Article

A Turnpike Property of Trajectories of Dynamical Systems with a Lyapunov Function

Alexander J. Zaslavski
Department of Mathematics, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ajzasl@technion.ac.il

Received: 29 September 2020; Accepted: 7 December 2020; Published: 14 December 2020

Abstract

In this paper, we study the structure of trajectories of discrete disperse dynamical systems with a Lyapunov function which are generated by set-valued mappings. We establish a weak version of the turnpike property which holds for all trajectories of such dynamical systems which are of a sufficient length. This result is usually true for models of economic growth which are prototypes of our dynamical systems.

Keywords: compact metric space; global attractor; lyapunov function; set-valued mapping; turnpike

1. Introduction

In $[1,2]$ A. M. Rubinov introduced a discrete disperse dynamical system determined by a set-valued mapping acting on a compact metric space, which was studied in [1-7]. This disperse dynamical system has prototype in the mathematical economics [1,8,9]. In particular, it is an abstract extension of the classical von Neumann-Gale model [1,8,9]. Our dynamical system is determined by a compact metric space of states and a transition operator. In [1-7] and in the present paper, this transition operator is set-valued. Such dynamical systems correspond to certain models of economic dynamics $[1,8,9]$.

Assume that (X, ρ) is a compact metric space and that $a: X \rightarrow 2^{X} \backslash\{\varnothing\}$ is a set-valued mapping whose graph

$$
\operatorname{graph}(a)=\{(x, y) \in X \times X: y \in a(x)\}
$$

is a closed set in $X \times X$. For every nonempty set $E \subset X$ define

$$
a(E)=\cup\{a(x): x \in E\} \text { and } a^{0}(E)=E
$$

By induction we define $a^{n}(E)$ for every integer $n \geq 1$ and every nonempty subset $E \subset X$ as follows:

$$
a^{n}(E)=a\left(a^{n-1}(E)\right)
$$

In the present paper, we analyze the structure of trajectories of the dynamical system determined by a which is called a discrete dispersive dynamical system [1,2].

We say that a sequence $\left\{x_{t}\right\}_{t=0}^{\infty} \subset X$ is a trajectory of a (or just a trajectory if a is understood) if

$$
x_{t+1} \in a\left(x_{t}\right), t=0,1, \ldots
$$

Let $T_{2}>T_{1}$ be integers. We say that $\left\{x_{t}\right\}_{t=T_{1}}^{T_{2}} \subset X$ is a trajectory of a (or just a trajectory if a is understood) if

$$
x_{t+1} \in a\left(x_{t}\right), t=T_{1}, \ldots, T_{2}-1
$$

Define

$$
\begin{align*}
& \Omega(a)=\{\xi \in X: \text { for every positive number } \epsilon \text { there exists a trajectory } \\
& \left.\qquad\left\{y_{t}\right\}_{t=0}^{\infty} \text { for whicht } \liminf _{t \rightarrow \infty} \rho\left(\xi, y_{t}\right) \leq \epsilon\right\} \tag{1}
\end{align*}
$$

Evidently, $\Omega(a)$ is a nonempty closed set in the metric space (X, ρ). In the literature, the set $\Omega(a)$ is called a global attractor of a. Note that in $[1,2] \Omega(a)$ is called a turnpike set of a. This terminology is motivated by mathematical economics [1,8,9].

For every point $x \in X$ and every nonempty closed set $E \subset X$ define

$$
\rho(x, E)=\inf \{\rho(x, y): y \in E\}
$$

Let $\phi: X \rightarrow R^{1}$ be a continuous function satisfying

$$
\begin{gather*}
\phi(z) \geq 0 \text { for every } z \in X \tag{2}\\
\phi(y) \leq \phi(x) \text { for every } x \in X \text { and every } y \in a(x) \tag{3}
\end{gather*}
$$

