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Abstract: Human social networks reshape continuously, as individuals forge new contacts
while abandoning existing ones. Simultaneously, individuals adapt their behavior, leading
to an intricate interplay been network evolution and behavior evolution. Here, we review
a framework, called Active Linking, which allows an analytical treatment of such a
co-evolutionary dynamics. Using this framework we showed that an increase in the number
of ways of responding to adverse interactions leads an overall increase of cooperation, which
is here extended to all two-player social dilemmas. In addition, we discuss the role of the
selection pressure in these results.
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1. Introduction

Opinions, languages, ideas, behavioral traits, and culture in general, all form and evolve along the
edges of human social networks [1–5]. In this manuscript, we focus on the evolution of one of the most
basic human behaviors, i.e., the altruistic help of others. Prosocial behavior abounds among members of
the same family, but also among unrelated individuals and even among people who are strangers to each
other. Understanding the viability of such cooperative patterns remains an intriguing quest [6], often
formulated in terms of the famous prisoner’s dilemma (PD) [7] and analyzed using evolutionary game
theory (EGT) [8–11].

Consider a population of individuals who may act as cooperators or defectors. Cooperators pay a
cost (c) to provide a benefit (b > c) to their partners. Defectors refuse to cooperate, and therefore
incur no costs while still ripping the benefits provided by others. When two individuals meet,
either they both cooperate, both defect, or one cooperates while the other defects. The behavior of
successful individuals, success being measured in terms of game payoff, spreads in the population,
either by genetic reproduction (biological evolution), or by social learning (cultural evolution). When
a population is infinitely large and well-mixed, i.e., when anyone in the population is equally likely to
be your partner, both frameworks can be captured by the same mathematical description: the replicator
equation [9,12,13]. This equation dictates that cheaters (defectors) are expected to win the evolutionary
race, as the cooperator trait gets extinct in the population. Hence, evolution leads to a scenario of
defection only, where no-one pays any costs but no-one receives any benefits either, unlike a society of
cooperators where everyone is better off.

However, as cooperation is omnipresent in human society, and in nature in general, certain
mechanisms exist which allow the persistence of cooperative behavior [14,15]. It has, for instance,
become clear that the structure of the network along which individuals interact and reproduce/imitate
affects drastically the evolutionary chances of cooperators [16]. Initially, this line of research focused
on regular lattices [17–25]. More recently, more complex topologies and general networks have been
considered in great detail [26–47]. In particular, it has been shown that the introduction of heterogeneous
networks of contact between individuals results in an overall increase of cooperative behavior [33,36,45].
This effect even enhances when one recognizes that these networks are in fact dynamic entities [48],
whose structure co-evolves with the individual behavior [49–64].

A convenient framework to analyze such a coevolutionary dynamics is the Active Linking (AL)
model [52,53], which we review in Section 2 in the context individuals playing symmetric, one-shot,
two-person games of cooperation. The original articles on AL assume that the life span of a connection
depends solely on the game behavior of the interacting individuals. Section 3 discusses a recent study
that shows how additional variability in the spectrum of possible reactions to adverse ties influences the
evolution of cooperation in the PD [62]. Sections 4 and 5 elaborate on this study by investigating the
role of the intensity of selection and verifying the obtained results for the other two-person dilemmas:
the stag-hunt game (SH) [65] and the snowdrift game (SG) [66–68].
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2. Active Linking

Consider a population described in terms of a network with constant number of nodes N . Every node
represents an individual, every edge an interaction between the two individuals it connects. We model
these interactions as symmetric, one-shot, two-player games of cooperation, defined by payoff matrix

M =

(C D

C R S

D T P

)
(1)

We consider two possible game strategies. Individuals either cooperate (C) unconditionally upon
interaction, or defect (D) unconditionally. There are NC individuals that cooperate and N − NC

individuals that defect. Payoff matrix 1 shows that a C receives the sucker’s payoff S when interacting
with a D, who in turn gains the temptation to defect T . When two cooperating (respectively, defecting)
individuals meet, both receive the reward R (respectively, punishment P ). The ordering of these payoff
values defines the nature of the game. We distinguish three generic cases for games characterized by
Payoff matrix 1:

• Dominance: When T > R and P > S, we enter the realm of the PD [7], where defection
dominates cooperation. The opposite scenario, when R > T and S > P poses no social dilemma
and is referred to as a Harmony Game (HG) [69].

