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Abstract: We introduce a class of evolutionary game dynamics — pairwise comparison dy-
namics — under which revising agents choose a candidate strategy at random, switching to
it with positive probability if and only if its payoff is higher than the agent’s current strategy.
We prove that all such dynamics satisfy Nash stationarity: the set of rest points of these
dynamics is always identical to the set of Nash equilibria of the underlying game. We also
show how one can modify the replicator dynamic and other imitative dynamics to ensure
Nash stationarity without increasing the informational demands placed on the agents. These
results provide an interpretation of Nash equilibrium that relies on large numbers arguments
and weak requirements on payoff observations rather than on strong equilibrium knowledge
assumptions.
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1. Introduction

Nash equilibrium is the traditional basis for predicting behavior in noncooperative games, and is the
starting point for analysis in most applications of game theory. Nevertheless, the program of justifying
the Nash prediction by way of more primitive behavioral assumptions remains incomplete. Many re-
searchers have explored the epistemic foundations of Nash equilibrium. But the conditions they propose
to ensure Nash play are quite stringent, and seem too demanding to be appropriate in most applications.1

1See Dekel and Gul [1] and the references therein.
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Rather than focusing on epistemic issues, one can instead take the traditional view of Nash equilibrium as
a necessary condition for stationary behavior among rational agents. But even this more modest stance is
founded on the assumption of equilibrium knowledge: namely, that each player correctly anticipates how
his opponents will act. In many settings, particularly those with large numbers of agents, this assumption
seems too strong.

This paper uses techniques from evolutionary game theory to provide an interpretation of Nash equi-
librium for large population settings. We study an explicitly dynamic model in which agents stochasti-
cally and myopically update their choices in response to their current strategic environment. By appeal-
ing to a suitable form of the law of large numbers, we derive deterministic dynamics that describe the
evolution of the agents’ aggregate behavior. We prove that the stationary states of these deterministic
dynamics are identical to the Nash equilibria of the underlying game. We thereby connect the traditional
game-theoretic notion of equilibrium behavior with the usual notion of stasis from dynamical systems.
In so doing, we forgo strong equilibrium knowledge assumptions in favor of large numbers arguments
and weak assumptions about agents’ observations of current payoff opportunities.

In our model, agents from a large population recurrently receive opportunities to switch strategies.
Upon receiving an opportunity, an agent decides what to do next by applying a revision protocol. A
revision protocol is a map from currently available payoffs and current aggregate behavior to conditional
switch rates, which are the rates at which agents who receive revision opportunities switch from one
strategy to another. A population game and a revision protocol together define a stochastic evolutionary
process. By applying an appropriate formulation of the law of large numbers, one can show that the be-
havior of this stochastic process is well-approximated by the solutions to a deterministic mean dynamic,
which is defined by the stochastic process’s expected motion.2 Our present analysis takes this law of
large numbers for granted and studies the behavior of the deterministic system.

To obtain our desired interpretation of Nash equilibrium, we would like to construct dynamics sat-
isfying Nash stationarity: the stationary states of the dynamics should always coincide with the Nash
equilibria of the game at hand. At the same time, we would like to derive the dynamics from revision
protocols that make limited informational demands on the agents who use them.

None of the usual dynamics from the evolutionary literature achieves both of these goals. For instance,
the replicator dynamic (Taylor and Jonker [5]) and other dynamics based on imitation (Björnerstedt
and Weibull [6], Weibull [7], Hofbauer [8]) can be derived from revision protocols requiring a bare
minimum of information: each agent need only be aware of the payoff to his current strategy. But
imitative dynamics fail Nash stationarity, as they admit boundary rest points that are not Nash equilibria
of the underlying game. For the best response dynamic (Gilboa and Matsui [9]), the situation is reversed:
under this dynamic rest points and Nash equilibria are identical, but the protocol that generates the
dynamic is discontinuous, requiring agents to know the exact payoffs of all available strategies in order
to determine the current best response. Finally, the BNN dynamic (Brown and von Neumann [10]) and
related dynamics (Weibull [11], Hofbauer [12], Sandholm [13]) satisfy Nash stationarity, and are based
on continuous revision protocols. But these protocols also require agents to know the average payoff in
the population—a piece of data that seems hard to obtain if it is not provided by a central source.

2For formal treatments of this approximation result, see Kurtz [2], Benaı̈m and Weibull [3], and Sandholm [4]; also see
Section 2.2. below.
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The dynamics we study in this paper are based on continuous revision protocols of an especially
simple form. When an agent receives an opportunity to switch strategies, he chooses a candidate strategy
at random, and switches to this strategy with positive probability if and only if its payoff is higher than
his current strategy’s payoff. To implement such a protocol, an agent need only know the payoffs of two
strategies: his current strategy, and the randomly chosen candidate strategy. Nevertheless, we prove that
the induced aggregate dynamics, which we dub pairwise comparison dynamics, satisfy Nash stationarity:
their rest points are precisely the Nash equilibria regardless of the game being played.