It is clear that ϕ is a Lyapunov function for the dynamical system determined by the map a. It should be mentioned that in mathematical economics usually X is a subset of the finite-dimensional Euclidean space and ϕ is a linear functional on this space [1,8,9]. Our goal in [7] was to study approximate solutions of the problem

$$
\phi\left(x_{T}\right) \rightarrow \max
$$

$$
\left\{x_{t}\right\}_{t=0}^{T} \text { is a program satisfying } x_{0}=x
$$

where $x \in X$ and $T \in\{1,2, \ldots\}$ are given.
The following result was obtained in [7].
Theorem 1. The following properties are equivalent:
(1) If a sequence $\left\{x_{t}\right\}_{t=-\infty}^{\infty} \subset X, x_{t+1} \in a\left(x_{t}\right)$ and $\phi\left(x_{t+1}\right)=\phi\left(x_{t}\right)$ for every integer t, then

$$
\left\{x_{t}\right\}_{t=-\infty}^{\infty} \subset \Omega(a)
$$

(2) For every positive number ϵ there exists an integer $T(\epsilon) \geq 1$ such that for every trajectory $\left\{x_{t}\right\}_{t=0}^{\infty} \subset X$ which satisfies $\phi\left(x_{t}\right)=\phi\left(x_{t+1}\right)$ for every nonnegative integer t the relation $\rho\left(x_{t}, \Omega(a)\right) \leq \epsilon$ is valid for every integer $t \geq T(\epsilon)$.

Put

$$
\|\phi\|=\sup \{|\phi(z)|: z \in X\} .
$$

We denote by $\operatorname{Card}(A)$ the cardinality of a set A and suppose that the sum over the empty set is zero.

In this paper, we establish a weak version of the turnpike property which hold for all trajectories of our dynamical system which are of a sufficient length and which are not necessarily approximate solutions of the problem above. This result as well as the turnpike results of [7] is usually true for models of economic growth which are prototypes of our dynamical system [1,8,9].

Namely, we prove the following result.
Theorem 2. Let property (1) of Theorem 1 hold and let ϵ be a positive number. Then there exists an integer $L \geq 1$ such that for every natural number $T>L$ and every trajectory $\left\{x_{t}\right\}_{t=0}^{T}$ the inequality

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq L
$$

is valid.

This result is proved in Section 3. Its proof is based on an auxiliary result which is proved in Section 2.

Assume that $\left\{x_{t}\right\}_{t=0}^{\infty}$ is a trajectory. By (3), there exists

$$
c=\lim _{t \rightarrow \infty} \phi\left(x_{t}\right)
$$

Evidently, the sequence $\left\{x_{t}\right\}_{t=0}^{\infty}$ converges to the set $\Omega \cap \phi^{-1}(c)$. This fact is well-know in the dynamical systems theory as LaSalle's invariance principle [10-13]. In the present paper, we are interested in the structure of trajectories on finite intervals of a sufficiently large length and their turnpike property established in Theorem 1.2, which was not considered in [10-13].

It should be mentioned that turnpike properties are well known in mathematical economics. The term was first coined by Samuelson in 1948 (see [14]), where he showed that an efficient expanding economy would spend most of the time in the vicinity of a balanced equilibrium path (also called a von Neumann path and a turnpike). This property was further investigated for optimal trajectories of models of economic dynamics. See, for example, $[2,8,9]$ and the references mentioned there. Recently it was shown that the turnpike phenomenon holds for many important classes of problems arising in various areas of research [15-23]. For related infinite horizon problems see [9,24-31].

2. An Auxiliary Result

Lemma 1. Let property (1) of Theorem 1 hold and ϵ be a positive number. Then there exist a positive number δ and an integer $L \geq 1$ such that for every natural number $T>2 L$ and every trajectory $\left\{x_{t}\right\}_{t=0}^{T}$ satisfying

$$
\phi\left(x_{0}\right) \leq \phi\left(x_{T}\right)+\delta
$$

the inequality

$$
\rho\left(x_{t}, \Omega(a)\right) \leq \epsilon, t=L, \ldots, T-L
$$

is valid.
Proof. Assume the contrary. Then for every integer $n \geq 1$ there are a natural number $T_{n}>2 n$ and a trajectory $\left\{x_{t}^{(n)}\right\}_{t=0}^{T_{n}}$ which satisfy

$$
\begin{gather*}
\phi\left(x_{0}^{(n)}\right) \leq \phi\left(x_{T_{n}}^{(n)}\right)+1 / n \tag{4}\\
\max \left\{\rho\left(x_{t}^{(n)}, \Omega(a)\right): t=n, \ldots, T_{n}-n\right\}>\epsilon \tag{5}
\end{gather*}
$$

