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Abstract:



It is well-known that in finite strategic games true common belief (or common knowledge) of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. We establish a general theorem that deals with monotonic rationality notions and arbitrary strategic games and allows to strengthen the above result to arbitrary games, other rationality notions, and transfinite iterations of the elimination process. We also clarify what conclusions one can draw for the customary dominance notions that are not monotonic. The main tool is Tarski’s Fixpoint Theorem.
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1. Introduction


1.1. Contributions


In this paper we provide an epistemic analysis of arbitrary strategic games based on possibility correspondences. We prove a general result that is concerned with monotonic program properties1 used by the players to select optimal strategies.



More specifically, given a belief model for the initial strategic game, denote by [image: there is no content] the property that each player i uses a property [image: there is no content] to select his strategy (‘each player i is [image: there is no content]-rational’). We establish in Section 3 the following general result:



Assume that each property [image: there is no content] is monotonic. The set of joint strategies that the players choose in the states in which [image: there is no content] is a true common belief is included in the set of joint strategies that remain after the iterated elimination of the strategies that for player i are not [image: there is no content]-optimal.



In general, transfinite iterations of the strategy elimination are possible. For some belief models the inclusion can be reversed.



This general result covers the usual notion of rationalizability in finite games and a ‘global’ version of the iterated elimination of strictly dominated strategies used in [1] and studied for arbitrary games in [2]. It does not hold for the ‘global’ version of the iterated elimination of weakly dominated strategies. For the customary, ‘local’ version of the iterated elimination of strictly dominated strategies we justify in Section 4 the statement


true common belief (or common knowledge) of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies




for arbitrary games and transfinite iterations of the elimination process. Rationality refers here to the concept studied in [3]. We also show that the above general result yields a simple proof of the well-known version of the above result for finite games and strict dominance by a mixed strategy.



The customary, local, version of strict dominance is non-monotonic, so the use of monotonic properties has allowed us to provide epistemic foundations for a non-monotonic property. However, weak dominance, another non-monotonic property, remains beyond the reach of this approach. In fact, we show that in the above statement we cannot replace strict dominance by weak dominance. A mathematical reason is that its global version is also non-monotonic, in contrast to strict dominance, the global version of which is monotonic. To provide epistemic foundations of weak dominance the only currently known approaches are [4] based on lexicographic probability systems and [5] based on a version of the ‘all I know’ modality.




1.2. Connections


The relevance of monotonicity in the context of epistemic analysis of finite strategic games has already been pointed out in [6]. The distinction between local and global properties is from [7] and [8].



To show that for some belief models an equality holds between the set of joint strategies chosen in the states in which [image: there is no content] is true common belief and the set of joint strategies that remain after the iterated elimination of the strategies that for player i are not [image: there is no content]-rational requires use of transfinite ordinals. This complements the findings of [9] in which transfinite ordinals are used in a study of limited rationality, and [10], where a two-player game is constructed for which the [image: there is no content] (the first infinite ordinal) and [image: there is no content]+1 iterations of the rationalizability operator of [3] differ.



In turn, [11] show that arbitrary ordinals are necessary in the epistemic analysis of arbitrary strategic games based on partition spaces. Further, as shown in [2], the global version of the iterated elimination of strictly dominated strategies, when used for arbitrary games, also requires transfinite iterations of the underlying operator.



Finally, [12] invokes Tarski’s Fixpoint Theorem, in the context of what the author calls “general systems”, and uses this to prove that the set of rationalizable strategies in a finite non-cooperative game is the largest fixpoint of a certain operator. That operator coincides with the global version of the elimination of never-best-responses.



Some of the results presented here were initially reported in a different presentation, in [13].





2. Preliminaries


2.1. Strategic Games


Given n players ([image: there is no content]) by a strategic game (in short, a game) we mean a sequence [image: there is no content] where for all [image: there is no content]

	
[image: there is no content] is the non-empty set of strategies available to player i,



	
[image: there is no content] is the payoff function for the player i, so [image: there is no content]:S1×…×Sn→[image: there is no content], where [image: there is no content] is the set of real numbers.