To obtain the simplest pairwise comparison dynamic, one sets the probability of switching from the
current strategy i to the candidate strategy j to be proportional to the difference between these strategies’
payoffs. It is quite interesting to note that the resulting evolutionary dynamic is not new: it appears in
the transportation science literature in the work of M. J. Smith [14], who uses it to study the stability of
equilibrium behavior in highway networks. Our analysis shows that the functional form used by Smith
[14] is not essential to obtain his dynamic’s desirable properties.

We noted earlier that dynamics based solely on imitation must fail Nash stationarity: under such dy-
namics, any state at which all agents choose the same strategy is stationary, as no alternative strategies
are available for imitation. Because imitation is a common component of human decision processes,
it is important to know whether an exact link between imitative behavior and Nash equilibrium can be
salvaged. To accomplish this, we introduce hybrid dynamics: we assume that rather than always imitat-
ing or always choosing candidate strategies at random, agents instead use hybrid revision protocols that
require a bit of each. We show that as long as the weight placed on random selection of candidate strate-
gies is strictly positive, the resulting hybrid dynamics satisfy Nash stationarity. In other words, Nash
stationarity and imitation are only in conflict if the latter is used exclusively as the basis for decisions.

Section 2. introduces population games and evolutionary dynamics. Section 3. proposes our desider-
ata for revision protocols and evolutionary dynamics. Section 4. defines pairwise comparison dynamics,
and proves that they satisfy Nash stationarity. Section 5. extends this property to a broad range of hybrid
dynamics. Section 6. concludes with a discussion of convergence results.

2. The Model

2.1. Population Games

We consider games played by a society consisting of one or more populations p ∈ P = {1, . . . , p}.
Population p contains a continuum of agents of mass mp who choose pure strategies from the set
Sp = {1, . . . , np}. The total number of pure strategies in all populations is n =

∑
p∈P n

p. The set
of population states Xp = {xp ∈ Rnp

+ :
∑

i∈Sp x
p
i = mp} contains all empirical distributions of strate-

gies for population p, while the set of social states X = {x = (x1, . . . , xp) ∈ Rn
+ : xp ∈ Xp} consists

of empirical distributions of strategies for all populations.
When an agent in population p plays strategy i ∈ Sp, his payoff is described by a function F p

i : X →
R of the current social state. F p : X → Rnp is the vector of payoff functions for strategies in Sp, while
F : X → Rn is the vector of all payoff functions. Similar notational conventions are used throughout
the paper. However, when we consider games with a single population, we assume that the population’s
mass is one and omit the redundant superscript p.
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As usual, state x ∈ X is a Nash equilibrium of F (x ∈ NE(F )) if each strategy in use at x is a best
response to x. Formally, x is a Nash equilibrium if

For all p ∈ P and i ∈ Sp, xpi > 0 implies that i ∈ argmax
j∈Sp

F p
j (x).

The most natural setting for the model of choice introduced next is one in which the payoff F p
i is de-

terministic, rather than the expected payoff from a random match.3 This so-called ”playing the field”
framework is common in applications of population games; it is used, for instance, in models of network
congestion, macroeconomic spillovers, and other sorts of multilateral externalities.4

2.2. Revision Protocols

To define our model of evolution, we suppose that all agents in a society are equipped with rate R
Poisson alarm clocks. A ring of an agent’s clock signals an opportunity for this agent to switch strategies.
The agent’s decisions at such instances are described by a revision protocol ρp : Rnp ×Xp → Rnp×np

+ .
(We sometimes refer to the whole collection ρ = (ρ1, . . . , ρp) as a revision protocol when it is convenient
to do so.)

The function ρp takes a payoff vector πp ∈ Rnp and a population state xp ∈ Xp as inputs and returns
a matrix of conditional switch rates ρpij(π

p, xp) ∈ [0, R] as outputs. If at social state x ∈ X an agent
playing strategy i ∈ Sp receives a revision opportunity, then with probability ρpij(F

p(x), xp)/R the agent
switches to strategy j 6= i, while with probability 1−

∑
j 6=i ρ

p
ij(F

p(x), xp)/R the agent continues to play
strategy i. For this last probability to be well-defined, the rate R of the agents’ Poisson alarm clocks
must satisfy

R ≥
∑
j 6=i

ρpij(F
p(x), xp) for all x ∈ X, i ∈ Sp, and p ∈ P .

