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Abstract: In this paper, we study the structure of trajectories of discrete disperse dynamical systems
with a Lyapunov function which are generated by set-valued mappings. We establish a weak version
of the turnpike property which holds for all trajectories of such dynamical systems which are of a
sufficient length. This result is usually true for models of economic growth which are prototypes of
our dynamical systems.
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1. Introduction

In [1,2] A. M. Rubinov introduced a discrete disperse dynamical system determined by a
set-valued mapping acting on a compact metric space, which was studied in [1–7]. This disperse
dynamical system has prototype in the mathematical economics [1,8,9]. In particular, it is an abstract
extension of the classical von Neumann–Gale model [1,8,9]. Our dynamical system is determined
by a compact metric space of states and a transition operator. In [1–7] and in the present paper,
this transition operator is set-valued. Such dynamical systems correspond to certain models of
economic dynamics [1,8,9].

Assume that (X, ρ) is a compact metric space and that a : X → 2X \ {∅} is a set-valued mapping
whose graph

graph(a) = {(x, y) ∈ X× X : y ∈ a(x)}

is a closed set in X× X. For every nonempty set E ⊂ X define

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.

By induction we define an(E) for every integer n ≥ 1 and every nonempty subset E ⊂ X
as follows:

an(E) = a(an−1(E)).

In the present paper, we analyze the structure of trajectories of the dynamical system determined
by a which is called a discrete dispersive dynamical system [1,2].

We say that a sequence {xt}∞
t=0 ⊂ X is a trajectory of a (or just a trajectory if a is understood) if

xt+1 ∈ a(xt), t = 0, 1, . . . .

Let T2 > T1 be integers. We say that {xt}T2
t=T1
⊂ X is a trajectory of a (or just a trajectory if a is

understood) if
xt+1 ∈ a(xt), t = T1, . . . , T2 − 1.
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Define

Ω(a) = {ξ ∈ X : for every positive number ε there exists a trajectory

{yt}∞
t=0 for whicht lim inf

t→∞
ρ(ξ, yt) ≤ ε}. (1)

Evidently, Ω(a) is a nonempty closed set in the metric space (X, ρ). In the literature, the set Ω(a)
is called a global attractor of a. Note that in [1,2] Ω(a) is called a turnpike set of a. This terminology is
motivated by mathematical economics [1,8,9].

For every point x ∈ X and every nonempty closed set E ⊂ X define

ρ(x, E) = inf{ρ(x, y) : y ∈ E}.

Let φ : X → R1 be a continuous function satisfying

φ(z) ≥ 0 for every z ∈ X, (2)

φ(y) ≤ φ(x) for every x ∈ X and every y ∈ a(x). (3)

It is clear that φ is a Lyapunov function for the dynamical system determined by the map a.
It should be mentioned that in mathematical economics usually X is a subset of the finite-dimensional
Euclidean space and φ is a linear functional on this space [1,8,9]. Our goal in [7] was to study
approximate solutions of the problem

φ(xT)→ max,

{xt}T
t=0 is a program satisfying x0 = x,

where x ∈ X and T ∈ {1, 2, . . . } are given.
The following result was obtained in [7].

Theorem 1. The following properties are equivalent:
(1) If a sequence {xt}∞

t=−∞ ⊂ X, xt+1 ∈ a(xt) and φ(xt+1) = φ(xt) for every integer t, then

{xt}∞
t=−∞ ⊂ Ω(a).

(2) For every positive number ε there exists an integer T(ε) ≥ 1 such that for every trajectory {xt}∞
t=0 ⊂ X

which satisfies φ(xt) = φ(xt+1) for every nonnegative integer t the relation ρ(xt, Ω(a)) ≤ ε is valid for every
integer t ≥ T(ε).

Put
‖φ‖ = sup{|φ(z)| : z ∈ X}.

We denote by Card(A) the cardinality of a set A and suppose that the sum over the empty set
is zero.

In this paper, we establish a weak version of the turnpike property which hold for all trajectories
of our dynamical system which are of a sufficient length and which are not necessarily approximate
solutions of the problem above. This result as well as the turnpike results of [7] is usually true for
models of economic growth which are prototypes of our dynamical system [1,8,9].