We denote the strategies of player i by [image: there is no content], possibly with some superscripts. We call the elements of [image: there is no content]joint strategies. Given a joint strategy s we denote the ith element of s by [image: there is no content], write sometimes s as ([image: there is no content],s-i), and use the following standard notation:

	
[image: there is no content],



	
[image: there is no content].








Given a finite non-empty set A we denote by [image: there is no content] the set of probability distributions over A and call any element of Δ[image: there is no content] a mixed strategy of player i.



In the remainder of the paper we assume an initial strategic game


[image: there is no content]








A restriction of H is a sequence [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Some of [image: there is no content]s can be the empty set. We identify the restriction [image: there is no content] with H. We shall focus on the complete lattice that consists of the set of all restrictions of the game H ordered by the componentwise set inclusion:


[image: there is no content](G1′,…,Gn′) iff [image: there is no content][image: there is no content] for all i∈{1,…,n}








So in this lattice H is the largest element in this lattice.




2.2. Possibility Correspondences


In this and the next subsection we essentially follow the survey of [14]. Fix a non-empty set Ω of states. By an event we mean a subset of Ω.



A possibility correspondence is a mapping from Ω to the powerset [image: there is no content] of Ω. We consider three properties of a possibility correspondence P:

	(i)

	
for all ω, [image: there is no content],




	(ii)

	
for all ω and [image: there is no content], [image: there is no content]∈P(ω) implies P([image: there is no content])=P(ω),




	(iii)

	
for all ω, [image: there is no content].









If the possibility correspondence satisfies properties (i) and (ii), we call it a belief correspondence and if it satisfies properties (i)–(iii), we call it a knowledge correspondence.2 Note that each knowledge correspondence P yields a partition [image: there is no content] of Ω.



Assume now that each player i has at its disposal a possibility correspondence [image: there is no content]. Fix an event E. We define


□E:=□1E:={ω∈Ω∣∀i∈{1,…,n}[image: there is no content](ω)E}








by induction on [image: there is no content]


[image: there is no content]








and finally


[image: there is no content]











If all [image: there is no content]s are belief correspondences, we usually write B instead of □ and if all [image: there is no content]s are knowledge correspondences, we usually write K instead of □. When [image: there is no content], we say that the event E is common belief in the state ω and when [image: there is no content], we say that the event E is common knowledge in the state ω.



An event F is called evident if [image: there is no content]. That is, F is evident if for all [image: there is no content] we have [image: there is no content](ω)⊆F for all [image: there is no content]. In what follows we shall use the following alternative characterizations of common belief and common knowledge based on evident events:


[image: there is no content]



(1)




where [image: there is no content] or [image: there is no content] (see [16], respectively Proposition 4 on page 180 and Proposition on page 174), and


[image: there is no content]



(2)




([17], page 1237).




2.3. Models for Games


We now relate these considerations to strategic games. Given a restriction [image: there is no content] of the initial game H, by a model for G we mean a set of states Ω together with a sequence of functions [image: there is no content]¯:Ω→[image: there is no content], where [image: there is no content]. We denote it by [image: there is no content].



In what follows, given a function f and a subset E of its domain, we denote by [image: there is no content] the range of f on E and by [image: there is no content] the restriction of f to E.



By the standard model [image: there is no content] for G we mean the model in which

	
[image: there is no content]



	
[image: there is no content]¯(ω):=ωi, where [image: there is no content]





So the states of the standard model for G are exactly the joint strategies in G, and each [image: there is no content]¯ is a projection function. Since the initial game H is given, we know the payoff functions [image: there is no content]. So in the context of H the standard model is an alternative way of representing a restriction of H.



Given a (not necessarily standard) model [image: there is no content]:=(Ω,s1¯,…,sn¯) for a restriction G and a sequence of events [image: there is no content] in [image: there is no content] (i.e., of subsets of Ω) we define


[image: there is no content]








and call it the restriction of G to [image: there is no content]. When each [image: there is no content] equals E we write [image: there is no content] instead of G[image: there is no content].



