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Abstract: Minimal complexity machines (MCMs) minimize the VC (Vapnik–Chervonenkis)
dimension to obtain high generalization abilities. However, because the regularization term is
not included in the objective function, the solution is not unique. In this paper, to solve this problem,
we discuss fusing the MCM and the standard support vector machine (L1 SVM). This is realized by
minimizing the maximum margin in the L1 SVM. We call the machine Minimum complexity L1 SVM
(ML1 SVM). The associated dual problem has twice the number of dual variables and the ML1 SVM
is trained by alternatingly optimizing the dual variables associated with the regularization term and
with the VC dimension. We compare the ML1 SVM with other types of SVMs including the L1 SVM
using several benchmark datasets and show that the ML1 SVM performs better than or comparable
to the L1 SVM.

Keywords: least squares support vector machines; margin distributions; minimum complexity
machines; pattern classification; support vector machines; VC dimension

1. Introduction

In the support vector machine (SVM) [1,2], training data are mapped into the high dimensional
feature space, and in that space, the separating hyperplane is determined so that the nearest training
data of both classes are maximally separated. Here, the distance between a data sample and the
separating hyperplane is called margin. Thus, the SVM is trained so that the minimum margin
is maximized.

Motivated by the success of SVMs in real world applications, many SVM-like classifiers have been
developed to improve the generalization ability. The ideas of extensions lie in incorporating the data
distribution (or margin distribution) to the classifiers because the SVM only considers the data that are
around the separating hyperplane. If the distribution of one class is different from that of the other
class, the separating hyperplane with the same minimum margin for both classes may not be optimal.

To cope with this, one approach proposes kernels based on the Mahalanobis distance [3–10].
Another approach reformulates the SVM such that the margin is measured by the Mahalanobis
distance [11–15].

Yet another approach controls the overall margins instead of the minimum margin [16–22]. In [16],
only the average margin is maximized. While the architecture is very simple, the generalization ability
is inferior to that of the SVM [17,19]. To improve the generalization ability, the equality constraints
were added in [19], but this results in the least squares SVM (LS SVM).

In [17], a large margin distribution machine (LDM) was proposed, in which the average margin is
maximized and the margin variance is minimized. The LDM is formulated based on the SVM with
inequality constraints. While the generalization ability is better than that of the SVM, the problem is
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that the LDM has one more hyperparameter than the SVM does. To cope with this problem, in [20,21],
the unconstrained LDM (ULDM) was proposed, which has the equal number of hyperparameters and
which has the generalization ability comparable to that of the LDM and the SVM.

The generalization ability of the SVM can be analyzed by the VC (Vapnik–Chervonenkis)
dimension [1] and the generalization ability will be improved if the radius-margin ratio is minimized,
where the radius is the radius of the minimum hypersphere that encloses all the training data in the
feature space. The minimum hypersphere changes if the mapping function is changed during model
selection, where all the parameter values including the value for the mapping function are determined,
or feature selection is performed during training a classifier. So, minimization of the radius-margin
ratio can be utilized in selecting the optimal mapping function [23,24]. In [25,26], feature selection is
carried out during training by minimizing the radius-margin ratio.

If the center of the hypersphere is assumed to be at the origin, the hypersphere can be minimized
for a given feature space as discussed in [27,28]. The minimal complexity machine (MCM) was derived
based on this assumption. In the MCM, the VC dimension is minimized by minimizing the upper
bound of the soft-margin constraints for the decision function. Because the regularization term is not
included, the MCM is trained by linear programming. The quadratic version of the MCM (QMCM)
tries to minimizes the VC dimension directly [28]. The generalization performance of the MCM is
shown to be superior to that of the SVM, but according to our analysis [29], the solution is non-unique
and the generalization ability is not better than that of the SVM. The problem of non-uniqueness of the
solution is solved by adding the regularization term in the objective function of the MCM, which is a
fusion of the MCM and the linear programming SVM (LP SVM) called MLP SVM.

In [30], to improve the generalization ability of the standard SVM (L1 SVM), we proposed fusing
the MCM and the L1 SVM, which is the minimal complexity L1 SVM (ML1 SVM). We also proposed
ML1v SVM, whose component is more similar to the L1 SVM. By the computer experiment using RBF
(radius basis function) kernels, the proposed classifiers generalize better than or comparable to the
L1 SVM.

In this paper we discuss the ML1 SVM and ML1v SVM more in detail, propose their training
methods, prove their convergence, and demonstrate the effectiveness of the proposed classifiers using
polynomial kernels in addition to RBF kernels.