Namely, we prove the following result.

Theorem 2. Let property (1) of Theorem 1 hold and let ε be a positive number. Then there exists an integer
L ≥ 1 such that for every natural number T > L and every trajectory {xt}T

t=0 the inequality

Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε}) ≤ L
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is valid.

This result is proved in Section 3. Its proof is based on an auxiliary result which is proved
in Section 2.

Assume that {xt}∞
t=0 is a trajectory. By (3), there exists

c = lim
t→∞

φ(xt).

Evidently, the sequence {xt}∞
t=0 converges to the set Ω ∩ φ−1(c). This fact is well-know in the

dynamical systems theory as LaSalle’s invariance principle [10–13]. In the present paper, we are
interested in the structure of trajectories on finite intervals of a sufficiently large length and their
turnpike property established in Theorem 1.2, which was not considered in [10–13].

It should be mentioned that turnpike properties are well known in mathematical economics.
The term was first coined by Samuelson in 1948 (see [14]), where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path (also called a
von Neumann path and a turnpike). This property was further investigated for optimal trajectories of
models of economic dynamics. See, for example, [2,8,9] and the references mentioned there. Recently
it was shown that the turnpike phenomenon holds for many important classes of problems arising in
various areas of research [15–23]. For related infinite horizon problems see [9,24–31].

2. An Auxiliary Result

Lemma 1. Let property (1) of Theorem 1 hold and ε be a positive number. Then there exist a positive number δ

and an integer L ≥ 1 such that for every natural number T > 2L and every trajectory {xt}T
t=0 satisfying

φ(x0) ≤ φ(xT) + δ

the inequality
ρ(xt, Ω(a)) ≤ ε, t = L, . . . , T − L

is valid.

Proof. Assume the contrary. Then for every integer n ≥ 1 there are a natural number Tn > 2n and a
trajectory {x(n)t }

Tn
t=0 which satisfy

φ(x(n)0 ) ≤ φ(x(n)Tn
) + 1/n, (4)

max{ρ(x(n)t , Ω(a)) : t = n, . . . , Tn − n} > ε. (5)

By of (5), for every n ∈ {1, 2, . . . } there is

Sn ∈ {n, . . . , Tn − n} (6)

for which
ρ(x(n)Sn

, Ω(a)) > ε. (7)

Assume that n ∈ {1, 2, . . . }. Set

y(n)t = x(n)t+Sn
, t = −Sn, . . . , Tn − Sn. (8)

In view of (8), {y(n)t }
Tn−Sn
t=−Sn

is a trajectory. By (4) and (8),

φ(y(n)Tn−Sn
)− φ(y(n)−Sn

) = φ(x(n)Tn
)− φ(x(n)0 ) ≥ −1/n. (9)
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Equations (3) and (9) imply that for every integer t ∈ {−Sn, . . . , Tn − Sn − 1}, we have

φ(y(n)t+1)− φ(y(n)t ) ≥ φ(y(n)Tn−Sn
)− φ(y(n)−Sn

) ≥ −1/n. (10)

Equations (7) and (8) imply that

ρ(y(n)0 , Ω(a)) = ρ(x(n)Sn
, Ω(a)) > ε. (11)

Clearly, there is a strictly increasing sequence of positive integers {nj}∞
j=1 such that for every

integer t there exists

yt = lim
j→∞

y
(nj)
t . (12)

By Equations (11) and (12),
ρ(y0, Ω(a)) ≥ ε. (13)

By (12) and the closedness of the graph of a, we have

yt+1 ∈ a(yt) for all integers t. (14)

By (10) and (12), for all integers t,

φ(yt+1)− φ(yt) = lim
j→∞

φ(y
(nj)

t+1 )− lim
j→∞

φ(y
(nj)
t ) ≥ lim

j→∞
(−n−1

j ) = 0.

Combining with (3) this implies that

φ(yt+1) = φ(yt) for all integers t. (15)

Property (1) of Theorem 1, (14), (15) imply the inclusion

yt ∈ Ω(a)

for every integer t. This inclusion contradicts Equation (13). The contradiction we have reached
completes the proof of Lemma 1.