Finally, we extend the notion of a model for a restriction G to a belief model for G by assuming that each player i has a belief correspondence [image: there is no content] on Ω. If each [image: there is no content] is a knowledge correspondence, we refer then to a knowledge model. We write each belief model as


[image: there is no content]












2.4. Operators


Consider a fixed complete lattice [image: there is no content] with the largest element ⊤. In what follows we use ordinals and denote them by [image: there is no content]. Given a, possibly transfinite, sequence [image: there is no content] of elements of D we denote their join and meet respectively by [image: there is no content] and [image: there is no content].



Let T be an operator on [image: there is no content], i.e., [image: there is no content].

	
We call T monotonic if for all [image: there is no content], [image: there is no content] implies [image: there is no content], and contracting if for all G, [image: there is no content].



	
We say that an element G is a fixpoint of T if [image: there is no content] and a post-fixpoint of T if [image: there is no content].



	
We define by transfinite induction a sequence of elements [image: there is no content] of D, where α is an ordinal, as follows:

	−

	
[image: there is no content],




	−

	
Tα+1:=T([image: there is no content]),




	−

	
for all limit ordinals β, Tβ:=⋂α<β[image: there is no content].









	
We call the least α such that Tα+1=[image: there is no content] the closure ordinal of T and denote it by [image: there is no content]. We call then T[image: there is no content] the outcome of (iterating) T and write it alternatively as [image: there is no content].








So an outcome is a fixpoint reached by a transfinite iteration that starts with the largest element. In general, the outcome of an operator does not need to exist but we have the following classic result due to [18].3



Tarski’s Fixpoint Theorem Every monotonic operator T on [image: there is no content] has an outcome, i.e., [image: there is no content] is well-defined. Moreover,


[image: there is no content]=νT=∪{G∣G⊆T(G)}








where [image: there is no content] is the largest fixpoint of T.



In contrast, a contracting operator does not need to have a largest fixpoint. But we have the following obvious observation.



Note 1. Every contracting operator T on [image: there is no content] has an outcome,i.e., [image: there is no content] is well-defined.   ☐



In Section 4 we shall need the following lemma, that modifies the corresponding lemma from [8] from finite to arbitrary complete lattices.



Lemma 1. Consider two operators [image: there is no content] and [image: there is no content] on [image: there is no content] such that

	
for all G, [image: there is no content](G)⊆[image: there is no content](G),



	
[image: there is no content] is monotonic,



	
[image: there is no content] is contracting.





Then [image: there is no content].



Proof. We first prove by transfinite induction that for all α


[image: there is no content]



(3)







By the definition of the iterations we only need to consider the induction step for a successor ordinal. So suppose the claim holds for some α. Then by the first two assumptions and the induction hypothesis we have the following string of inclusions and equalities:


T1α+1=[image: there is no content](T1α)⊆[image: there is no content](T2α)⊆[image: there is no content](T2α)=T2α+1











This shows that for all α (3) holds. By Tarski’s Fixpoint Theorem and Note 1 the outcomes of [image: there is no content] and [image: there is no content] exist, which implies the claim.           ☐




2.5. Iterated Elimination of Non-Rational Strategies


In this paper we are interested in analyzing situations in which each player pursues his own notion of rationality and this information is common knowledge or true common belief. As a special case we cover then the usually analyzed situation in which all players use the same notion of rationality.



Given player i in the initial strategic game [image: there is no content] we formalize his notion of rationality using an optimality property ϕ([image: there is no content],[image: there is no content],[image: there is no content]) that holds between a strategy [image: there is no content]∈[image: there is no content], a set [image: there is no content] of strategies of player i and a set [image: there is no content] of joint strategies of his opponents. Intuitively, [image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content]) holds if [image: there is no content] is an ‘optimal’ strategy for player i within the restriction G:=([image: there is no content],[image: there is no content]), assuming that he uses the property [image: there is no content] to select optimal strategies. In Section 4 we shall provide several natural examples of such properties.



We say that the property [image: there is no content] used by player i is monotonic if for all [image: there is no content],G-i′⊆H-i and [image: there is no content]∈[image: there is no content]


[image: there is no content]G-i′andϕ([image: there is no content],[image: there is no content],[image: there is no content])implyϕ([image: there is no content],[image: there is no content],G-i′)








So monotonicity refers to the situation in which the set of strategies of player i is set to [image: there is no content] and the set of joint strategies of player i’s opponents is increased.