The ML1 SVM is obtained by adding the upper bound on the decision function and the upper
bound minimization term in the objective function of the L1 SVM. We show that this corresponds to
minimizing the maximum margin. We derive the dual form of the ML1 SVM with one set of variables
associated with the soft-margin constraints and the other set, upper-bound constraints. We then
decompose the dual ML1 SVM into two subproblems: one for the soft-margin constraints, which is
similar to the dual L1 SVM, and the other for the upper-bound constraints. These subproblems include
neither the bias term nor the upper bound. Thus, for a convergence check, we derive the exact KKT
(Karush–Kuhn–Tucker) conditions that do not include the bias term and the upper bound. The second
subproblem is different from the first subproblem in that it includes the inequality constraint on the
sum of dual variables. To remove this, we change the inequality constraint into two equality constraints
and obtain ML1v SVM.

We consider training the ML1 SVM and ML1v SVM optimizing the first and the second
subprograms, alternatingly. Because the ML1 SVM and ML1v SVM are very similar to the L1 SVM,
we discuss the training method based on Sequential Minimum Optimization (SMO) fused with
Newton’s method [31]. We also show the convergence proof of the proposed training methods.
By computer experiments using polynomial kernels, in addition to RBF kernels, we compare the ML1
SVM and ML1v SVM with other classifiers including the L1 SVM.

In Section 2, we summarize the architectures of L1 SVM and the MCM. In Section 3, we discuss
the architecture of the ML1 SVM and derive the dual form and the optimality conditions of the solution.
Then, we discuss the architecture of the ML1v SVM. In Section 4, we discuss the training method that is
an extension of SMO fused with Newton’s method [31] and the working set selection method. We also
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show the convergence proof of the proposed method. In Section 5, we evaluate the generalization
ability of the ML1 SVM and other SVM-like classifiers using two-class and multiclass problems.

2. L1 Support Vector Machines and Minimal Complexity Machines

In this section, we briefly explain the architectures of the L1 SVM and the MCM [27]. Then we
discuss the problem of non-unique solutions of the MCM and one approach to solving the problem [29].

2.1. L1 Support Vector Machines

Let M training data and their labels be {xi, yi} (i = 1, . . . , M), where xi is an n-dimensional input
vector and yi = 1 for Class 1 and −1 for Class 2. The input space is mapped into the l-dimensional
feature space by the mapping function φ(x) and in the feature space the separating hyperplane is
constructed. The decision boundary given by the decision function f (x) is given by

f (x) = w>φ(x) + b = 0, (1)

where w is the l-dimensional coefficient vector and b is the bias term.
The primal form of the L1 SVM is given by

minimize Q(w, b, ξ) =
1
2
‖w‖2 + C

M

∑
i = 1

ξi (2)

subject to yi (w> φ(xi) + b) + ξi ≥ 1, ξi ≥ 0 for i = 1, . . . , M, (3)

where ξ = (ξ1, . . . , ξM)>, ξi is the slack variable for xi, and C is the margin parameter that determines
the trade-off between the maximization of the margin and minimization of the classification error.
Inequalities (3) are called soft-margin constraints.

The dual problem of (2) and (3) is given by

maximize Q(α) =
M

∑
i = 1

αi −
1
2

M

∑
i,j=1

αi αj yi yj K(xi, xj) (4)

subject to
M

∑
i = 1

yi αi = 0, C ≥ αi ≥ 0 for i = 1, . . . , M, (5)

where K(xi, xj) = φ> (xi)φ(xj), K(xi, xj) is the kernel function, α = (α1, . . . , αM)>, αi is the Lagrange
multiplier for the ith inequality constraint, and xi associated with positive αi (> 0) is called a
support vector.

The decision function given by (1) is rewritten as follows:

f (x) = ∑
i∈S

αi yi K(xi, x) + b, (6)

where S is the set of support vector indices.

2.2. Minimal Complexity Machines

The VC (Vapnik–Chervonenkis) dimension is a measure for estimating the generalization ability
of a classifier and lowering the VC dimension leads to realizing a higher generalization ability. For an
SVM-like classifier with the minimum margin δmin, the VC dimension D is bounded by [1]

D ≤ 1 + min

(
R2

δ2
min

, l

)
, (7)

where R is the radius of the smallest hypersphere that encloses all the training data.
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In training the L1 SVM, both R and l are not changed. In the LS SVM, where ξi are replaced with
ξ2

i in (2) and the inequality constraints, with equality constraints in (3), although both R and l are not
changed by training, the second term in the objective function works to minimize the square sums of
yi f (xi)− 1. Therefore, like the LDM and ULDM, this term works to condense the margin distribution
in the direction orthogonal to the separating hyperplane.