By of (5), for every $n \in\{1,2, \ldots\}$ there is

$$
\begin{equation*}
S_{n} \in\left\{n, \ldots, T_{n}-n\right\} \tag{6}
\end{equation*}
$$

for which

$$
\begin{equation*}
\rho\left(x_{S_{n}}^{(n)}, \Omega(a)\right)>\epsilon \tag{7}
\end{equation*}
$$

Assume that $n \in\{1,2, \ldots\}$. Set

$$
\begin{equation*}
y_{t}^{(n)}=x_{t+S_{n}}^{(n)}, t=-S_{n}, \ldots, T_{n}-S_{n} . \tag{8}
\end{equation*}
$$

In view of (8), $\left\{y_{t}^{(n)}\right\}_{t=-S_{n}}^{T_{n}-S_{n}}$ is a trajectory. By (4) and (8),

$$
\begin{equation*}
\phi\left(y_{T_{n}-S_{n}}^{(n)}\right)-\phi\left(y_{-S_{n}}^{(n)}\right)=\phi\left(x_{T_{n}}^{(n)}\right)-\phi\left(x_{0}^{(n)}\right) \geq-1 / n . \tag{9}
\end{equation*}
$$

Equations (3) and (9) imply that for every integer $t \in\left\{-S_{n}, \ldots, T_{n}-S_{n}-1\right\}$, we have

$$
\begin{equation*}
\phi\left(y_{t+1}^{(n)}\right)-\phi\left(y_{t}^{(n)}\right) \geq \phi\left(y_{T_{n}-S_{n}}^{(n)}\right)-\phi\left(y_{-S_{n}}^{(n)}\right) \geq-1 / n \tag{10}
\end{equation*}
$$

Equations (7) and (8) imply that

$$
\begin{equation*}
\rho\left(y_{0}^{(n)}, \Omega(a)\right)=\rho\left(x_{S_{n}}^{(n)}, \Omega(a)\right)>\epsilon . \tag{11}
\end{equation*}
$$

Clearly, there is a strictly increasing sequence of positive integers $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that for every integer t there exists

$$
\begin{equation*}
y_{t}=\lim _{j \rightarrow \infty} y_{t}^{\left(n_{j}\right)} \tag{12}
\end{equation*}
$$

By Equations (11) and (12),

$$
\begin{equation*}
\rho\left(y_{0}, \Omega(a)\right) \geq \epsilon \tag{13}
\end{equation*}
$$

By (12) and the closedness of the graph of a, we have

$$
\begin{equation*}
y_{t+1} \in a\left(y_{t}\right) \text { for all integers } t . \tag{14}
\end{equation*}
$$

By (10) and (12), for all integers t,

$$
\phi\left(y_{t+1}\right)-\phi\left(y_{t}\right)=\lim _{j \rightarrow \infty} \phi\left(y_{t+1}^{\left(n_{j}\right)}\right)-\lim _{j \rightarrow \infty} \phi\left(y_{t}^{\left(n_{j}\right)}\right) \geq \lim _{j \rightarrow \infty}\left(-n_{j}^{-1}\right)=0
$$

Combining with (3) this implies that

$$
\begin{equation*}
\phi\left(y_{t+1}\right)=\phi\left(y_{t}\right) \text { for all integers } t \tag{15}
\end{equation*}
$$

Property (1) of Theorem 1, (14), (15) imply the inclusion

$$
y_{t} \in \Omega(a)
$$

for every integer t. This inclusion contradicts Equation (13). The contradiction we have reached completes the proof of Lemma 1.