• Coordination or Bistability: T < R and S < P leads to what is called coordination or SH
games [65], in which it is always beneficial to follow the strategy of the opponent, turning both
C’s and D’s advantageous when rare.

• Coexistence: In the case of R < T and P < S, known as the SG [66–68], a small minority of
C’s or D’s is always favored. This means that the ultimate outcome in a population of players is a
mixture of C’s and D’s.

When mutual cooperation R is preferred to mutual defection P , the 2-D parameter space defined by T
and S characterizes all three scenarios introduced above, as illustrated in Figure 1(a), using R = 4 and
P = 3. Two critical payoff values, T ∗1 and S∗1 , mark the boundaries of the regions associated with the
different types of games. When T > T ∗1 = R, joint cooperation is threatened by greed: the temptation
to defect towards a cooperator. Similarly, when S < S∗1 = P , joint cooperation is threatened by the fear
of being betrayed by a defector [36,70].

Within the context of these social scenarios, two dynamical processes take place in the population
simultaneously: evolution of individual (game) behavior on the one hand, and evolution of the network
structure on the other hand. Each of these two processes proceeds on a characteristic time scale: τa
denotes the time scale associated with network evolution, τs denotes the one associated with behavior
(strategy) evolution. The next two subsections explain in detail each of these two processes.
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Figure 1. Game transformation through AL. (a) 2-D parameter space, defined by T and
S, characterizing four games: HG, SH, SG and PD (R = 4 and P = 3). The critical game
parameters T ∗1 and S∗1 separate the different regions. Greed comes into play when T > T ∗1 ,
fear when S < S∗1 . (b) AL changes the nature of the game being played. Even though
individuals engage in the same game, greed (fear) will come into play only when T > T ∗2
(S < S∗2). T ∗2 and S∗2 were calculated using c = 0.16, γCC = 0.16, γCD = 0.8, γDD = 0.32.

PDSH

SGHG

T1 4 7

3

0

6
1 4 7

3

0

6
T

ST*1

S*1

(a) (b)Greed

Fear

T*1 T*2

S*1

S*2

S

2.1. Network Evolution

Individuals can decide to establish new connections and to remove existing ones, making the number
of edges a variable quantity which changes in time. New edges appear randomly at a fixed rate c and have
characteristic life-times. In this section, we assume that the lifetime of a link depends solely on the game
behavior of the individuals involved. Specifically, the rate at which CC, CD and DD links disappear is
given by γCC , γCD and γDD, respectively. The next sections incorporate additional realism by assigning
each individual a characteristic eagerness to break nonproductive connections. In real populations, the
likelihood for edges to appear or disappear may depend on other factors, not dealt with in this work,
such as the geographical distance between individuals, the existence of family relationships or the social
context wherein individuals find themselves. Individual-based linking rules are required to capture such
a melting pot of influences, implying the use of computer simulations to study the population’s evolution
(see e.g., [49–51,54–57,59–61,63]). The linking rules considered in the present work, on the other hand,
allow us to describe the network dynamics using the following set of ordinary differential equations

L̇ij(t) = c [Nij(t)− Lij(t)]− γijLij(t) (2)

Lij(t) stands for the number links between individuals with strategy i and individuals with strategy j at
time t. Nij(t) is the maximum possible number of such links. This maximum depends on the number of
i and j individuals in the population, which we denote by Ni(t) and Nj(t), respectively, and equals

Nij(t) =

{
Ni(t)Nj(t) (i 6= j)

1
2
Ni(t)[Ni(t)− 1] (i = j)
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Whenever the strategies of the individuals remain fixed for a sufficiently long time (see time scale
discussion below), the network will evolve towards a steady state with single-scale to broad-scale
heterogeneity [52,71] and a stationary number of links of each type given by

L∗ij = φijNij (3)

where φij = c (c + γij)
−1. Note that L∗ij depends on the actual strategy configuration of the population,

illustrating the coupling between network dynamics and strategy dynamics. Examples of population
structures attained under steady-state dynamics for three different combinations of (NC , N − NC) are
shown in Figure 2.