In [27], first the linear MCM, in which the classification problem is linearly separable, is derived
by minimizing the VC-dimension, i.e. R/δmin in (7). In the input space, R and δmin are calculated,
respectively, by

R = min
i=1...,M

‖(x>i , 1)‖, (8)

δmin = min
i=1...,M

‖(w>, b)(x>i , 1)>‖
‖(x>i , 1)‖

, (9)

where 1 is added to xi to make the separating hyperplane passes through the origin in the augmented
space. Equation (8) shows that the minimum hypersphere is also assumed to pass through the origin
in the augmented space. After some derivations, the linear MCM is derived. The nonlinear MCM is
derived as follows:

minimize Q(α, h, ξ, b) = h + C
M

∑
i=1

ξi (10)

subject to h ≥ yi

(
M

∑
j=1

αj Kij + b

)
+ ξi ≥ 1 for i = 1, . . . M, (11)

where h is the upper bound of the soft-margin constraints and Kij = K(xi, xj). Here, the mapping
function φ(x) in (1) is [32]

φ(x) = (K11, . . . , K1M)>, (12)

and w = α. The MCM can be solved by linear programming.
Because the upper bound h in (11) is minimized in (10), the separating hyperplane is determined

so that the maximum distance between the training data and the separating hyperplane is minimized.
This is a similar idea to that of the LS SVM, LDM, and ULDM.

The MCM is derived based on the minimization of the VC dimension, and thus considers
maximizing the minimum margin. However, the MCM does not explicitly include the term related to
the margin maximization. This makes the solution non-unique and unbounded.

To make the solution unique under the condition that the extended MCM still is a linear
programming problem, in [29] we proposed the minimal complexity LP SVM (MLP SVM), which fuses
the MCM an LP SVM:

minimize Q(α, h, ξ, b) = Ch h +
M

∑
i=1

(Cα |αi|+ C ξi) (13)

subject to h ≥ yi

(
M

∑
j=1

αj Kij + b

)
+ ξi ≥ 1 for i = 1, . . . M, (14)

where Ch is the positive parameter and Cα = 1. Deleting Ch h in (13) and upper bound h in (14),
we obtain the LP SVM. Setting Ch = 1 and Cα = 0 in (13), we obtain the MCM. Compared to the MCM
and the LP SVM, the number of hyperparameters increases by 1.

According to the computer experiment, in general, the MLP SVM is better than the MCM and LP
SVM in generalization abilities. However, it is inferior to the L1 SVM [29].
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3. Minimal Complexity L1 Support Vector Machines

In this section, we discuss the ML1 SVM, which consists of two optimization subprograms and
derive the KKT conditions that the optimal solution of the ML1 SVM must satisfy. Then, we discuss a
variant of the ML1 SVM, whose two subprograms are more similar.

3.1. Architecture

The LDM and ULDM maximize the average margin and minimize the average margin variance
and LS SVM makes data condense around the minimum margin. The idea of the MCM to minimize
the VC dimension results in minimizing the maximum distance of the data from the separating
hyperplane. Therefore, these classifiers have the idea in common: condense data as near as possible to
the separating hyperplane.

In [29], we proposed fusing the MCM and the LP SVM. Similar to this idea, here we fuse the
MCM given by (10) and (11) and the L1 SVM given by (2) and (3):

minimize Q(w, b, h, ξ) = Ch h +
1
2
‖w‖2 + C

M

∑
i = 1

ξi (15)

subject to yi (w> φ(xi) + b) + ξi ≥ 1, ξi ≥ 0 for i = 1, . . . , M, (16)

h ≥ yi (w> φ(xi) + b) for i = 1, . . . , M, (17)

h ≥ 1, (18)

where ξ = (ξ1, . . . , ξM)>, Ch is the parameter to control the volume that the training data occupy, and h
is the upper bound of the constraints. The upper bound defined by (11) is redefined by (17) and (18),
which exclude ξi. This makes the KKT conditions for the upper bound simpler. We call (17) the upper
bound constraints and the above classifier minimum complexity L1 SVM (ML1 SVM). The right-hand
side of (17) shows the margin with the minimum margin normalized to 1 if the solution is obtained.
Therefore, because h is the upper bound of the margins and h is minimized in (15), the ML1 SVM
maximizes the minimum margin and minimizes the maximum margin simultaneously.

If we use (12), we can directly solve (15) to (18). However, sparsity of the solution will be lost.
Therefore, in a way similar to solving the L1 SVM, we solve the dual problem of (15) to (18).