3. Proof of Theorem 2

Lemma 1 implies that there are a positive number $\delta<\epsilon$ and $L_{0} \in\{1,2, \ldots\}$ for which the following property holds:
(a) for every integer $T>2 L_{0}$ and every trajectory $\left\{x_{t}\right\}_{t=0}^{T}$ satisfying

$$
\phi\left(x_{0}\right) \leq \phi\left(x_{T}\right)+\delta
$$

we have

$$
\rho\left(x_{t}, \Omega(a)\right) \leq \epsilon, t=L_{0}, \ldots, T-L_{0}
$$

Choose an integer

$$
\begin{equation*}
L>2 L_{0}+2+\left(4 L_{0}+7\right)\left(1+2 \delta^{-1}\|\phi\|\right) \tag{16}
\end{equation*}
$$

Suppose that $T>L$ is a natural number and that a sequence $\left\{x_{t}\right\}_{t=0}^{T}$ is a trajectory. By induction we define a strictly increasing finite sequence $t_{i} \in\{0, \ldots, T\}, i=0, \ldots, q$. Set

$$
\begin{equation*}
t_{0}=0 \tag{17}
\end{equation*}
$$

If

$$
\phi\left(x_{T}\right) \geq \phi\left(x_{0}\right)-\delta,
$$

then set

$$
t_{1}=T
$$

and complete to construct the sequence.
Assume that

$$
\phi\left(x_{T}\right)<\phi\left(x_{0}\right)-\delta .
$$

Evidently, there is an integer $t_{1} \in\left(t_{0}, T\right]$ satisfying

$$
\begin{equation*}
\phi\left(x_{t_{1}}\right)<\phi\left(x_{0}\right)-\delta \tag{18}
\end{equation*}
$$

and that if an integer S satisfies

$$
t_{0}<S<t_{1}
$$

then

$$
\begin{equation*}
\phi\left(x_{S}\right) \geq \phi\left(x_{0}\right)-\delta . \tag{19}
\end{equation*}
$$

If $t_{1}=T$, then we complete to construct the sequence.
Assume that $k \in\{1,2, \ldots\}$ and that we defined a strictly increasing sequence $t_{0}, \ldots, t_{k} \in\{0, \ldots\}$ such that

$$
t_{0}=0, t_{k} \leq T
$$

and that for each $i \in\{0, \ldots, k-1\}$,

$$
\phi\left(x_{t_{i+1}}\right)<\phi\left(x_{t_{i}}\right)-\delta
$$

and if an integer S satisfies $t_{i}<S<t_{i+1}$, then

$$
\phi\left(x_{S}\right) \geq \phi\left(x_{t_{i}}\right)-\delta
$$

(In view of (18) and (19), the assumption is true with $k=1$).
If $t_{k}=T$, then we complete to construct the sequence. Assume that $t_{k}<T$. If

$$
\phi\left(x_{T}\right) \geq \phi\left(x_{t_{k}}\right)-\delta,
$$

then we set $t_{k+1}=T$ and complete to construct the sequenced.
Assume that

$$
\begin{equation*}
\phi\left(x_{T}\right)<\phi\left(x_{t_{k}}\right)-\delta . \tag{20}
\end{equation*}
$$

Evidently, there is a natural number

$$
t_{k+1} \in\left(t_{k}, T\right]
$$

for which

$$
\phi\left(x_{t_{k+1}}\right)<\phi\left(x_{t_{k}}\right)-\delta
$$

and that if an integer S satisfies

$$
t_{k}<S<t_{k+1}
$$

then

$$
\phi\left(x_{S}\right) \geq \phi\left(x_{t_{k}}\right)-\delta .
$$

Evidently, the assumption made for k is true for $k+1$ too. Therefore by induction, we constructed the strictly increasing finite sequence of integers $t_{i} \in[0, T], i=0, \ldots, q$ such that

$$
t_{0}=0, t_{q}=T
$$

and that for every i satisfying $0 \leq i<q-1$,

$$
\begin{equation*}
\phi\left(x_{t_{i+1}}\right)<\phi\left(x_{t_{i}}\right)-\delta \tag{21}
\end{equation*}
$$

and for each $i \in\{0, \ldots, q-1\}$ and each integer S satisfies $t_{i}<S<t_{i+1}$, we have

$$
\begin{equation*}
\phi\left(x_{S}\right) \geq \phi\left(x_{t_{i}}\right)-\delta . \tag{22}
\end{equation*}
$$