Figure 2. Frequency-dependent network evolution. Blue circles indicate C’s, red circles
indicate D’s. CC-links are depicted as cyan lines, CD-links as red lines and DD-links as gray
lines. Each panel shows a snapshot of a network in the steady state of the network dynamics
associated with given configuration of C’s and D’s. The parameters governing the network
dynamics are c = 0.25, γCC = 0.5, γCD = 0.25 and γDD = 0.5. The total population size is
N = 30. Figure reproduced from [53].
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2.2. Strategy Evolution

In this section, we assume that individuals adjust their strategy solely by imitating others, which
means that they can only adopt strategies that are already present in the population. As of Section 3,
we will use an extended version of this strategy update rule and give individuals the opportunity to try
out completely new strategies occasionally (see Section 3.1). The imitation process itself is defined
according to the pairwise-comparison rule [23,72,73]. At every strategy update event, a focal individual
X is selected randomly from the population. This individual adopts the strategy of a random individual
Y—his role model—with probability

pXY =
[
1 + eβ(ΠX−ΠY )

]−1
(4)

ΠX (ΠY ) denotes the total payoff X (Y ) receives after interacting once with every neighbor. The
parameter β (≥ 0) controls the intensity of selection and measures the importance of game payoff in
the imitation process. In the limit β → ∞, individuals imitate each other based purely on the payoffs
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they acquire. The game becomes progressively less important for decreasing β. In the limit β → 0,
strategies evolve in a purely random fashion, according to the same rules as those of the so-called voter
model [74]. The imitation process defined above assumes that all individuals are equally likely to act
as each other’s role model, whereas it is now well-known that cooperation is maximized whenever
individuals are limited to imitate those with whom they interact [75,76]. In this sense, the levels of
cooperation reported in the present work can be considered as pessimistic estimates of the actual levels.

Note that the strategy dynamics can be represented as a Markov Chain (MC) [11,77]. Each state of the
MC corresponds to a certain strategy configuration of the population. The population moves from one
state to the next as individuals adjust their behavior. As long as the dynamics proceeds stochastically, i.e.,
when β is finite, the population will eventually end up in a homogeneous state (all individuals adopting
the same strategy). Below, we discuss how AL affects the probability to reach each of these states.

2.3. Separation of Time Scales

The impact of the network dynamics on the strategy dynamics depends on the ratio W = τs
τa

. There
are two limiting cases: fast strategy dynamics (W � 1) and fast linking dynamics (W � 1).

In case of fast strategy dynamics, the network changes so slowly that strategies evolve as on a static
network. The network topology, which corresponds to an initial condition in our case, complicates the
analytical treatment of the system. Analytical solutions are feasible only for few topologies, in the limit
of weak selection (β → 0) [37,78]. Complete networks, corresponding to well-mixed systems, are the
simplest type of networks. In such networks, we can calculate analytically the probability ρNC

that a
population of NC C’s evolves towards full cooperation. This probability can be approximated by [72]

ρNC
≈ erf[ξNC

]− erf[ξ0]

erf[ξN ]− erf[ξ0]
(5)

where erf(x) is the error function and ξk =
√

β
u
(ku + v). We have 2u = R − S − T + P and

2v = −R + SN − TN + T .
In case of fast linking dynamics, strategy update events do not occur before the network has reached

its stationary configuration. The average fitness of C’s and D’s during a strategy update event is therefore
given by

Π∗C =R φCC(NC − 1) + S φCD(N −NC)

Π∗D =T φCDNC + P φDD(N −NC − 1)
(6)

Note that these payoff values correspond to those obtained in a complete network with the same strategy
configuration, but using the following rescaled payoff matrix

M ′ =

( C D

C R′ S ′

D T ′ P ′

)
=

(
RφCC SφCD

TφCD PφDD

)
(7)

Consequently, network evolution can change the nature of the game. Even though individuals engage
in a game characterized by payoff matrix M , their behavior will evolve like in a complete network, but
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using payoff matrix M ′. Naturally, this game transformation changes the critical payoff values T ∗1 and
S∗1 to T ∗2 and S∗2 . These new values are given by

T ∗2 = R
φCC
φCD

= R
c+ γCD
c+ γCC

(8)

and
S∗2 = P

φDD
φCD

= P
c+ γCD
c+ γDD

(9)

Figure 1(b) illustrates the game transformation resulting from AL for γCC = 0.16, γCD = 0.80,
γDD = 0.32. It is clear, for instance, that the PD region reduces significantly in favor of games that
are more favorable to cooperation.

2.4. Comparable Time Scales

As we have shown, AL can lead to a wide range of scenarios that effectively change the character
of the game. However, the analytical results have been obtained under the assumption that the network
evolves much faster than the individual strategies do. As this may not always be the case, it is important
to assess the domain of validity of this limit.