Introducing the nonnegative Lagrange multipliers αi, βi, and η, we obtain

Q(w, b, h, ξ, α, β, η) = Ch h +
1
2
‖w‖2 + C

M

∑
i = 1

ξi

−
M

∑
i = 1

αi

(
yi (w> φ(xi) + b)− 1 + ξi

)
−

M

∑
i = 1

βi ξi

−
M

∑
i = 1

αM+i

(
h− yi (w> φ(xi) + b)

)
− (h− 1) η, (19)

where α = (α1, . . . , αM, αM+1, . . . , α2M)> and β = (β1, . . . , βM)>.
For the optimal solution, the following KKT conditions are satisfied:

∂Q(w, b, h, ξ, α, β, η)

∂w
= 0, (20)

∂Q(w, b, h, ξ, α, β, η)

∂h
= 0, (21)

∂Q(w, b, h, ξ, α, β, η)

∂b
= 0, (22)



Computers 2020, 9, 88 6 of 27

∂Q(w, b, h, ξ, α, β, η)

∂ξ
= 0, (23)

αi (yi (w> φ(xi) + b)− 1 + ξi) = 0 αi ≥ 0 for i = 1, . . . , M, (24)

αM+i
(
h− yi (w> φ(xi) + b)

)
= 0, αM+i ≥ 0 for i = 1, . . . , M, (25)

βi ξi = 0, βi ≥ 0, ξi ≥ 0 for i = 1, . . . , M, (26)

(h− 1) η = 0, h ≥ 1, η ≥ 0, (27)

where 0 is the zero vector whose elements are zero. Equations (24) to (27) are called KKT
complementarity conditions.

Substituting (19) into (20) to (23) gives, respectively,

w =
M

∑
i = 1

(αi − αM+i) yi φ(xi), (28)

M

∑
i = 1

αM+i = Ch − η, (29)

M

∑
i = 1

(αi − αM+i) yi = 0, (30)

αi + βi = C for i = 1, . . . , M. (31)

Substituting (28) to (31) into (19), we obtain the following dual problem:

maximize Q(α) =
M

∑
i = 1

(αi − αM+i)−
1
2

M

∑
i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (32)

subject to
M

∑
i = 1

yi (αi − αM+i) = 0, (33)

Ch ≥
M

∑
i = 1

αM+i, (34)

C ≥ αi ≥ 0, Ch ≥ αM+i ≥ 0 for i = 1, . . . , M. (35)

The dual L1 SVM given by (4) and (5) is obtained by deleting variables αM+i and Ch from the
above optimization problem.

For the solution of (32) to (35), xi associated with positive αi or αM+j is a support vector. However,
from (28), the decision function is determined by the support vectors that satisfy αi − αM+i 6= 0.

We consider decomposing the above optimization problem into two subproblems: 1) optimizing
αi (i = 1, . . . , M) while fixing αM+i (i = 1, . . . , M) and 2) optimizing αM+i (i = 1, . . . , M) while fixing
αi (i = 1, . . . , M). To make this possible, we eliminate the interference between αi and αM+i in (33) by

M

∑
i = 1

yi αi = 0,
M

∑
i = 1

yi αM+i = 0. (36)

Then the optimization problem given by (32) to (35) is decomposed into the following
two subproblems:
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Subproblem 1: Optimization of αi

maximize Q(α0) =
M

∑
i = 1

(αi − αM+i)−
1
2

M

∑
i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (37)

subject to
M

∑
i = 1

yi αi = 0, (38)

C ≥ αi ≥ 0 for i = 1, . . . , M, (39)

where α0 = (α1, . . . , αM)>.
Subproblem 2: Optimization of αM+i

maximize Q(αM) =
M

∑
i = 1

(αi − αM+i)−
1
2

M

∑
i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (40)

subject to
M

∑
i = 1

yi αM+i = 0, (41)

Ch ≥
M

∑
i = 1

αM+i, (42)

Ch > αM+i ≥ 0 for i = 1, . . . , M, (43)

where αM = (αM+1, . . . , α2M)>. Here we must notice that αM+i 6= Ch. If αM+i = Ch, from (41), at least

∑
j= 1,...,M, yj 6=yi

αM+j = Ch (44)

is satisfied. This contradicts (42).
We solve Subproblems 1 and 2 alternatingly until the solution converges. Subproblem 1 is very

similar to the L1 SVM and can be solved by the SMO (Sequential minimal optimization). Subproblem 2,
which includes the constraint (42) can also be solved by a slight modification of the SMO.

3.2. KKT Conditions

To check the convergence of Subproblems 1 and 2, we use the KKT complementarity
conditions (24) to (27). However, variables h and b, which are included in the KKT conditions,
are excluded from the dual problem given by (32) to (35). Therefore, as with the L1 SVM [33], to make
an accurate convergence test, the exact KKT conditions that do not include h and b need to be derived.

We rewrite (24) as follows:

αi (yi b− yi Fi + ξi) = 0 for i = 1, . . . , M, (45)

where

Fi = yi −
M

∑
j=1

yj (αj − αM+j)K(xi, xj). (46)

We can classify the conditions of (45) into the following three cases:

1. αi = 0.

Because yi b− yi Fi + ξi ≥ 0 and ξi = 0,

yi b ≥ yi Fi, i.e., b ≥ Fi if yi = 1; b ≤ Fi if yi = −1.