Note that the diagonal component ρpii(F
p(x), xp) is merely a placeholder, and plays no formal role in the

model.
We can distinguish protocols according to the manner in which agents obtain candidate strategies

to consider switching to during revision opportunities. We say that a protocol is imitative if it can be
expressed in the form

ρpij(F
p(x), xp) =

xpj
mp

rpij(F
p(x), xp) (1)

for some function rpij : R
np ×Xp → Rnp×np

+ . We can interpret the revision procedure of an agent who
follows an imitative protocol in the following way. When the agent receives a revision opportunity, he
selects a member of his population at random and observes this member’s strategy; thus, the probability
that a strategy j 6= i player is observed is xpj/m

p. Strategy j becomes the revising agent’s candidate

3For work focusing on properties of learning rules in non-strategic environments with random payoffs, see Schlag [15],
Börgers et al. [16], and the references therein.

4For specific applications, see Beckman et al. [17], Cooper [18], and Sandholm [19,20]. The term ”playing the field” is
due to mathematical biologist John Maynard Smith, who observes that while the pairwise random matching framework is
mathematically appealing, ”contests against the field are probably more widespread and important than pairwise contests”
in biological applications (Maynard Smith [21], p. 23); his view would seem to apply equally well to economic modeling.
Still, our limited information conditions retain their simple interpretations within the random matching framework so long as
matches occur sufficiently quickly relative to the rate of strategy revision.



Games 2010, 1 7

strategy. He switches to this candidate strategy with probability rpij(F
p(x), xp)/R. We will see in Section

3. that the replicator dynamic is among the dynamics that can be derived from protocols of this form.
Notice that imitative protocols preclude the choice of unused strategies. Some of the special properties
of imitative dynamics can be traced to this source.

Under the remaining revision protocols considered in Sections 3. and 4., a strategy’s popularity does
not immediately influence the probability with which it is chosen by a revising agent. We sometimes use
the term direct protocol to refer to revision protocols fitting this description.5 It will be convenient in this
case to define the pre-protocol rp to be identical to the direct protocol ρp itself.

2.3. Information Requirements for Revision Protocols

In principle, a revision protocol can consist of arbitrary functions that map payoff vectors and popu-
lation states to conditional switch rates. But in the settings where evolutionary models are most relevant,
we expect agents’ information about the strategic environment to be limited. Our goal is to show that
such limitations on agents’ knowledge are consistent with the use of traditional solution concepts to
predict agents’ aggregate behavior.

One basic requirement in this spirit is that revision protocols be continuous.

(C) ρp is continuous in πp and xp.

Continuity ensures that small changes in aggregate behavior, changes which may be difficult for agents
to detect, do not lead to large changes in agents’ responses. In large population settings, the exact
information about payoffs that is needed to use a discontinuous protocol can be difficult to obtain, and
the myopic agents considered in evolutionary models are unlikely to make the necessary efforts to do
so. For these reasons, we suggest that continuous protocols are preferable to discontinuous ones for
describing how myopic agents in large population environments select new strategies.

Revision protocols also vary in terms of the specific pieces of data needed to employ them. A partic-
ularly simple protocol might only condition on the payoff to the agent’s current strategy. Others might
require agents to gather information about the payoffs to other strategies, whether by briefly experiment-
ing with these strategies, or by asking others about their experiences with them. Still other protocols
might require data beyond that provided by payoffs alone.

To organize the discussion, we introduce five classes of data requirements for revision protocols. In
general we do so by expressing these requirements in terms of the function ρp. But since we do not view
the act of observing the strategy of a randomly chosen opponent as imposing an informational burden,
we express the data requirements for imitative protocols in terms of the function rp from equation (1).

Having noted this special case, we can proceed to our data requirements.

(D1) ρ p
ij (or r p

ij) depends only on πp
i .

(D1′) ρ p
ij (or r p

ij) depends only on πp
j .

(D2) ρ p
ij (or r p

ij) depends only on πp
i and πp

j .
(Dn) ρ p

ij (or r p
ij) depends on πp

1, . . . , π
p
np , but not on xp1, . . . , x

p
np .

(D+) ρ p
ij (or r p

ij) depends on πp
1, . . . , π

p
np and on xp1, . . . , x

p
np .

5One can define revision protocols that are neither imitative nor direct: see Lahkar and Sandholm [22] for a discontinuous
example.
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Protocols in classes (D1) and (D1′) require only a single piece of payoff data: either the payoff of the
agent’s current strategy (under (D1)), or the payoff of the agent’s candidate strategy (under (D1′)). Pro-
tocols in class (D2) are slightly more demanding, as they require agents to know both of these strategies’
payoffs.6 Protocols in class (Dn) require agents to know the payoffs of additional strategies.