Each sequence of properties [image: there is no content] determines an operator [image: there is no content] on the restrictions of H defined by


[image: there is no content](G):=G′








where [image: there is no content], [image: there is no content], and for all [image: there is no content]


[image: there is no content]:={[image: there is no content]∈[image: there is no content]∣[image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content])}











Note that in defining the set of strategies [image: there is no content] we use in the second argument of [image: there is no content] the set [image: there is no content] of player’s i strategies in the initial game H and not in the current restriction G. This captures the idea that at every stage of the elimination process player i analyzes the status of each strategy in the context of his initial set of strategies.



Since [image: there is no content] is contracting, by Note 1 it has an outcome, i.e., [image: there is no content] is well-defined. Moreover, if each [image: there is no content] is monotonic, then [image: there is no content] is monotonic and by Tarski’s Fixpoint Theorem its largest fixpoint ν[image: there is no content] exists and equals [image: there is no content]. Finally, G is a fixpoint of [image: there is no content] iff for all [image: there is no content] and all [image: there is no content]∈[image: there is no content], [image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content]) holds.



Intuitively, [image: there is no content](G) is the result of removing from G all strategies that are not [image: there is no content]-rational. So the outcome of [image: there is no content] is the result of the iterated elimination of strategies that for player i are not [image: there is no content]-rational.





3. Two Theorems


We now assume that each player i employs some property [image: there is no content] to select his strategies, and we analyze the situation in which this information is true common belief or common knowledge. To determine which strategies are then selected by the players we shall use the [image: there is no content] operator.



We begin by fixing a belief model [image: there is no content] for the initial game H. Given an optimality property [image: there is no content] of player i we say that player i is [image: there is no content]-rational in the state ω if [image: there is no content]([image: there is no content]¯(ω),[image: there is no content],(G[image: there is no content](ω))-i) holds. Note that when player i believes (respectively, knows) that the state is in [image: there is no content](ω), the set (G[image: there is no content](ω))-i represents his belief (respectively, his knowledge) about other players’ strategies. That is, ([image: there is no content],(G[image: there is no content](ω))-i) is the restriction he believes (respectively, knows) to be relevant to his choice.



Hence [image: there is no content]([image: there is no content]¯(ω),[image: there is no content],(G[image: there is no content](ω))-i) captures the idea that if player i uses [image: there is no content] to select his strategy in the game he considers relevant, then in the state ω he indeed acts ‘rationally’.



To reason about common knowledge and true common belief we introduce the event


RAT(ϕ):={ω∈Ω∣each player i is [image: there is no content]-rational in ω}








and consider the following two events constructed out of it: [image: there is no content] and [image: there is no content]. We then focus on the corresponding restrictions G[image: there is no content] and G[image: there is no content].



So strategy [image: there is no content] is an element of the ith component of G[image: there is no content] if [image: there is no content]=[image: there is no content]¯(ω) for some [image: there is no content]. That is, [image: there is no content] is a strategy that player i chooses in a state in which it is common knowledge that each player j is [image: there is no content]-rational, and similarly for G[image: there is no content].



The following result then relates for arbitrary strategic games the restrictions G[image: there is no content] and G[image: there is no content] to the outcome of the iteration of the operator [image: there is no content].



Theorem 1.

	(i)

	
Suppose that each property [image: there is no content] is monotonic. Then for all belief models for H


GRAT(ϕ)∩B*RAT(ϕ)⊆[image: there is no content]












	(ii)

	
Suppose that each property [image: there is no content] is monotonic. Then for all knowledge models for H


GK*RAT(ϕ)⊆[image: there is no content]












	(iii)

	
For some standard knowledge model for H


[image: there is no content]⊆GK*RAT(ϕ)

















So part [image: there is no content] (respectively, [image: there is no content]) states that true common belief (respectively, common knowledge) of [image: there is no content]-rationality of each player i implies that the players will choose only strategies that survive the iterated elimination of non-ϕ-rational strategies.