2. C > αi > 0.
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Because βi > 0, ξi = 0 is satisfied. Therefore,

b = Fi.

3. αi = C.

Because βi = 0, ξi ≥ 0 is satisfied. Therefore,

yi b ≤ yi Fi or b ≤ Fi if yi = 1; b ≥ Fi if yi = −1.

Then the KKT conditions for (45) are simplified as follows:

F̄i ≥ b ≥ F̃i for i = 1, . . . , M, (47)

where

F̃i = Fi if (yi = 1, αi = 0), C > αi > 0 or (yi = −1, αi = C), (48)

F̄i = Fi if (yi = −1, αi = 0), C > αi > 0 or (yi = 1, αi = C). (49)

To detect the violating variables, we define blow and bup as follows:

blow = max
i

F̃i,

bup = min
i

F̄i.
(50)

If the KKT conditions are satisfied,
bup ≥ blow. (51)

The bias term is estimated to be

be =
1
2
(bup + blow), (52)

where be is the estimate of the bias term using (24).
Likewise, using (46), (25) becomes

αM+i (h + yi Fi − yi b− 1) = 0 for i = 1, . . . , M. (53)

Then the conditions for (25) are rewritten as follows:

1. αM+i = 0.

From
h + yi Fi − yi b− 1 ≥ 0, (54)

we have

yi b− h ≤ yi Fi − 1, i.e., b− h ≤ Fi − 1 if yi = 1; b + h ≥ Fi + 1 if yi = −1. (55)

2. Ch > αM+i > 0.

yi b− h = yi Fi − 1, i.e., b− h = Fi − 1 if yi = 1; b + h = Fi + 1 if yi = −1.
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The KKT conditions for (25) are simplified as follows:

if yi = −1, F̄i
− + 1 ≥ b− ≥ F̃i

−
+ 1,

if yi = 1, F̄i
+ − 1 ≥ b+ ≥ F̃i

+ − 1 for i = 1, . . . , M, (56)

where b− = b + h, b+ = b− h, and

F̃i
−

= Fi + 1 if yi = −1, (57)

F̄i
− = Fi + 1 if yi = −1, Ch > αM+i > 0, (58)

F̃i
+

= Fi − 1 if yi = 1, Ch > αM+i > 0, (59)

F̄i
+ = Fi − 1 if yi = 1. (60)

To detect the violating variables, we define b−low, b+low, b−up, and b+up as follows:

b−low = max
i

F̃i
−, b+low = max

i
F̃i
+,

b−up = min
i

F̄i
−, b+up = min

i
F̄i
+.

(61)

In general, the distributions of Classes 1 and 2 data are different. Therefore, the upper bounds
of h for Classes 1 and 2 are different. This may mean that either of b−up (F̄i

−) and b+low (F̃i
+
) may not

exist. However, because of (41), both classes have at least one positive αM+i each, and because of
(53), the values of h for both classes can be different. This happens because we separate (33) into two
equations as in (36). Then, if the KKT conditions are satisfied, both of the following inequalities hold

b−up ≥ b−low, b+up ≥ b+low. (62)

From the first inequality, the estimate of h, h−e for Class 2, is given by

h−e = −be +
1
2
(b−up + b−low). (63)

From the second inequality, the estimate of h, h+e for Class 1, is given by

h+e = be −
1
2
(b+up + b+low). (64)

3.3. Variant of Minimal Complexity Support Vector Machines

Subproblem 2 of the ML1 SVM is different from Subproblem 1 in that the former includes the
inequality constraint given by (42). This makes the solution process more complicated. In this section,
we consider making the solution process similar to that of Subproblem 1.

Solving Subproblem 2 results in obtaining h+e and h−e . We consider assigning separate variables
h+ and h− for Classes 1 and 2 instead of a single variable h. Then the complementarity conditions for
h+ and h− are

(h+ − 1) η+ = 0, h+ ≥ 1, η+ ≥ 0, (h− − 1) η− = 0, h− ≥ 1, η− ≥ 0, (65)

where η+ and η− are the Lagrange multipliers associated with h+ and h−, respectively. To simplify
Subproblem 2, we assume that η+ = η− = 0. This and (41) make (41) and (42) two equality constraints.
Then the optimization problem given by (40) to (43) becomes
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maximize Q(αM) =
M

∑
i = 1

αi −
1
2

M

∑
i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (66)

subject to
M

∑
yi=1,i = 1

αM+i = Ch,
M

∑
yi=−1,i = 1

αM+i = Ch, (67)

Ch ≥ αM+i ≥ 0 for i = 1, . . . , M. (68)

Here, (41) is not necessary because of (67). We call the above architecture ML1v SVM.
For the solution of the ML1 SVM, the same solution is obtained by the ML1v SVM with the Ch

value given by
Ch = ∑

i=1,...,M,yi=1
αM+i = ∑

i=1,...,M,yi=−1
αM+i. (69)

However, the reverse is not true, namely, the solution of the ML1v SVM may not be obtained
by the ML1 SVM. As the Ch value becomes large, the value of η becomes positive for the ML1 SVM,
but for the ML1v SVM, the values of αM+i are forced to become larger.