Finally, protocols in class (D+) require information not only about the strategies’ payoffs, but also
information about the strategies’ utilization levels. To preview an example to come (Example 3), note
that a protocol that conditions directly on the average payoff 1

mp

∑
j∈Sp x

p
jπ

p
j obtained in the population

falls in class (D+). The information about different strategies’ utilization levels that is needed to compute
average payoffs may be difficult to obtain. Unless information about either these levels or the average
payoff itself is provided to the agents by a central planner, we do not expect such information to be
readily available in typical large population settings.

2.4. Evolutionary Dynamics

Suppose that a society of agents employ revision protocol ρ during recurrent play of the population
game F . If the social state at time t is x ∈ X , the expected change in the number of agents playing
strategy i ∈ Sp from time t to time t+ dt can be written as∑

j 6=i

xpj R dt ·
ρpji(F

p(x), xp)

R
− xpi R dt ·

∑
j 6=i

ρpij(F
p(x), xp)

R

=

(∑
j∈Sp

xpjρ
p
ji(F

p(x), xp)− xpi
∑
j∈Sp

ρpij(F
p(x), xp)

)
dt

With this motivation, we define the mean dynamic for ρ and F to be the ordinary differential equation

(M) ẋpi = V p
i (x) =

∑
j∈Sp

xpjρ
p
ji(F

p(x), xp)− xpi
∑
j∈Sp

ρpij(F
p(x), xp).

The mean dynamic (M), which is defined on the state space X , captures the population’s expected
motion under protocol ρ in game F . If we fix the revision protocol ρ in advance, the map from games F
to differential equations implicitly defined by equation (M) is called the evolutionary dynamic induced
by ρ.

The form of the mean dynamic (M) is easy to explain. The first term describes the ”inflow” into
strategy i from other strategies; it is obtained by multiplying the mass of agents playing each strategy j
by the rate at which such agents switch to strategy i, and then summing over j. Similarly, the second
term describes the ”outflow” from strategy i to other strategies. The difference between these terms is
the net rate of change in the use of strategy i.

By definition, equation (M) captures the expected motion of the stochastic evolutionary process de-
scribed at the start of this section. Using appropriate formulations of the law of large numbers (see Kurtz
[2]), Benaı̈m and Weibull [3] and Sandholm [4] prove that solutions to equation (M) closely approximate
the sample paths of the underlying stochastic process over finite time spans. Moreover, Benaı̈m [23] and
Benaı̈m and Weibull [3] prove that over infinite time spans, the stochastic evolutionary process must

6Of course, if we take it for granted that an agent is always aware of the payoff of his current strategy, then conditions
(D1′) and (D2) are equally demanding.
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spend the predominant proportion of periods near recurrent points of the dynamic (M).7 We therefore
leave the stochastic process behind and focus directly on the deterministic dynamic (M).

2.5. Incentive Properties of Evolutionary Dynamics

We now introduce conditions on mean dynamics that link the evolution of aggregate behavior to
incentives in the underlying game. The first condition constrains equilibrium behavior, the second dise-
quilibrium adjustment.

(NS) Nash stationarity: V (x) = 0 if and only if x ∈ NE(F ).
(PC) Positive correlation: V p(x) 6= 0 implies that V p(x)′F p(x) > 0.

The condition of central interest here, Nash stationarity (NS), requires that the Nash equilibria of the
game F and the rest points of the dynamic V coincide. When dynamics satisfy Nash stationarity, one can
interpret Nash equilibrium as a requirement of dynamic balance, with individual agents’ revisions leaving
aggregate behavior in the society fixed. While traditional interpretations of Nash equilibrium play rely
on the assumption of equilibrium knowledge, the approach offered here permits an interpretation that
can be used when agents have limited information, provided that there are a large number of them.

Nash stationarity can be split into two distinct restrictions. First, (NS) asks that every Nash equilib-
rium of F be a rest point of V . If state x is a Nash equilibrium, then no agent benefits from switching
strategies; in this situation, (NS) demands that aggregate behavior be at rest under V .8 Second, Nash
stationarity asks that every rest point of V be a Nash equilibrium of F . If the current population state is
not a Nash equilibrium, then there are agents who would benefit from switching strategies. (NS) requires
that in this situation, the aggregate behavior of the society continues to adjust under the mean dynamic
V .