Proof.



[image: there is no content] Fix a belief model [image: there is no content] for H. Take a strategy [image: there is no content] that is an element of the ith component of G[image: there is no content]. Thus we have [image: there is no content]=[image: there is no content]¯(ω) for some state ω such that [image: there is no content] and [image: there is no content]. The latter implies by (1) that for some evident event F


ω∈F{[image: there is no content]∈Ω∣∀i∈{1,…,n}[image: there is no content]([image: there is no content])⊆RAT(ϕ)}



(4)







Take now an arbitrary [image: there is no content]∈F∩RAT(ϕ) and [image: there is no content]. Since [image: there is no content]∈RAT(ϕ), it holds that player i is [image: there is no content]-rational in [image: there is no content], i.e., [image: there is no content]([image: there is no content]¯([image: there is no content]),[image: there is no content],(G[image: there is no content]([image: there is no content]))-i) holds. But F is evident, so [image: there is no content]([image: there is no content])⊆F. Moreover by (4) [image: there is no content]([image: there is no content])⊆RAT(ϕ), so [image: there is no content]([image: there is no content])⊆F∩RAT(ϕ). Hence (G[image: there is no content]([image: there is no content]))-i⊆([image: there is no content])-i and by the monotonicity of [image: there is no content] we conclude that [image: there is no content]([image: there is no content]¯([image: there is no content]),[image: there is no content],([image: there is no content])-i) holds.



By the definition of [image: there is no content] this means that [image: there is no content]⊆[image: there is no content]([image: there is no content]), i.e.[image: there is no content] is a post-fixpoint of [image: there is no content]. But [image: there is no content] is monotonic since each property [image: there is no content] is. Hence by Tarski’s Fixpoint Theorem [image: there is no content]⊆[image: there is no content]. But [image: there is no content]=[image: there is no content]¯(ω) and ω∈F∩[image: there is no content], so we conclude by the above inclusion that [image: there is no content] is an element of the ith component of [image: there is no content]. This proves the claim.



[image: there is no content] By the definition of common knowledge for all events E we have [image: there is no content]. Hence for all ϕ we have [image: there is no content] and consequently G[image: there is no content]⊆GRAT(ϕ)∩K*RAT(ϕ).



So part (ii) follows from part (i).



[image: there is no content] Suppose [image: there is no content]=[image: there is no content]. Consider the event [image: there is no content] in the standard model for H. Then [image: there is no content]. Define each possibility correspondence [image: there is no content] by


[image: there is no content](ω):=Fifω∈FΩ∖Fotherwise








Each [image: there is no content] is a knowledge correspondence (also when [image: there is no content] or [image: there is no content]) and clearly F is an evident event.



Take now an arbitrary [image: there is no content] and an arbitrary state [image: there is no content]. Since [image: there is no content] is a fixpoint of [image: there is no content] and [image: there is no content]¯(ω)∈[image: there is no content] we have [image: there is no content]([image: there is no content]¯(ω),[image: there is no content],([image: there is no content])-i), so by the definition of [image: there is no content] we have [image: there is no content]([image: there is no content]¯(ω),[image: there is no content],(G[image: there is no content](ω))-i). This shows that each player i is [image: there is no content]-rational in each state [image: there is no content], i.e., [image: there is no content].



Since F is evident, we conclude by (2) that in each state [image: there is no content] it is common knowledge that each player i is [image: there is no content]-rational, i.e., [image: there is no content]. Consequently


[image: there is no content]=GF⊆G[image: there is no content]








        ☐



Items [image: there is no content] and [image: there is no content] show that when each property [image: there is no content] is monotonic, for all belief models of H it holds that the joint strategies that the players choose in the states in which each player i is [image: there is no content]-rational and it is common belief that each player i is [image: there is no content]-rational (or in which it is common knowledge that each player i is [image: there is no content]-rational) are included in those that remain after the iterated elimination of the strategies that are not [image: there is no content]-rational.



Note that monotonicity of the [image: there is no content] properties was not needed to establish item [image: there is no content].