Figure 3 shows the probability, calculated using numerical simulations, that the population fixates
into full cooperation, and this as a function of the time scale ratio W . Each simulation starts with a
complete network of size N = 100, containing 50% C’s and 50% D’s, who interact in a PD specified by
the following payoff matrix

(C D

C 4 2

D 5 3

)
(10)

Strategy evolution and network evolution proceed together under asynchronous updating. Strategy
update events take place with probability 1

1+W
, while network update events occur with probability W

1+W
.

We run each simulation until fixation, i.e., until we obtain full cooperation or full defection, and plot the
resulting probabilities as a function of W .

The following parameters specify the network dynamics: c = 0.16, γCC = 0.16, γCD = 0.80 and
γDD = 0.32. In the fast linking limit, the individuals behave as if they were playing the following game
in a complete network (see Equation 7):

(C D

C 2 1
3

D 5
6

1

)
(11)

This game is no longer a PD, but a SH. With W � 1 and an initial fraction of 50% C’s, the population
should always evolve towards full cooperation. However, Figure 3 indicates that the population reaches
full cooperation for a much wider range of time scales. For the extreme limits we obtain a perfect
agreement with the analytical results, whereas deviations from the analytical predictions are limited to a
single order of magnitude. In other words, the time scale separation is not a very strong assumption and
remains valid for a much wider range of parameters than expected. Even for moderate active linking, the
analytical results are recovered.
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Figure 3. AL changes the nature of the game, even outside the time scale separation
limit. We start from 50% cooperating individuals. For small W , C’s never reach fixation.
But already forW = 0.1, fixation of C’s is almost certain. Thus, moderate AL is sufficient to
turn cooperation into the dominant strategy here. Results are averages over 100 realizations.
(N = 100, β = 0.05, c = 0.16, γCC = 0.16, γCD = 0.80 and γDD = 0.32). Figure
reproduced from [52].
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3. Diversity and Cooperation in the PD

The previous section introduced AL for the simple case in which there are only three possible break-up
rates for links: γCC , γCD and γDD. In the following, we assign each individual explicitly a linking
strategy, which determines how to manage different social contacts. Up to now, this linking strategy
was dependent solely on the game strategy of the individual. This situation contrasts with our everyday
experience where we recognize a more continuous behavioral spectrum. Even when two individuals
cooperate, their decision to remove links can be completely different. Take as an example the inherent
tendency of people to have an aversion for risks [79].

As such, we define an individual’s strategy as a pair, combining both game behavior and linking
behavior. This section discusses how the presence of behavioral differences at the level the linking
strategy of the individuals affects the overall chances of cooperators in the PD.

3.1. A Minimal Model

Let us stick to C’s and D’s, engaging in a one-shot, symmetric, two-player PD game as defined by
Payoff matrix 1, with S < R and P < T . Irrespective of one’s game strategy (C or D), interacting with
a C always leads to a higher payoff than interacting with a D. Individuals will therefore be satisfied
about their connections with C’s and would like to maintain these as long as possible. Connections with
D’s, on the other hand, can be considered as adverse and will be broken at different rates, determined
by the individuals’ linking strategy. We introduce behavioral diversity by considering M (usually many)
different linking strategies, and study the entangled co-evolution of game strategy and linking strategy
with the self-organization of the population structure.

Let us denote the combined game and linking strategies as Si, with i∈ {1, . . . , 2M}. The rate at which
new interactions appear is fixed and independent of the game or linking strategies of the individuals
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involved. As in the previous section, we use c to denote this rate. Links connecting Si individuals with
Sj individuals disappear at rate κij = 1

2
(γij+γji), where γ−1

ij (γ−1
ji ) is the average time Si (Sj) individuals

would attribute to links with Sj (Si) individuals. The value γij reflects whether Si individuals are satisfied
or dissatisfied with their links with Sj individuals. When satisfied, γij is taken as the minimum value γ
among all γij . When dissatisfied, on the other hand, γij is given by the linking strategy of Si individuals
and satisfies γij ≥ γ. The corresponding linking dynamics of the network can be described by ordinary
differential equations analogous to those in Equation 2, leading to a certain equilibrium distribution of
links (see Equation 3).

Strategies spread in the population according to a mutation-selection process defined by the
pairwise-comparison rule [23,72] (see Section 2.2). At every strategy update, an individual X is drawn
randomly from the population. With probability µ, he adopts a strategy selected randomly from all
2M available strategies. Otherwise, we select a random individual Y , who will be imitated by X with
probability pXY (see Equation 4).