4. Training Methods

In this section we extend the training method for the L1 SVM that fuses SMO and Newton’s
method [31] for training the ML1 SVM. The major part of the training method consists of calculation of
corrections by Newton’s method and the working set selection method. The training method of the
ML1v SVM is similar to that of the L1 SVM. Therefore, we only explain the difference of the methods
in Section 4.3.

4.1. Calculating Corrections by Newton’s Method

In this subsection, we discuss the corrections by Newton’s method for two subprograms.

4.1.1. Subprogram 1

First we discuss optimization of Subproblem 1. We optimize the variables αi in the working set
{αi|i ∈W, i ∈ {1, . . . , M}}, where W includes working set indices, fixing the remaining variables, by

maximize Q(αW) = ∑
i∈W

αi

−1
2 ∑

i∈W, j=1,...,M
(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (70)

subject to ∑
i∈W

yi αi = − ∑
i /∈W

yi αi, (71)

C ≥ αi ≥ 0, for i ∈W. (72)

Here αW = (. . . , αi, . . .)>, i ∈W.
We can solve the above optimization problem by the method discussed in [31]. We select αs in the

working set and solve (71) for αs:

αs = −
M

∑
i 6=s,i=1

ys yi αi. (73)

Substituting (73) into (70), we eliminate the equality constraint. Let αW ′ = (. . . , αi, . . .)> (i 6=
s, i ∈ W). Now because Q(αW ′) is quadratic, we can express the change of Q(αW ′), ∆Q(αW ′), as a
function of the change of αW ′ , ∆αW ′ , by

∆Q(αW ′) =
∂Q(αW ′)

∂αW ′
∆αW ′ +

1
2

∆α>W ′
∂2Q(αW ′)

∂α2
W ′

∆αW ′ . (74)
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Then, neglecting the bounds, ∆Q(αW ′) has the maximum at

∆αW ′ = −
(

∂2Q(α)

∂α2
W ′

)−1
∂Q(αW ′)

∂αW ′
, (75)

where

∂Q(αW ′)

∂αi
=

∂Q(αW)

∂αi
+

∂Q(αW)

∂αs

∂αs

∂αi
= yi (Fi − Fs) for i ∈W ′, (76)

∂2Q(αW ′)

∂αi∂αj
=

∂2Q(αW)

∂αi∂αj
+

∂2Q(αW)

∂αs∂αj

∂αs

∂αi
+

∂2Q(αW)

∂αi∂αs

∂αs

∂αj
+

∂2Q(αW)

∂αs∂αs

∂αs

∂αi

∂αs

∂αj

= yi yj
(
−K(xi, xj) + K(xi, xs) + K(xs, xj)− K(xs, xs)

)
for i, j ∈W ′. (77)

Here, the partial derivative of Q with substitution of (73) is calculated by the chain rule
without substitution.

We assume that −∂2Q(α)/∂α2
W ′ is positive definite. If not, we avoid matrix singularity adding a

small value to the diagonal elements.
Then from (73) and (75), we obtain the correction of αs:

∆αs = − ∑
i∈W ′

ys yi ∆αi. (78)

For αi (i ∈W), if

αi = 0, ∆αi < 0 or αi = C, ∆αi > 0, (79)

we delete these variables from the working set and repeat the procedure for the reduced working set.
Let ∆α′i be the maximum or minimum correction of αi that is within the bounds. Then if αi + ∆αi < 0,
∆α′i = −αi. Moreover, if αi + ∆αi > C, ∆α′i = C− αi. Otherwise ∆α′i = ∆αi. Then we calculate

r = min
i∈W

∣∣∣∣∆α′i
∆αi

∣∣∣∣ , (80)

where r (0 < r ≤ 1) is the scaling factor.
The corrections of the variables in the working set are given by

αnew
W = αold

W + r ∆αW . (81)

4.1.2. Subprogram 2

We optimize the variables αM+i in the working set {αM+i|i ∈ W, i ∈ {1, . . . , M}}, fixing the
remaining variables, by

maximize Q(αM) = − ∑
i∈W

αM+i

−1
2 ∑

i∈W, j=1,...,M
(αi − αM+i) (αj − αM+j) yi yj K(xi, xj) (82)

subject to ∑
i∈W

yi αM+i = − ∑
i/∈W

yi αM+i, (83)

Ch −
M

∑
i=1

αM+i = η ≥ 0, (84)