By instantiating the [image: there is no content]’s with specific properties we get instances of the above result that refer to specific definitions of rationality. This will allow us to relate the above result to the ones established in the literature. Before we do this we establish a result that identifies a large class of properties [image: there is no content] for which Theorem 1 does not apply.



Theorem 2. Suppose that a joint strategy s∉[image: there is no content] exists such that


[image: there is no content]([image: there is no content],[image: there is no content],({sj}[image: there is no content]))








holds all [image: there is no content]. Then for some knowledge model for H the inclusion


GK*RAT(ϕ)⊆[image: there is no content]








does not hold.



Proof. We extend the standard model for H by the knowledge correspondences [image: there is no content] where for all [image: there is no content], [image: there is no content](ω)=. Then for all ω and all [image: there is no content]


G[image: there is no content](ω)=({s1¯(ω)},…,{sn¯(ω)})








Let [image: there is no content]:=s. Then for all [image: there is no content], G[image: there is no content]([image: there is no content])=({s1},…,{sn}), so by the assumption each player i is [image: there is no content]-rational in [image: there is no content], i.e., [image: there is no content]∈RAT(ϕ). By the definition of [image: there is no content]s the event {[image: there is no content]} is evident and [image: there is no content]∈KRAT(ϕ). So by (1) [image: there is no content]∈K*RAT(ϕ). Consequently s=(s1¯([image: there is no content]),…,sn¯([image: there is no content]))∈G[image: there is no content].



This yields the desired conclusion by the choice of s.      ☐




4. Applications


We now analyze to what customary game-theoretic properties the above two results apply. By a belief of player i about the strategies his opponents play given the set [image: there is no content] of their joint strategies we mean one of the following possibilities:

	
a joint strategy of the opponents of player i, i.e., s-i∈[image: there is no content], called a point belief,



	
or, in the case the game is finite, a joint mixed strategy of the opponents of player i (i.e., [image: there is no content], where [image: there is no content] for all [image: there is no content]), called an independent belief,



	
or, in the case the game is finite, an element of Δ[image: there is no content], called a correlated belief.








In the second and third case the payoff function [image: there is no content] can be lifted in the standard way to an expected payoff function [image: there is no content]:[image: there is no content]×Bi([image: there is no content])[image: there is no content], where Bi([image: there is no content]) is the corresponding set of beliefs of player i held given [image: there is no content].



We use below the following abbreviations, where [image: there is no content],[image: there is no content]∈[image: there is no content] and [image: there is no content] is a set of the strategies of the opponents of player i:

	
(strict dominance) [image: there is no content]≻[image: there is no content][image: there is no content] for



∀s-i∈[image: there is no content][image: there is no content]([image: there is no content],s-i)>[image: there is no content]([image: there is no content],s-i)



	
(weak dominance) [image: there is no content]≻[image: there is no content]w[image: there is no content] for



∀s-i∈[image: there is no content][image: there is no content]([image: there is no content],s-i)≥[image: there is no content]([image: there is no content],s-i)∧∃s-i∈[image: there is no content][image: there is no content]([image: there is no content],s-i)>[image: there is no content]([image: there is no content],s-i)








In the case of finite games the relations ≻[image: there is no content] and ≻[image: there is no content]w between a mixed strategy and a pure strategy are defined in the same way.



We now introduce natural examples of the optimality notion.

	
sdi([image: there is no content],[image: there is no content],[image: there is no content])≡¬∃[image: there is no content]∈[image: there is no content][image: there is no content]≻[image: there is no content][image: there is no content]



	
(assuming H is finite) msdi([image: there is no content],[image: there is no content],[image: there is no content])≡¬∃mi′∈Δ[image: there is no content]mi′≻[image: there is no content][image: there is no content]



	
wdi([image: there is no content],[image: there is no content],[image: there is no content])≡¬∃[image: there is no content]∈[image: there is no content][image: there is no content]≻[image: there is no content]w[image: there is no content]



	
(assuming H is finite) mwdi([image: there is no content],[image: there is no content],[image: there is no content])≡¬∃mi′∈Δ[image: there is no content]mi′≻[image: there is no content]w[image: there is no content]



	
bri([image: there is no content],[image: there is no content],[image: there is no content])≡∃μi∈Bi([image: there is no content])∀si′∈[image: there is no content][image: there is no content]([image: there is no content],μi)≥[image: there is no content]([image: there is no content],μi)








So [image: there is no content] and [image: there is no content] are the customary notions of strict and weak dominance and [image: there is no content] and [image: there is no content] are their counterparts for the case of dominance by a mixed strategy. Note that the notion [image: there is no content] of best response, comes in three ‘flavours’ depending on the choice of the set Bi([image: there is no content]) of beliefs.