In the limit of fast linking (W � 1), the fitness of an Si individual is given by:

fi =
∑
j

aijφij(Nj − δij) (12)

where A = [aij]i,j=1,...,2M is the game payoff matrix, Nj the number of Sj individuals and δij is
Kronecker delta. This is mathematically equivalent to the fitness of an Si individual playing a game
specified by the rescaled payoff matrix

B = [bij]i,j=1,...,2M = [aijφij]i,j=1,...,2M (13)

in a complete network (see Equation 7). Thanks to this mapping with complete networks, it is possible
to compute analytically the (fixation) probability ρij that an individual with strategy Si takes over
a population of N − 1 individuals with strategy Sj (see Equation 5), assuming that meanwhile no
additional strategies appear because of mutations. Note that it is no longer possible to describe the
overall population behavior in terms of one game only, like in the previous section. The wide range of
different linking strategies leads to a multi-dilemma environment. Although all individuals engage in the
same game, they may perceive that game differently, depending on their linking strategy.

As we address the role of behavioral diversity in this work, we will typically consider more than two
possible strategies (M > 1), which precludes an analytical description of the stochastic evolutionary
dynamics for arbitrary mutation rates. By assuming that mutations rarely occur (when compared
with strategy update events), we can analytically describe the system in a compact form [80,81].
The evolutionary dynamics does no longer proceed in the entire 2M -dimensional strategy space, but
only along its boundaries [80,81], where there are never more than two different strategies present
simultaneously. Indeed, as long as no mutations occur, stochastic update dynamics always drives the
population to a homogeneous state (monomorphic population), i.e., a state in which only individuals of
one particular strategy survive. Assuming a monomorphic population, a specific new strategy will show
up with probability µ

2M−1
and to the extent that µ is sufficiently small, this mutant will go extinct or will

fixate before any new mutation occurs. We can approximate this system by a Markov Chain with only
2M states, each state corresponding to a certain homogeneous state of the population. The probability
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that the appearance of a random mutant in a state with otherwise only Si individuals moves the population
to a state with only Sj individuals defines the transition probability between the corresponding states of
the Markov Chain. These probabilities define the transition matrix Λ of the Markov Chain, which is given
by Λ = [Λij]i,j=1,...,2M , where Λii = 1 − 1

2M−1

∑2M
k=1,k 6=i ρki and Λij =

ρji

2M−1
(j 6= i). The normalized

left eigenvector of the unit eigenvalue of Λ defines the stationary distribution, i.e., the fraction of time
the population spends in each of the available strategies. The stationary distributions obtained using this
small-mutation approach also hold for larger mutation rates, as also shown in [81].

3.2. Two Linking Strategies

The most simple configuration is the one in which there are only two different linking strategies
(M = 2): Individuals break up adverse connections either at a slow rate γS , or at a fast rate γF . In
combination with the game strategy we obtain a total of four different strategies: slow C’s (SC’s) and
D’s (SD’s), whose adverse interactions last long, and fast C’s (FC’s) and D’s (FD’s), whose adverse
interactions are short lived. Following Equation 7, we obtain the payoff matrix:


SC FC SD FD

SC RφS RφS SφS SφS

FC RφS RφS SφM SφM

SD TφS TφM PφS PφM

FD TφS TφM PφM PφF

 (14)

where φx = c(c+ κx)
−1, with κS = γS , κM = 1

2
(γS + γF ) and κF = γF .

Adopting the small-mutation approach discussed above, the complex co-evolutionary dynamics
reduces to one associated with a Markov Chain with only 4 (2M ) states. The Markov Chain’s transitions
that are favored by natural selection, i.e., those that are larger than ρN = 1

N
(the fixation probability

associated with neutral evolution), characterize the main driving forces of the evolutionary dynamics.
These transitions are shown in Figure 4 for a region where D’s dominate. The exact values are obtained
by computing the probability that a mutant (with strategy located at the end of each arrow) fixates in
a monomorphic population of individuals adopting the strategy located at the start of the arrow. We
see that SD’s are clearly the winners of the evolutionary race. FD’s, on the other hand, are rendered
disadvantageous with respect to any other strategy. When a FC manages to fixate, we end up in a rather
stable scenario. In addition, SC’s acquire a transient character, providing an alternative route from FD
to SD. In this specific case, it is, however, mainly the direct transition from FD’s into SD’s that hinders
C’s survivability. As we will show below, the viability of C’s relies on the extent to which the transition
FD→ SD is inhibited compared to transitions into FC’s.
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Figure 4. Transition probabilities and stationary distributions for a population with
M = 2 different linking strategies. In the limit of rare mutations, the dynamics
reduces to transitions between homogeneous states of the population [80,81]. The arrows
indicate those transitions for which the fixation probability is greater than neutral fixation,
ρN = 1