Ch > αM+i ≥ 0 for i ∈W. (85)
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We select αM+s in the working set W and solve (83) for αM+s:

αM+s = −
M

∑
i=1, i 6=s

ys yi αM+i. (86)

Then similar to Subproblem 1, we substitute (86) into (82) and eliminate αM+s. The partial
derivatives in (75) are as follows:

∂Q(αW ′)

∂αM+i
=

∂Q(αW)

∂αM+i
+

∂Q(αW)

∂αM+s

∂αM+s
∂αM+i

= −yi (Fi − Fs) for i ∈W ′, (87)

∂2Q(αW ′)

∂αM+i∂αM+j
=

∂2Q(αW)

∂αM+i∂αM+j
+

∂2Q(αW)

∂αM+s∂αM+j

∂αM+s
∂αM+i

+
∂2Q(αW)

∂αM+i∂αM+s

∂αM+s
∂αM+j

= yi yj (−K(xi, xj) + K(xi, xs) + K(xs, xj)− K(xs, xs)) for i, j ∈W ′. (88)

From (86), we obtain the correction of αM+s:

∆αM+s = − ∑
i∈W ′

ys yi ∆αM+i. (89)

Now we consider the constraint (84). If η = 0, the sum of corrections needs to be zero. This is
achieved if

ys = yi for i ∈W ′. (90)

Namely, we select the working set from the same class.
For αM+i (i ∈W), if

αM+i = 0, ∆αM+i < 0, (91)

we delete these variables from the working set and repeat the procedure for the reduced working
set. Let ∆α′M+i be the maximum or minimum correction of αM+i that is within the bounds. Then if
αM+i + ∆αM+i < 0, ∆α′M+i = −αM+i. Otherwise ∆α′M+i = ∆αM+i. Then we calculate

r = min
i∈W

∣∣∣∣∣∆α′M+i
∆αM+i

∣∣∣∣∣ , (92)

where r (0 < r ≤ 1) is the scaling factor.
If r ∑i∈W ∆αM+i > η > 0, we further calculate

r′ =
η

r ∑i∈W ∆αM+i
. (93)

Then the corrections of the variables in the working set are given by

αnew
W = αold

W + r ∆αW , (94)

where r is replaced by r′ r if r ∑i∈W αM+i > η > 0.

4.2. Working Set Selection

At each iteration of training, we optimize either Subproblem 1 (αi) or Subproblem 2 (αM+i). To do
so, we define the most violating indices as follows:

V1 = blow − bup, V2 = b+low − b+up, V3 = b−low − b−up. (95)
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We consider that training is converged when

max
i

Vi ≤ τ, (96)

where τ is a small positive parameter.
If (96) is not satisfied, we correct variables associated with Vi where i is determined by

arg max
i

Vi. (97)

According to the conditions of (96) and (97), we determine the variable pair as follows:

1. If V1 is the maximum in (97), we optimize Subproblem 1 (αi). Let the variable pair associated
with bup and blow be αimin and αimax , respectively.

2. If η = 0 and either V2 or V3 is the maximum in (97), or if η 6= 0 and either V2 or V3 exceeds τ but
not both, we optimize Subproblem 2 (αM+i belonging to either Class 1 or 2). Let the variable pair
associated with bk

up and bk
low (k is either + or −) be αM+ikmin

and αM+ikmax
, respectively.

3. If η 6= 0 and both V2 and V3 exceed τ, we optimize Subproblem 2 (αM+i selected from Classes
1 and 2). Let the variable pair be αM+i−min

and αM+i+max
. This is to make the selected variables

correctable as will be shown in Section 4.4.2.

For the ML1v SVM, η = 0. Therefore, Case 3) is not necessary.
Because the working set selection strategies for αi and αM+i are the same, in the following we

only discuss the strategy for αi.
In the first order SMO, at each iteration step, αimin and αimax that violate the KKT conditions the

most are selected for optimization. This guarantees the convergence of the first order SMO [33]. In the
second order SMO, the pair of variables that maximize the objective function are selected. However,
to reduce computational burden, fixing αimin , the variable that maximizes the objective function is
searched [34]:

i2nd = arg max
i∈VKKT

∆Q(αi, αimin), (98)

where VKKT is the set of indices that violate the KKT conditions:

VKKT = {i|bup < F̃i − τ or blow < F̄i + τ} for i ∈ {1, . . . , M}}. (99)

We call the pair of variables that are determined either by the first or the second order SMO,
SMO variables.

Because the second order SMO accelerates training for a large C value [35], in the following we use
the second order SMO. However, for a substantially large C value, training speed of the second order
SMO slows down because variables need to be updated many times to reach to the optimal values.
To speed up convergence in such a situation, in addition to the SMO variables, we add variables that
are selected in the previous steps as SMO variables, into the working set.