Consider now the iterated elimination of strategies as defined in SubSection 2.5, so with the repeated reference by player i to the strategy set [image: there is no content]. For the optimality notion [image: there is no content] such a version of iterated elimination was studied in [2], for [image: there is no content] it was used in [4], while for [image: there is no content] it corresponds to the rationalizability notion of [3].



In [10], [2] and [7] examples are provided showing that for the properties [image: there is no content] and [image: there is no content] in general transfinite iterations (i.e., iterations beyond [image: there is no content]) of the corresponding operator are necessary to reach the outcome. So to establish for them part [image: there is no content] of Theorem 1 transfinite iterations of the [image: there is no content] operator are necessary.



The following lemma holds.



Lemma 2. The properties sdi,msdi and [image: there is no content] are monotonic.



Proof. Straightforward.



So Theorem 1 applies to the above three properties. In contrast, Theorem 1 does not apply to the remaining two properties [image: there is no content] and [image: there is no content], since, as indicated in [8], the corresponding operators [image: there is no content] and [image: there is no content] are not monotonic, and hence the properties [image: there is no content] and [image: there is no content] are not monotonic.



In fact, the desired inclusion does not hold and Theorem 2 applies to these two optimality properties. Indeed, consider the following game:








	
	L
	R



	U
	1, 1
	0, 1



	D
	1, 0
	1, 1








Then the outcome of iterated elimination for both [image: there is no content] and [image: there is no content] yields [image: there is no content]. Further, we have [image: there is no content] and [image: there is no content], and analogously for [image: there is no content] and [image: there is no content].



So the joint strategy [image: there is no content] satisfies the conditions of Theorem 2 for both [image: there is no content] and [image: there is no content]. Note that this game also furnishes an example for non-monotonicity of [image: there is no content] since [image: there is no content] does not hold.



This shows that the optimality notions [image: there is no content] and [image: there is no content] cannot be justified in the used epistemic framework as ‘stand alone’ concepts of rationality.




5. Consequences of Common Knowledge of Rationality


In this section we show that common knowledge of rationality is sufficient to entail the customary iterated elimination of strictly dominated strategies. We also show that weak dominance is not amenable to such a treatment.



Given a sequence of properties [image: there is no content], we introduce an operator [image: there is no content] on the restrictions of H defined by


[image: there is no content](G):=G′,








where [image: there is no content], [image: there is no content], and for all [image: there is no content]


[image: there is no content]:={[image: there is no content]∈[image: there is no content]∣[image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content])}.








So when defining the set of strategies [image: there is no content] we use in the second argument of [image: there is no content] the set [image: there is no content] of player’s i strategies in the current restriction G. That is, [image: there is no content](G) determines the ‘locally’ ϕ-optimal strategies in G. In contrast, [image: there is no content](G) determines the ‘globally’ ϕ-optimal strategies in G, in that each player i must consider all of his strategies [image: there is no content] that occur in his strategy set [image: there is no content] in the initial game H.



So the ‘global’ form of optimality coincides with rationality, as introduced in SubSection 2.5, while the customary definition of iterated elimination of strictly (or weakly) dominated strategies refers to the iterations of the appropriate instantiation of the ‘local’ [image: there is no content] operator.