N
. The explicit values were obtained analytically with the pairwise comparison rule

(see Equation 5). Adaptive network dynamics allows C’s, in the form of SC or FC, to remain
in the population for 7.2% of the time. D’s dominate because of the flow from FD to SD,
either directly or by using the alternative route via SC. (N = 100, β = 0.01, T = 2.1, R = 2,
S = 0.9, P = 1, c = 0.16, δ = 0.3). Figure reproduced from [62].
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3.3. Arbitrary Number of Linking Strategies

We now extend the analysis to an arbitrary number of linking strategies M , with rates for breaking
adverse ties taken uniformly in the interval [0.5−δ, 0.5+δ]. This leads to a trivial generalization of Matrix
14. Figure 5(a) shows that cooperation blooms when the number of linking strategies M increases. In
the following, we investigate the mechanism responsible for this remarkable performance of C’s.

A first hint is provided in Figure 5(b), where the fraction of time spent in each state of the population
is shown for the case in which there are M = 50 possible types (linking strategies). We see that all
types of C’s are present in the population, whereas the D’s who survive are only of the slowest types.
Importantly, however, with increasing number of available types, the difference between the values of the
rates associated with contiguous types is reduced, which provides a means for D’s other than the slowest
to survive in the population. These are precisely the D’s who provide an escape hatch for C’s to survive
(cf. Figure 4), since many of them will be disadvantageous with respect to C’s. Indeed, Figure 5(b) shows
that increasing the number of possible types, D’s with break-up rates higher than the minimum γ are now
able to survive. Although these individuals do not dominate, they effectively promote the appearance of
fast C’s, since the transition D → C between these types is favored by natural selection. On the other
hand, because all C-types are neutral with respect to each other, they end up fairly equally distributed
in the population, unlike D’s for whom natural selection favors the slower types (cf. Figure 5(b).
Figure 6(b) also shows that, with increasing number of types, the number of C-types which are favored
increases more than the corresponding number of D-types. As a result, all but the slowest D’s are
disadvantageous with respect to (most of the) C’s. Increasing the number of types efficiently inhibits the
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transition from the fastest to the slowest D’s, paving the way for cooperation to thrive, an effect which
remains valid irrespective of the model parameters, inasmuch as T and S are such that cooperators
manage to survive. Mathematically, a large number of different types allows individuals to engage in a
wider range of games and the complex set of different interactions allows the appearance of D’s from
which C’s can profit.

Figure 5. Cooperation and behavioral diversity. (a) The population spends more time in a
cooperative state (of any type) when the number of possible types (M ) increases, irrespective
of the temptation to defect T in the PD. (N=100, β=0.1, c=0.16, δ=0.3, R=2, P=1, S=3−T )
(b) While the majority of cooperator types is equally represented, only the slower types of
defectors manage to survive. The defector population exhibits behavioral differences, which
inhibits the dominance of slowest defector type, providing an escape hatch for cooperation
to thrive (M=50, T=2.1, R=2, P=1, S=0.9). Figure reproduced from [62].
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4. Selection Pressure and Behavioral Diversity

No two populations are the same. While behavioral differences among individuals are substantial in
some populations, we observe a much more uniform behavioral pattern in others. Moreover, in some
populations one recognizes a higher sensitivity to behavioral differences than in others. Here we adopt
the model proposed in the previous section and investigate analytically how changes in the range of the
behavioral spectrum (δ) and in the selection pressure (β) affect the evolution of cooperation.

Figure 7 shows , for the PD, the fraction of time the population spends in a cooperative state (of any
type) as a function of δ and β. The number of types is chosen in such a way that the distance d between
the rates of every two consecutive types remains constant (equal to 0.01 in this case). The figure shows
that for each value of δ there exists and interval of β that maximizes cooperation. Whenever the selection
pressure is very high (large β, corresponding to pure imitation dynamics) only the slowest D’s survive.
Consequently, they outcompete C’s, irrespective of the number of possible types. δ plays a role for
intermediate regimes of selection pressure, in which cooperation increases with increasing δ. Finally,
as selection becomes very weak (β � 1), drift dominates selection and behavioral differences become
progressively irrelevant.
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Figure 6. Transition probabilities and stationary distributions for the PD game with
M = 3 (a) and M = 10 (b) types of individuals. The population spends already 59.8%