The second condition, positive correlation (PC), constrains the directions of evolution from popu-
lation states that are not rest points: in particular, it requires that strategies’ growth rates be positively
correlated with their payoffs.9 Condition (PC) is useful for studying dynamics derived from hybrid
revision protocols, and is essential for proving convergence results—see Sections 5. and 6.

3. Examples

To provide a context for our results, we present some basic dynamics from the evolutionary game
theory literature, along with revision protocols that induce them. For simplicity, we focus on the single
population case. In what follows, we let F =

∑
i∈S xiFi(x) represent the population’s average payoff at

state x.
7For an application to perturbed best response dynamics, see Hofbauer and Sandholm [24].
8In interpreting this restriction, one should bear in mind that rest points of the mean dynamic need not be states at which

the underlying stochastic process is itself at rest. Since V describes the expected changes in the use of each strategy under
the stochastic evolutionary process, it is possible for a rest point of V to represent a balancing of stochastic forces rather than
the absence of such forces.

9See Sandholm [19] for a derivation of this fact. Versions of condition (PC) were proposed earlier by Friedman [25] and
Swinkels [26].
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Example 1. The replicator dynamic,

ẋi = xi(Fi(x)− F (x))

introduced in the mathematical biology literature by Taylor and Jonker [5], is the most thoroughly studied
dynamic in evolutionary game theory. Under this dynamic, the percentage growth rate of each strategy
in use is equal to its excess payoff —that is, to the difference between its payoff and the average payoff
in the population.

While in biological contexts the replicator dynamic describes the process of natural selection, in
economic contexts it captures processes of imitation. In fact, all three of the imitative protocols below
generate the replicator dynamic, as can be verified by substituting them into equation (M):

ρij(π, x) = xj(K − πi) (2)

ρij(π, x) = xj(K + πj) (3)

ρij(π, x) = xj[πj − πi]+ (4)

That these protocols capture imitation can be gleaned from the initial xj term, which represents the idea
that an agent who receives a revision opportunity uses the strategy of a randomly chosen opponent as his
candidate strategy.

Each of the protocols above has low data requirements. Protocol (2), the imitation driven by dissatis-
faction protocol of Björnerstedt and Weibull [6], is in class (D1): the agent compares his current payoff
to an aspiration level K; with probability linear in the payoff difference, he switches to the candidate
strategy j without checking its payoff.10 Protocol (3), introduced by Hofbauer [8], is in class (D1′), with
switches determined entirely by the payoff of the candidate strategy.

Particularly relevant to our analysis below is protocol (4), pairwise proportional imitation, which was
introduced in a related context by Schlag [15]. Under this protocol, an agent switches to the candidate
strategy only if its payoff is higher than the payoff of his current strategy, switching with probability
proportional to the payoff difference. Since it conditions on the payoffs of both the current and candidate
strategy, this protocol is of class (D2).

Turning to aggregate incentive properties, it is well known that the replicator dynamic satisfies positive
correlation (PC).11 But while the replicator dynamic satisfies Nash stationarity (NS) on the interior of
the state space X , it violates this condition on the boundary of X . Since the replicator dynamic is based
purely on imitation, unused strategies remain extinct forever; therefore, all monomorphic states, even
those that do not correspond to Nash equilibria, are rest points.12 In fact, evolutionary dynamics derived
from a wide range of imitative protocols share these qualitative properties—see Björnerstedt and Weibull
[6], Weibull [7], and Hofbauer [8]. §

10For this protocol to be well-defined, the constant K must be at least as large as the maximal payoff in F . Similarly, for
the protocol in (3) to be well-defined, K must be no larger than the minimal payoff in F .

11See, e.g., Proposition 3.6 of Fudenberg and Levine [27].
12One might argue that perturbed versions of the replicator dynamic could exclude these non-Nash rest points. However,

it is not obvious how one can introduce perturbations that eliminate rest points at non-Nash states without also shifting the
remaining rest points away from Nash equilibria. We offer a resolution of this problem in Section 5.
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Example 2. The best response dynamic, introduced by Gilboa and Matsui [9], is defined by the differen-
tial inclusion13

ẋ ∈ argmax
y∈X

y′F (x)− x

In words, the best response dynamic always moves from the current state x toward a state y representing
a mixed best response to x.