Note that the [image: there is no content] operator is non-monotonic for all non-trivial optimality notions [image: there is no content] such that [image: there is no content]([image: there is no content],{[image: there is no content]},({sj}[image: there is no content])) for all joint strategies s, so in particular for [image: there is no content] and [image: there is no content]. Indeed, given s let [image: there is no content] denote the corresponding restriction in which each player i has a single strategy [image: there is no content]. Each restriction [image: there is no content] is a fixpoint of [image: there is no content]. By non-triviality of [image: there is no content]s we have [image: there is no content](H)≠H, so for each restriction [image: there is no content] with s including an eliminated strategy the inclusion [image: there is no content]([image: there is no content])⊆[image: there is no content](H) does not hold, even though [image: there is no content]⊆H. In contrast, as we saw, by virtue of Lemma 2 the [image: there is no content] operator is monotonic for [image: there is no content] and [image: there is no content].



First we establish the following consequence of Theorem 1. When each property [image: there is no content] equals [image: there is no content], we write here [image: there is no content] and similarly with [image: there is no content].



Corollary 1.

	(i)

	
For all belief models


[image: there is no content]












	(ii)

	
for all knowledge models


[image: there is no content]














where in both situations we use in [image: there is no content] the set of poinr beliefs.



Proof.



[image: there is no content] By Lemma 2 and Theorem 1[image: there is no content][image: there is no content] Each best response to a joint strategy of the opponents is not strictly dominated, so for all restrictions G


[image: there is no content]








Also, for all restrictions G, [image: there is no content]. So by Lemma 1 [image: there is no content], which concludes the proof.



[image: there is no content] By part [image: there is no content] and the fact that [image: there is no content].      ☐



Part [image: there is no content] formalizes and justifies in the epistemic framework used here the often used statement:

	
common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies





for games with arbitrary strategy sets and transfinite iterations of the elimination process, and where best response means best response to a point belief.



In the case of finite games Theorem 1 implies the following result. For the case of independent beliefs it is implicitly stated in [19], explicitly formulated in [20] (see [14, page 181]) and proved using Harsanyi type spaces in [21].



Corollary 2. Assume the initial game H is finite.

	(i)

	
For all belief models for H


[image: there is no content]












	(ii)

	
for all knowledge models for H


[image: there is no content]














where in both situations we use in [image: there is no content] either the set of point beliefs or the set of independent beliefs or the set of correlated beliefs.



Proof. The argument is analogous as in the previous proof but relies on a subsidiary result and runs as follows.



[image: there is no content] Denote respectively by br[image: there is no content], [image: there is no content] and [image: there is no content] the best response property w.r.t. point, independent and correlated beliefs of the opponents. Below ϕ stands for either [image: there is no content], [image: there is no content] or [image: there is no content].



By Lemma 2 and Theorem 1 G[image: there is no content]⊆[image: there is no content]. Further, for all restrictions G we have both [image: there is no content](G)⊆[image: there is no content](G) and [image: there is no content] So by Lemma 1 [image: there is no content]⊆Ubrc∞. But by the result of [22], (page 60) (that is a modification of the original result of [23]), for all restrictions G we have [image: there is no content], so [image: there is no content], which yields the conclusion.



[image: there is no content] By [image: there is no content] and the fact that [image: there is no content].



Finally, let us clarify the situation for the remaining two optimality notions, [image: there is no content] and [image: there is no content]. For them the inclusions of Corollaries 1 and 2 do not hold. Indeed, it suffices to consider the following initial game H:








	
	L
	R



	U
	1, 0
	1, 0



	D
	1, 0
	0, 0








Here every strategy is a best response but D is weakly dominated by U. So both [image: there is no content] and [image: there is no content] are proper subsets of [image: there is no content]. On the other hand by Theorem 1[image: there is no content] for some standard knowledge model for H we have GK*RAT(br)=[image: there is no content]. So for this knowledge model neither GK*RAT(br)⊆[image: there is no content] nor GK*RAT(br)⊆[image: there is no content] holds.
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1.The concept of a monotonic property is introduced in Section 2.



	
2.Note that the notion of a belief has two meanings in the literature on epistemic analysis of strategic games, so also in this paper. From the context it is always clear which notion is used. In the modal logic terminology a belief correspondence is a frame for the modal logic KD45 and a knowledge correspondence is a frame for the modal logic S5, see, e.g. [15].



	
3.We use here its ‘dual’ version in which the iterations start at the largest and not at the least element of a complete lattice.
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