of the time in a cooperative state when M = 10. Numbering C’s and D’s according to
their type, C0 (D0) being the slowest cooperator (defector), we see that increasing M splits
the “outflow” of fast defectors among a wide range of different possibilities. As a result,
cooperation emerges, since only few types of defectors are evolutionarily stable, whereas
the vast majority of cooperative types work as “flow sinks”. (N = 100, T = 2.1, R = 2,
S = 0.9, P = 1, c = 0.16, β = 0.01, δ = 0.3). Figure reproduced from [62].
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Overall, the message is clear: Inasmuch as C’s have a chance, the presence of a wide range of different
social preferences favors cooperation. This is also the case when one varies the distance between the rates
of consecutive types, as shown in Figure 8.

Figure 8. Role of separation d between consecutive rates in the evolutionary success of
cooperators. The plots shows the fraction of time the population spends in a cooperative
state (of any type) for a given intensity of selection. Symbols represent the data. The
lines are the result of a spline interpolation of the data. Each data set corresponds to a
different distance d between consecutive rates (and types) in the population. Smaller values
of d lead to more cooperation, an effect that becomes more pronounced for intermediate
intensities of selection. In these regimes, small distances between types can effectively
reduce the “flow” towards the slowest defector type, as discussed in Section 3. (N = 100,

T = 2.1, R = 2, P = 1, S = 0.9, c = 0.16, δ = 0.3).
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The smaller the separation between the rates of consecutive types, the better for cooperation, a
feature which is most pronounced for selection pressures at which D’s start to outcompete C’s. Clearly,
increasing the number of possible types is always beneficial to cooperation, as in this way it is most
inefficient for D’s to transform into their most fit type, and then outcompete C’s.

5. Diversity and Cooperation in the Snowdrift and Stag-hunt games

In Section 3 we studied the effect of differences in responsiveness to adverse social ties for individuals
engaging in the PD game. Here we extend the analysis to the other two-player dilemmas of cooperation:
the SH and SG.

We by analyzing the simplest case in which we have only two types of C’s and D’s.
Figure 9 depicts the transition probabilities and stationary distributions for both SG and SH, in addition
to the previously analyzed PD. It is clear that the three dilemmas portray, qualitatively, the same scenario.

Fast D’s are easily wiped out by any other possible behavior. At the same time FD provides a route
towards the emergence of fast C’s, a strategy that is very well protected against invasion by D’s. Yet,
the population remains most of the time in the SD strategy, inhibiting FD from playing its role as a
catalyzer of cooperation.
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Figure 9. Transition probabilities and stationary distributions for the stag-hunt and
snowdrift games. (a) Two-dimensional parameter space defining all three social dilemmas.
By fixing R = 2 and P = 1, while 0 ≤ S ≤ 1 and 1 ≤ T ≤ 3, we can represent the three
most popular social dilemmas of cooperation: The PD (S < 1 and T > 2), the SG (S > 1

and T > 2) and the SH (S < 1 and T < 2). (b), (c) and (d) Transition probabilities and
stationary distributions for the three dilemmas with two types of individuals. The dynamics
is reduced to transitions between homogeneous states of the population. The arrows in black
indicate those transitions for which the fixation probability ρ is greater than neutral fixation
(ρN = 1

N
). The explicit values are calculated using the pairwise comparison rule with

parameters N = 100, β = 0.01, c = 0.16 and δ = 0.3. The examples shown were obtained
for T = 2.1, S = 0.9 (PD), T = 2.65, S = 1.35 (SG) and T = 1.65, S = 0.35 (SH).
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For all dilemmas, when the number of types increases, not only the slowest D’s survive, but also other
D’s who are slightly faster (see Figure 10). This, as explained before, opens a route for the fixation of
fast C’s enhancing the overall survival of cooperation. Irrespective of the dilemma at stake, cooperation
profits from the presence of individuals that respond differently to unwanted partners, which evidences
the general validity of the present results.
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Figure 10. Impact of behavioral differences on cooperation in the snowdrift (upper
panels) and stag-hunt (lower panels) games. The plots on the left depict the fraction of
time the population spends in a cooperative state (of any type) as a function of the number
of types M in the population. Each line corresponds to a different value of the temptation to
defect T (R = 2, P = 1, S = 4−T for the SG and S = 2−T for the SH). Irrespective of T ,
cooperation increases with increasing number of types. The bar plots on the right (T = 2.65

and S = 1.35 for the SG and T = 1.65, S = 0.35 for the SH game), depict the fraction of
time that each type of individual is present in a population with 50 different types. While
all types of C’s survive, only the slower types of D’s remain in the population. However,
the surviving D’s exhibit heterogeneity. As faster D’s manage to survive, part of the strategy
flow is diverted into fast C’s (N = 100, β = 0.01, M = 50, c = 0.16 and δ = 0.3).
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6. Conclusions