3. Proof of Theorem 2

Lemma 1 implies that there are a positive number δ < ε and L0 ∈ {1, 2, . . . } for which the
following property holds:

(a) for every integer T > 2L0 and every trajectory {xt}T
t=0 satisfying

φ(x0) ≤ φ(xT) + δ

we have
ρ(xt, Ω(a)) ≤ ε, t = L0, . . . , T − L0.

Choose an integer
L > 2L0 + 2 + (4L0 + 7)(1 + 2δ−1‖φ‖). (16)

Suppose that T > L is a natural number and that a sequence {xt}T
t=0 is a trajectory. By induction

we define a strictly increasing finite sequence ti ∈ {0, . . . , T}, i = 0, . . . , q. Set

t0 = 0. (17)
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If
φ(xT) ≥ φ(x0)− δ,

then set
t1 = T

and complete to construct the sequence.
Assume that

φ(xT) < φ(x0)− δ.

Evidently, there is an integer t1 ∈ (t0, T] satisfying

φ(xt1) < φ(x0)− δ (18)

and that if an integer S satisfies
t0 < S < t1,

then
φ(xS) ≥ φ(x0)− δ. (19)

If t1 = T, then we complete to construct the sequence.
Assume that k ∈ {1, 2, . . . } and that we defined a strictly increasing sequence t0, . . . , tk ∈ {0, . . . }

such that
t0 = 0, tk ≤ T

and that for each i ∈ {0, . . . , k− 1},
φ(xti+1) < φ(xti )− δ

and if an integer S satisfies ti < S < ti+1, then

φ(xS) ≥ φ(xti )− δ.

(In view of (18) and (19), the assumption is true with k = 1).
If tk = T, then we complete to construct the sequence. Assume that tk < T. If

φ(xT) ≥ φ(xtk )− δ,

then we set tk+1 = T and complete to construct the sequenced.
Assume that

φ(xT) < φ(xtk )− δ. (20)

Evidently, there is a natural number

tk+1 ∈ (tk, T]

for which
φ(xtk+1) < φ(xtk )− δ

and that if an integer S satisfies
tk < S < tk+1,

then
φ(xS) ≥ φ(xtk )− δ.

Evidently, the assumption made for k is true for k + 1 too. Therefore by induction, we constructed
the strictly increasing finite sequence of integers ti ∈ [0, T], i = 0, . . . , q such that
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t0 = 0, tq = T

and that for every i satisfying 0 ≤ i < q− 1,

φ(xti+1) < φ(xti )− δ (21)

and for each i ∈ {0, . . . , q− 1} and each integer S satisfies ti < S < ti+1, we have

φ(xS) ≥ φ(xti )− δ. (22)

By (21),
2‖φ‖ ≥ φ(xt0)− φ(xtq−1)

∑{φ(xti )− φ(xti+1) : i is an integer, 0 ≤ i ≤ q− 2} ≥ δ(q− 1)

and
q ≤ 1 + 2δ−1‖φ‖. (23)

Set
E = {i ∈ {0, . . . , q− 1} : ti+1 − ti ≥ 2L0 + 4}. (24)

Let
i ∈ E. (25)

By (24) and (25),
ti+1 − 1− ti ≥ 2L0 + 3. (26)

Equations (22) and (26) imply that

φ(xti+1−1) ≥ φ(xti )− δ. (27)

Equations (26), (27) and property (a) applied to the program {xt}ti+1−1
t=ti

imply that

ρ(xt, Ω(a)) ≤ ε, t = ti + L0, . . . , ti+1 − 1− L0. (28)

Equation (28) implies that

{t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε}

⊂ ∪{{ti, . . . , ti+1} : i ∈ {0, . . . , q− 1} \ E}

∪{{ti, . . . , ti + L0 − 1} ∪ {ti+1 − L0, . . . , ti+1} : i ∈ E}. (29)

By (23), (24) and (29),

Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε})

≤ q(2L0 + 5) + (2L0 + 2)q = q(4L0 + 7)

(4L0 + 7)(1 + 2δ−1‖φ‖) ≤ L.

Theorem 2 is proved.
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