By (21),

$$
\begin{gathered}
2\|\phi\| \geq \phi\left(x_{t_{0}}\right)-\phi\left(x_{t_{q-1}}\right) \\
\sum\left\{\phi\left(x_{t_{i}}\right)-\phi\left(x_{t_{i+1}}\right): i \text { is an integer, } 0 \leq i \leq q-2\right\} \geq \delta(q-1)
\end{gathered}
$$

and

$$
\begin{equation*}
q \leq 1+2 \delta^{-1}\|\phi\| . \tag{23}
\end{equation*}
$$

Set

$$
\begin{equation*}
E=\left\{i \in\{0, \ldots, q-1\}: t_{i+1}-t_{i} \geq 2 L_{0}+4\right\} \tag{24}
\end{equation*}
$$

Let

$$
\begin{equation*}
i \in E . \tag{25}
\end{equation*}
$$

By (24) and (25),

$$
\begin{equation*}
t_{i+1}-1-t_{i} \geq 2 L_{0}+3 \tag{26}
\end{equation*}
$$

Equations (22) and (26) imply that

$$
\begin{equation*}
\phi\left(x_{t_{i+1}-1}\right) \geq \phi\left(x_{t_{i}}\right)-\delta . \tag{27}
\end{equation*}
$$

Equations (26), (27) and property (a) applied to the program $\left\{x_{t}\right\}_{t=t_{i}}^{t_{i+1}-1}$ imply that

$$
\begin{equation*}
\rho\left(x_{t}, \Omega(a)\right) \leq \epsilon, t=t_{i}+L_{0}, \ldots, t_{i+1}-1-L_{0} . \tag{28}
\end{equation*}
$$

Equation (28) implies that

$$
\begin{gather*}
\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\} \\
\subset \cup\left\{\left\{t_{i}, \ldots, t_{i+1}\right\}: i \in\{0, \ldots, q-1\} \backslash E\right\} \\
\cup\left\{\left\{t_{i}, \ldots, t_{i}+L_{0}-1\right\} \cup\left\{t_{i+1}-L_{0}, \ldots, t_{i+1}\right\}: i \in E\right\} . \tag{29}
\end{gather*}
$$

By (23), (24) and (29),

$$
\begin{aligned}
& \operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \\
& \leq q\left(2 L_{0}+5\right)+\left(2 L_{0}+2\right) q=q\left(4 L_{0}+7\right) \\
& \left(4 L_{0}+7\right)\left(1+2 \delta^{-1}\|\phi\|\right) \leq L
\end{aligned}
$$