The first part of this article provides an extensive review of the AL framework in the context
of 2-person social dilemmas. The second part uses this framework to address the consequences of
individual diversity in treating adverse social contacts, a feature which is omnipresent in real-world
social systems but mostly neglected in theoretical studies on cooperation. The present work shows that
such diversity provides a perfect breeding ground for cooperation. By giving individuals the freedom
to follow their preferences about how to handle social partners, a multi-dilemma environment arises in
which cooperation prevails very easily, and this without any need for reputation, punishment or any other
community enforcing mechanism. Furthermore, as defectors are wiped out, the surviving cooperators
maintain the full diversity of behavioral types—a result that has also been observed in other, related,
models [57,60]—establishing cooperation as a robust evolutionary strategy.
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Together with other recent results that underline the importance of different forms behavioral diversity
in the evolution of cooperation [45,82,83], this work supports the idea that diversity deserves to be
considered as a fundamental mechanism towards the emergence of cooperative behavior. In addition,
given the strong multi-cultural nature and inherent diversity in modern societies, the current prevailing
minority-friendly policies may have resulted from the evolutionary advantages shown here.

Finally, diversity in the way individuals organize their contacts may also be important in other
problems than the emergence of cooperative behavior. From spreading of infections diseases, in
which individuals may react differently to a risk of infection from their neighbors, to spreading of
computer viruses, where individual diversity in the resistance to pernicious attacks is common, the new
mathematical framework presented in this article can be a valuable tool in the study of a broad spectrum
of problems [84].
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57. Van Segbroeck, S.; Santos, F.C.; Nowé, A.; Pacheco, J.M.; Lenaerts, T. The evolution of prompt
reaction to adverse ties. BMC Evol. Biol. 2008, 8, 287.

58. Pacheco, J.M.; Traulsen, A.; Ohtsuki, H.; Nowak, M.A. Repeated games and direct reciprocity
under active linking. J. Theor. Biol. 2008, 250, 723–731.

59. Fu, F.; Hauert, C.; Nowak, M.; Wang, L. Reputation-based partner choice promotes cooperation in
social networks. Phys. Rev. E 2008, 78, 026117.

60. Pestelacci, E.; Tomassini, M.; Luthi, L. Evolution of cooperation and coordination in a dynamically
networked society. J. Biol. Theor. 2008, 3, 139–153.

61. Szolnoki, A.; Perc, M. Resolving social dilemmas on evolving random networks. Europhys. Lett.
2009, 86, 30007.

62. Van Segbroeck, S.; Santos, F.C.; Lenaerts, T.; Pacheco, J.M. Reacting differently to adverse ties
promotes cooperation in social networks. Phys. Rev. Lett. 2009, 102, 058105.

63. Perc, M.; Szolnoki, A. Coevolutionary games—A mini review. Biosystems 2009, 99, 109–125.
64. Wu, B.; Zhou, D.; Fu, F.; Luo, Q.; Wang, L.; Traulsen, A. Evolution of cooperation on stochastical

dynamical networks. PLoS One 2010, 5, e11187.
65. Skyrms, B. The Stag-Hunt Game and the Evolution of Social Structure; Cambridge University

Press: Cambridge, UK, 2004.
66. Sugden, R. The Economics of Rights, Co-operation and Welfare; Blackwell: Oxford, UK, 1986.
67. Hauert, C.; Doebeli, M. Spatial structure often inhibits the evolution of cooperation in the snowdrift

game. Nature 2004, 428, 643–646.
68. Doebeli, M.; Hauert, C. Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift

game. Ecol. Lett. 2005, 8, 748–766.
69. Posch, M.; Pichler, A.; Sigmund, K. The efficiency of adapting aspiration levels. Proc. R. Soc.

Lond. B 1999, 266, 1427–1435.
70. Macy, M.; Flache, A. Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. USA 2002,

99, 7229–7236.
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