It is easy to verify that the best response dynamic satisfies versions of both of our aggregate incentive
requirements, Nash stationarity (NS) and positive correlation (PC). But whether this dynamic provides
a credible foundation for the Nash prediction also depends on its informational requirements. The best
response dynamic is derived from a revision protocol which has revising agents always switch to a
current best response. Since determining a best response requires an agent to know the payoffs to all
strategies, this protocol is of class (Dn). Perhaps more importantly, the fact that this protocol uses
exact optimization implies that it is discontinuous. This suggests that the best response dynamic, while
mathematically appealing, may not provide an ideal foundation for the prediction of equilibrium play in
populations of simple agents.14 §

Example 3. The Brown-von Neumann-Nash (BNN) dynamic, defined by

ẋi = [Fi(x)− F (x)]+ − xi
∑
j∈S

[Fj(x)− F (x)]+

was introduced in the context of symmetric zero-sum games by [10], and subsequently rediscovered by
Skyrms [30], Swinkels [26], Weibull [11], and Hofbauer [12]. Like the best response dynamic, the BNN
dynamic satisfies both of the aggregate incentive conditions, (NS) and (PC).15

The BNN dynamic can be derived from the following revision protocol, considered in Sandholm [13]:

ρij(π, x) = [πj −
∑
k∈S

xkπk]+. (5)

Under this protocol, an agent who receives a revision opportunity picks a strategy at random, and then
compares this strategy’s payoff to the average payoff in the population. He only switches to the candidate
strategy if its payoff exceeds the average payoff, doing so with probability proportional to the difference.

Unlike the protocol for the best response dynamic, protocol (5) is continuous. But to implement
protocol (5), an agent must be aware of the average payoff in the population. This could be the case if
agent were told the average payoff by a central planner, or if the agent knew the full payoff vector π and
the population state x, and computed their inner product himself. Still, either way, protocol (5) is in class
(D+). For this reason, the BNN dynamic does not seem ideal for providing a low-information foundation
for the prediction of equilibrium play. §

13The formulation of the best response dynamic as a differential inclusion is due to Hofbauer [28].
14One can avoid the discontinuity of the best response dynamic by turning to dynamics based on perturbed best responses—

for instance, the logit(η) dynamic of Fudenberg and Levine [27]. But while introducing payoff perturbations eliminates
discontinuities, it does so at the cost of violating the incentive conditions, (NS) and (PC). Indeed, increasing the noise level η
increases the degree of smoothing of the best response dynamic, while simultaneously making the failures of conditions (NS)
and (PC) more severe. For further discussion of perturbed best response dynamics, see Hofbauer and Sandholm [24,29].

15As with the replicator dynamic, one can define families of dynamics with similar qualitative properties to the BNN
dynamic; see Weibull [11], Hofbauer [12] and Sandholm [13].
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4. Pairwise Comparison Dynamics

In this section, we introduce a class of evolutionary dynamics that satisfy incentive conditions (NS)
and (PC), but that are based on revision protocols with mild informational requirements. The protocols
we define combine key features of protocols (4) and (5) above. Like protocol (4), the new protocols are
based on pairwise payoff comparisons, and so have limited data requirements. But like protocol (5), the
new protocols rely on direct selection of candidate strategies rather than imitation of opponents, allowing
them to satisfy Nash stationarity (NS).

4.1. Definition

We consider revision protocols under which the decision to switch from strategy i ∈ Sp to strategy
j ∈ Sp depends on the difference between their payoffs:

ρpij(π
p, xp) = φp

ij(π
p
j − π

p
i ). (6)

We assume that the functions φp
ij : R→ [0,∞) introduced in equation (6) are Lipschitz continuous and

satisfy sign-preservation: the conditional switch rate from i to j is positive if and only if the payoff to j
exceeds the payoff to i:

sgn(φp
ij(d)) = sgn([d]+). (7)

Evolutionary dynamics generated by such protocols take the form

ẋpi = V p
i (x) =

∑
j∈Sp

xpjφ
p
ji(F

p
i (x)− F

p
j (x))− x

p
i

∑
j∈Sp

φp
ij(F

p
j (x)− F

p
i (x)).

We call such dynamics pairwise comparison dynamics.
The simplest revision protocol satisfying the restrictions above is semilinear in payoff differences:

ρpij(F
p, xp) = [πp

j − π
p
i ]+. (8)

Notice that this protocol can be obtained by starting with Schlag’s [15] revision protocol (4), and re-
placing its imitative component with direct selection of candidate strategies. We call the evolutionary
dynamic induced by protocol (8),

ẋpi =
∑
j∈Sp

xpj [F
p
i (x)− F

p
j (x)]+ − x

p
i

∑
j∈Sp

[F p
j (x)− F

p
i (x)]+,

the Smith dynamic. As we noted in the introduction, this dynamic is not new: it can be found in the trans-
portation science literature in the work of Smith [14], who uses it to investigate stability of equilibrium
in a model of highway congestion.