Theorem 2 is proved.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rubinov, A.M. Turnpike sets in discrete disperse dynamical systems. Sib. Math. J. 1980, 21, 136-146.
2. Rubinov, A.M. Multivalued Mappings and Their Applications in Economic Mathematical Problems; Nauka: Leningrad, Russia, 1980.
3. Dzalilov, Z.; Zaslavski, A.J. Global attractors for discrete disperse dynamical systems. J. Nonlinear Convex Anal. 2009, 10, 191-198.
4. Zaslavski, A.J. Turnpike sets of continuous transformations in compact metric spaces. Sib. Math. J. 1982, 23, 136-146. [CrossRef]
5. Zaslavski, A.J. Uniform convergence to global attractors for discrete disperse dynamical systems. Nonlinear Dyn. Syst. Theory 2007, 4, 315-325.
6. Zaslavski, A.J. Convergence of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2008, 4, 10-19.
7. Zaslavski, A.J. Structure of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2009, 6, 1-9.
8. Makarov, V.L.; Rubinov, A.M. Mathematical Theory of Economic Dynamics and Equilibria; Springer: New York, NY, USA, 1977.
9. Zaslavski, A.J. Turnpike Properties in the Calculus of Variations and Optimal Control; Springer Optimization and Its Applications: New York, NY, USA, 2006.
10. Bullo, F.; Carli, R.; Frasca, P. Gossip coverage control for robotic networks: Dynamical systems on the space of partitions. SIAM J. Control Optim. 2012, 50, 419-447. [CrossRef]
11. Kellett, C.M.; Teel, A.R. Smooth Lyapunov functions and robustness of stability for difference inclusions. Syst. Control. Lett. 2004, 52, 395-405. [CrossRef]
12. LaSalle, J.P. The Stability of Dynamical Systems; SIAM: Philadelphia, PA, USA, 1976.
13. Mei, W.; Bullo, F. LaSalle invariance principle for discrete-time dynamical systems: A concise and self-contained tutorial. arXiv 2020, arXiv:1710.03710.
14. Samuelson, P.A. A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 1965, 55, 486-496.
15. Damm, T.; Grune, L.; Stieler, M.; Worthmann, K. An exponential turnpike theorem for dissipative discrete time optimal control problems. Siam J. Control. Optim. 2014, 52, 1935-1957. [CrossRef]
16. Gugat, M. A turnpike result for convex hyperbolic optimal boundary. Control. Pure Appl. Funct. Anal. 2019, 4, 849-866.
17. Gugat, M.; Trelat, E.; Zuazua, E. Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control. Lett. 2016, 90, 61-70. [CrossRef]
18. Khan, M.A.; Zaslavski, A.J. On two classical turnpike results for the Robinson-Solow-Srinivisan (RSS) model. Adv. Math. Econom. 2010, 13, 47-97.
19. Mammadov, M. Turnpike theorem for an infinite horizon optimal control problem with time delay. Siam J. Control. Optim. 2014, 52, 420-438. [CrossRef]
20. Porretta, A.; Zuazua, E. Long time versus steady state optimal control. SIAM J. Control. Optim. 2013, 51, 4242-4273. [CrossRef]
21. Trelat, E.; Zhang, C.; Zuazua, E. Optimal shape design for 2 D heat equations in large time. Pure Appl. Funct. Anal. 2018, 3, 255-269.
22. Trelat, E.; Zuazua, E. The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 2015, 218, 81-114. [CrossRef]
23. Zaslavski, A.J. Turnpike Theory of Continuous-Time Linear Optimal Control Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherland; London, UK, 2015.
24. Aseev, S.M.; Krastanov, M.I.; Veliov, V.M. Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal. 2017, 2, 395-409.
25. Bachir, M.; Blot, J. Infinite dimensional infinite-horizon Pontryagin principles for discrete-time problems. In Set-Valued and Variational Analysis; Springer: Berlin/Heidelberg, Germany, 2015; Volume 23, pp. 43-54.
26. Bachir, M.; Blot, J. Infinite dimensional multipliers and Pontryagin principles for discrete-time problems. Pure Appl. Funct. Anal. 2017, 2, 411-426.
27. Blot, J.; Hayek, N. Infinite-Horizon Optimal Control in the Discrete-Time Framework; Springer: New York, NY, USA, 2014.
28. Carlson, D.A.; Haurie, A.; Leizarowitz, A. Infinite Horizon Optimal Control; Springer: Berlin/Heidelberg, Germany, 1991.
29. Gaitsgory, V.; Grune, L.; Thatcher, N. Stabilization with discounted optimal control. Syst. Control. Lett. 2015, 82, 91-98. [CrossRef]
30. Gaitsgory, V.; Mammadov, M.; Manic, L. On stability under perturbations of long-run average optimal control problems. Pure Appl. Funct. Anal. 2017, 2, 461-476.
31. Sagara, N. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discret. Contin. Dyn. Syst. Ser. S 2018, 11, 1219-1232. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

