise continuous in Π, for which all compo-
nents ψi = ψi(s, t) are continuously differentiable along any characteristic of the i-th family
of characteristics of a hyperbolic system in (8). p(t) are absolutely continuous functions.

Finally, we obtain the following formula for the cost-functional increment:

∆J(u) = −
∫
T

〈p(t, u), ∆B(u(t), t)ỹ + ∆d(u, t)〉 dt. (10)

The second increment formula is symmetric to this one. It may be obtained by using
the representation

B(ũ(t), t)ỹ− B(u(t), t)y = ∆B(u(t), t)y + B(ũ, t)∆y.

Then,
∆J(u) = −

∫
T

〈p(t, ũ), ∆B(u(t), t)y + ∆d(u, t)〉 dt. (11)

Since the admissible controls u(t) and ũ(t) are arbitrary, Formula (11) can be obtained
from (10) by the formal replacement of u by ũ and ũ by u.

Note that the basic difference of Formulas (10) and (11) from the classical increment
formula is that (10) and (11) are exact formulas, that is, they do not have remainder terms.
However, in this case, system (9) (or system (3) is integrated for perturbed controls).

4. Variational Maximum Principle

Increment Formulas (10) and (11) make it possible to reduce the problem (1)–(5) to
an optimal control problem for a system of ordinary differential equations. We consider a
scheme based on Formula (10).
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We introduce the following optimal control problem

I(v) = −
∫
T

〈p(t, u), (B(v(t), t)− B(u(t), t))z(t, v)

+ d(v(t), t)− d(u(t), t)〉 dt→ min, (12)

ż = B(v(t), t)z + d(v(t), t), t ∈ T,

z(t0) = y0,

v(t) ∈ U.

Here, u(t), p(t, u), d = d(u, t) and B = B(u, t) are the fixed functions; z(t) is a m-
dimensional state function; and v(t) is a control function satisfying the same constraints as
the control function in the optimal control problem (1)–(5).

By analogy to (12), the increment formula (11) allows us to reduce the original prob-
lem (1)–(5) to a linear optimal control problem for the ODE system:

I(v) = −
∫
T

〈p(t, v), (B(v(t), t)− B(u(t), t))y(t, u)

+ d(v(t), t)− d(u(t), t)〉 dt→ min, (13)

ṗ = −BT(v(t), t)p(t)− (s1 − s0)CTψ+(s0, t), t ∈ T,

p(t1) = 0.

v(t) ∈ U.

Here, u(t), d = d(u, t) and B = B(u, t) are fixed functions; p(t) is a state function,
and v(t) is a control function satisfying the same constraints as the control function in the
original optimal control problem.

These results enable us to formulate variational maximum principles for a linear
optimization problem by hyperbolic systems.

Theorem 1. A control u∗(t) is optimal in the problem (1)–(5) if, and only if the function v∗ =
u∗(t) is optimal in problem (12) or equivalently in problem (13) for any fixed admissible u(t).

It follows from (10), (11) that the optimal value of the functional in the original problem
is given by

J(v∗) = J(u) + I(v∗).

Thus, the following solution scheme based on Formula (10) can be proposed.

1. An arbitrary admissible control u = u(t) is specified. Then, we calculate a solution
p = p(t, u) of the adjoint problem (9) corresponding to this control. Note that
we need also to calculate a solution of problem (8), which does not depend on an
admissible process.

2. We calculate an auxiliary optimal control problem (12) for the system of ordinary
differential equations. Its solution will be a solution of the problem (1)–(5).

The solution scheme based on Formula (11) is as follows.

1. We choose an arbitrary admissible control u = u(t). Then, we calculate y(t, u) and
ψ(s, t).

2. The auxiliary optimal control problem (13) must be solved. Its solution will be a
solution of the problem (1)–(5).
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Note that the auxiliary problems (12) and (13) are currently well-known and can be
solved by applying many efficient methods developed for solving optimal control problems
for systems of ordinary differential equations [3,10–14].

It is required to solve only twice the system of partial differential equations to calculate
x = x(s, t, u), ψ = ψ(s, t) and, if needed, x̃ = x(s, t, ũ), and to solve the optimal control
problem for the system of ODEs linear in the state variables. Note that the solution of
problem (1)–(5) by means of iteration processes of the classical maximum principle requires
repeated integration of the hyperbolic system (1) at each iteration step.

5. Illustrative Example

To illustrate the main constructions of our approach, we consider a simple example.
In Π = [0, 1]× [0, 1], we consider an optimal control problem

J(u) =
1∫

0

x(s, 1) ds→ min,

xt + xs = y1 + 2y2, x(s, 0) = 0, x(0, t) = 0,

ẏ1 = 6y2u, y1(0) = 0,

ẏ2 = −u, y2(0) = 0,

u(t) ∈ [−1; 1], t ∈ [0; 1].

Note that the functions y1, y2 are absolutely continuous in T. The characteristics of the
hyperbolic equation which are defined as solutions of the ODE ds

dt = 1 have the following
form: s = t + Const. Strongly speaking, function x(s, t) is a solution of a corresponding
integral equation which is constructed on the characteristics of the hyperbolic equation

x(s, t) =
t∫

0

f (y1(τ), y2(τ)) dτ,

where f (y1(·), y2(·)) = y1 + 2y2. The function x(s, t) is continuously differentiable along
any characteristic of the family of characteristics of the hyperbolic equation.

The adjoint problem (8) and (9) has the following form:

ψt + ψs = 0, ψ(s, 1) = −1, ψ(1, t) = 0,

ṗ1 = −
1∫

0

ψ ds, p1(1) = 0,

ṗ2 = −6p1u−
1∫

0

2ψ ds, p2(1) = 0.

Here, functions ψ(s, t) and p(t) = (p1(t), p2(t)) are from the same class of functions
as x(s, t) and y(t) = (y1(t), y2(t)), respectively.

Let the initial control be u0(t) = 0, t ∈ [0; 1]. The solution of the adjoint problem
corresponding to this control is the following:

ψ(s, t) =
{

0, t < s,
−1, t ≥ s.

,

p1(t) =
t2

2
− 1

2
, p2(t) = t2 − 1.
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Here,

B(u, t) =
(

0 6u
0 0

)
, d(u(t), t) = (0,−u)T .

Then, the original problem is reduced to the optimal control problem for a system of
ODE equations

I(v) =
1∫

0

(1− t2)(3y2 − 1)v(t) dt→ min,

ẏ1 = 6y2v, y1(0) = 0, (14)

ẏ2 = −v, y2(0) = 0,

v(t) ∈ [−1; 1], t ∈ [0; 1].

For solving the reduced optimal control problem, one can use a wide set of modern
optimal control methods (for example, see reviews [10–12]).

This problem is not a linear optimal control problem because the cost-functional
and first differential equation contain terms of y2v type. In the authors’ opinion, special
methods for bilinear problems will be efficient for similar problems [13,14].

6. Conclusions

We considered an optimal control problem by a hybrid system of hyperbolic and
ordinary differential equations. The proposed approach allows to reduce this problem
to a classic optimal control problem by a system of ordinary differential equations. It is
interesting that the proved necessary and sufficient optimality condition (Theorem 1) is
satisfied for any fixed admissible function u(t). It is due to the fact that increment formulas
have been proved for an arbitrary pair of admissible controls, u(t) and ũ(t). We did not
use any local control variations.

Our further goal is to extend this approach to the case of quadratic cost-functionals. In
this case, we have to use second-order, non-classic, exact-increment formulas. The authors
hope that singular control problems may be considered on the base of this approach.
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