4.2. Analysis

The protocols (6) that define pairwise comparison dynamics are continuous; being based on pairwise
comparisons, they are in data requirement class (D2). Theorem 1 establishes that pairwise comparison
dynamics satisfy both of our aggregate incentive conditions.
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Theorem 1. Every pairwise comparison dynamic satisfies Nash stationarity (NS) and positive correla-
tion (PC).

The proof of Theorem 1 relies on three equivalences between properties of Nash equilibria and evo-
lutionary dynamics on the one hand, and requirements that sums of terms of the form ρpij , [F

p
j − F

p
i ]+,

or ρpij [F
p
j − F p

i ]+ equal zero on the other. Sign preservation ensures that sums of the three types are
identical, allowing us to establish properties (NS) and (PC).

In what follows, ẋ = V (x) is the pairwise comparison dynamic generated by the population game F
and revision protocol ρ.

Lemma 1. x ∈ NE(F )⇔ For all i ∈ Sp and p ∈ P , xpi = 0 or
∑
j∈Sp

[F p
j (x)− F

p
i (x)]+ = 0.

Proof. Both statements say that each strategy in use at x is optimal. �

Lemma 2. V p(x) = 0⇔ For all i ∈ Sp, xpi = 0 or
∑
j∈Sp

ρpij(F
p(x)) = 0.

Proof. (⇐) Immediate.
(⇒) Fix a population p ∈ P , and suppose that V p(x) = 0. If j is an optimal strategy for population p

at x, then sign preservation implies that ρpjk(F
p(x)) = 0 for all k ∈ Sp, and so that there is no ”outflow”

from strategy j:
xpj
∑
i∈Sp

ρpji(F
p(x)) = 0.

Since V p
j (x) = 0, there can be no ”inflow” into strategy j either:∑

i∈Sp

xpi ρ
p
ij(F

p(x)) = 0.

We can express this condition equivalently as

For all i ∈ Sp, either xpi = 0 or ρpij(F
p(x)) = 0.

If all strategies in Sp earn the same payoff at state x, the proof is complete. Otherwise, let i be a
”second best” strategy—that is, a strategy whose payoff F p

i (x) is second highest among the payoffs
available from strategies in Sp at x. The last observation in the previous paragraph and sign preservation
tell us that there is no outflow from i. But since V p

i = 0, there is also no inflow into i:

For all k ∈ Sp, either xpk = 0 or ρpki(F
p(x)) = 0.

Iterating this argument for strategies with lower payoffs establishes the result. �

Lemma 3. Fix a population p ∈ P . Then
(i) V p(x)′F p(x) ≥ 0.
(ii) V p(x)′F p(x) = 0⇔ For all i ∈ Sp, xpi = 0 or

∑
j∈Sp

ρpij(F
p(x))[F p

j (x)− F
p
i (x)]+ = 0.
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Proof. We compute the inner product as follows:

V p(x)′F p(x) =
∑
j∈Sp

(∑
i∈Sp

xpi ρ
p
ij(F

p(x))− xpj
∑
i∈Sp

ρpji(F
p(x))

)
F p
j (x)

=
∑
j∈Sp

∑
i∈Sp

(
xpi ρ

p
ij(F

p(x))F p
j (x)− x

p
jρ

p
ji(F

p(x))F p
j (x)

)
=
∑
j∈Sp

∑
i∈Sp

xpi ρ
p
ij(F

p(x))
(
F p
j (x)− F

p
i (x)

)
=
∑
i∈Sp

(
xpi
∑
j∈Sp

ρpij(F
p(x))[F p

j (x)− F
p
i (x)]+

)
,

where the last equality follows from sign-preservation. Both claims directly follow. �

Now, sign preservation implies that the second conditions in Lemmas 1, 2, and 3(ii) are equivalent.
From this observation, Theorem 1 easily follows. In particular, the observation and Lemmas 1 and 2
imply that x ∈ NE(F ) if and only if V p(x) = 0 for all p ∈ P ; this is condition (NS). In addition, the
observation, Lemma 2, and Lemma 3(ii) imply that V p(x) = 0 if and only if V p(x)′F p(x) = 0; this
fact and Lemma 3(i) imply that V p(x)′F p(x) > 0 whenever V p(x) 6= 0, which is condition (PC). This
completes the proof of Theorem 1.

5. Hybrid Dynamics

At this point, it might seem that dynamics that have low data requirements and satisfy Nash station-
arity are rather special, in that they must be derived from a very specific sort of revision protocol. In
actuality, these two desiderata are satisfied rather broadly. To explain why, we consider an agent who
uses multiple revision protocols at possibly different intensities. If the agent uses protocol ρV at intensity
a and protocol ρW at intensity b, then his behavior is described by the hybrid protocol ρH = aρV + bρW .
Since mean dynamics are linear in conditional switch rates, the mean dynamic for the hybrid protocol is
a linear combination of the two original mean dynamics: H = aV + bW .

Theorem 2 derives incentive properties of the hybrid dynamic from those of the original dynamics.

Theorem 2. Suppose that the dynamic V satisfies (PC), that the dynamic W satisfies (NS) and (PC),
and that a, b > 0. Then the hybrid dynamic H = aV + bW also satisfies (NS) and (PC).

Proof. The analysis builds on Section 4 of Sandholm [13]. To show that H satisfies (PC), suppose
that Hp(x) 6= 0. Then either V p(x), W p(x), or both are not 0. Since V and W satisfy (PC), it follows
that V p(x)′F p(x) ≥ 0, that W p(x)′F p(x) ≥ 0, and that at least one of these inequalities is strict.
Consequently, Hp(x)′F p(x) > 0, and so H satisfies (PC).

Our proof that H satisfies (NS) is divided into three cases. First, if x is a Nash equilibrium of F ,
then it is a rest point of both V and W , and hence a rest point of H as well. Second, if x is a non-
Nash rest point of V , then it is not a rest point of W . Since V (x) = 0 and W (x) 6= 0, it follows that
H(x) = bW (x) 6= 0, so x is not a rest point of H . Finally, suppose that x is not a rest point of V . Then
x is not a Nash equilibrium, and so is not a rest point of W either. Since V and W satisfy condition
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(PC), we know that V (x)′F (x) =
∑

p∈P V
p(x)′F p(x) > 0 and that W (x)′F (x) > 0. Consequently,

H(x)′F (x) > 0, implying that x is not a rest point of H . Thus, H satisfies (NS). �

A key implication of Theorem 2 is that imitation and Nash stationarity are not incompatible. If
we combine an imitative dynamic V with any small amount of a pairwise comparison dynamic W ,
we obtain a hybrid dynamic H that satisfies (NS) and (PC). Thus, if agents usually choose candidate
strategies by imitating opponents, occasionally choose these candidate strategies at random, and always
decide whether to switch by making pairwise payoff comparisons, then the rest points of the resulting
aggregate dynamic coincide with the Nash equilibria of the underlying game.

6. Discussion: Convergence Properties

By linking the notion of Nash equilibrium with the stationary states of evolutionary dynamics, this
paper provides an interpretation of Nash equilibrium behavior in large populations that does not make
use of equilibrium knowledge assumptions. But to justify the use of Nash equilibrium for predicting
behavior, this identification is not enough: one must not only consider the dynamics’ stationarity prop-
erties, but also their convergence properties. Unfortunately, it is known from the work of Hofbauer and
Swinkels [31] and Hart and Mas-Colell [32] that no reasonable evolutionary dynamic converges to Nash
equilibrium in all games.16 Therefore, to obtain convergence results one needs to impose additional
structure on the games at issue.

Suppose, for instance, that F is a potential game: in other words, that there is a scalar-valued function
f : X → R whose gradient is F . Because pairwise comparison dynamics satisfy (NS) and (PC), it
follows from results of Sandholm [19,34] that in potential games, these dynamics converge to Nash
equilibrium from all initial conditions.

Alternatively, consider the class of stable games. These games are defined by the property that
(F (y) − F (x))′(y − x) ≤ 0 for all x, y ∈ X , and they include games with an interior ESS, zero-
sum games, models of highway congestion, and wars of attrition as special cases. Smith [14] proves
that the Smith dynamic converges to Nash equilibrium from all initial conditions in all stable games.
Building on this result and on results in the present paper, Hofbauer and Sandholm [35] establish global
convergence in stable games for any pairwise comparison dynamic whose revision protocol (6) is not
only sign-preserving (7), but also satisfies a symmetry condition called impartiality:

ρpij(π
p, xp) = φ̂p

j(π
p
j − π

p
i ).

Impartiality requires that the function of the payoff difference describing the conditional switch rate from
i to j does not depend on the current strategy i.

In summary, while pairwise comparison dynamics are subject to the impossibility results of Hofbauer
and Swinkels [31] and Hart and Mas-Colell [32], they are known to lead to equilibrium play in two key
classes of games.

16Indeed, Hofbauer and Sandholm [33] exhibit a large class of dynamics under which strictly dominated strategies must
survive in some games. This class includes excess payoff dynamics (including the BNN dynamic), pairwise comparison
dynamics, and hybrid dynamics of the sort considered in Theorem 2. Since the rest points of these dynamics are Nash
equilibria, survival of dominated strategies under these dynamics depends on the existence of solution trajectories that fail to
converge to rest points.
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