We consider that a loop is detected when at least one of the current SMO variables has already
appeared as an SMO variable at a previous step. When a loop is detected, we pick up the loop variables
that are the SMO variables in the loop. To avoid obtaining an infeasible solution by adding loop
variables to the working set, we restrict loop variables to be unbounded support vectors, i.e., αi 6= C
(This happens only for Subprogram 1).

Because we optimize Subprograms 1 and 2 alternatingly, loop variables may include those for
Subprograms 1 and 2. Therefore, in optimizing Subprogram 1, we need to exclude the loop variables
for Subproblem 2; and vice versa. In addition, in optimizing Subproblem 2 with η = 0, we need to
exclude variables belonging to the unoptimized class, in addition to those for Subproblem 1.
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If no loop is detected, the working set includes only the SMO variables. If a loop is detected,
the working set consists of the SMO variables and the loop variables. For the detailed procedure,
please refer to [31].

4.3. Training Procedure of ML1 SVM

In the following we show the training procedure of the ML1 SVM.

1. (Initialization) Select αi and αj in the opposite classes and set αi = αj = C, αk = 0, k 6= i, j, k =

1, . . . , M, αM+i = αM+j = a Ch, and αM+k = 0, k 6= i, j, k = 1, . . . , M, where a ≤ 0.5.
2. (Corrections) If Pr1 (Program 1), calculate partial derivatives (76) and (77) and calculate corrections

by (75). Then, modify the variables by (81). Else, if Pr2, calculate partial derivatives (87) and (88)
and calculate corrections by (75). Then, modify the variables by (94).

3. (Convergence Check) Update Fi and calculate bup, blow, b+up, b+low, b−up, and b−low. If (96) is
satisfied, stop training. Otherwise if V1 is the maximum, select Pr1, otherwise, Pr2. Calculate the
SMO variables.

4. (Loop detection and working set selection) Do loop detection and working set selection shown in
the previous section and go to Step 2.

In Subproblem 2 of the ML1v SVM, data for Class 1 and Class 2 can be optimized separately.
Therefore, because the data that are optimized belong to the same class, the sum of corrections is
zero. Thus, in Step 1, a = 1. In Step 3, if Pr2 is optimized, the variables associated with V2 or V3 are
optimized, not both.

4.4. Convergence Proof

Convergence of the first order SMO for the L1 SVM is proved in [33]. Similarly, we can prove that
the training procedure discussed in Section 4.3 converges to the unique solution. In the following we
prove the convergence for the ML1 SVM. The proof for the ML1v SVM is evident from the discussion.

Subprograms 1 and 2 are quadratic programming problems and thus have unique maximum
solutions. Therefore, it is sufficient to prove that the objective function increases by the first order
SMO. For the second order SMO, the increase of the objective function is also guaranteed because the
variable pair that gives the largest increase of the objective function is selected. By combining SMO
with Newton’s method, if some variables are not correctable, they are deleted from the working set.
By this method, in the worst case, only the SMO variables remain in the working set. Therefore, we
only need to show that the first order SMO converges for the ML1 SVM.

4.4.1. Convergence Proof for Subprogram 1

From (48), αimax satisfies

C > αimax ≥ 0 for yimax = 1, C ≥ αimax > 0 for yimax = −1. (100)

Moreover, from (49), αimin satisfies

C ≥ αimin > 0 for yimin = 1, C > αimin ≥ 0 for yimin = −1. (101)

Because the KKT conditions are not satisfied, Fimax > Fimin . Moreover, we set αs = αimin . Then
from (76) and (77),

∂Q(αimax)

∂αimax

= yimax (Fimax − Fimin), (102)

∂2Q(αimax)

∂α2
imax

= −‖φ(ximax)−φ(ximin)‖
2 ≤ 0, (103)
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where in (103), if the equality holds, we replace zero with a small negative value to avoid zero division
in (75).

Then from (102), (103), and (75), the signs of the corrections ∆αimin and ∆αimax are given by

1. ∆αimax > 0 and ∆αimin < 0 for yimin = yimax = 1,
2. ∆αimax < 0 and ∆αimin > 0 for yimin = yimax = −1,
3. ∆αimax < 0 and ∆αimin < 0 for yimin = 1, yimax = −1,
4. ∆αimax > 0 and ∆αimin > 0 for yimin = −1, yimax = 1.

From (100) and (101), the above corrections are all possible. For instance, in 1) ∆αimax > 0 and
C > αimax ≥ 0 for yimax = 1. Therefore, C ≥ αimax + ∆αimax > 0.

Because the corrections are not zero, the objective function increases.

4.4.2. Convergence Proof for Subprogram 2

From (57) and (58), αM+i−min
and αM+i−max

satisfy

Ch > αM+i−min
> 0, Ch > αM+i−max

≥ 0, (104)

respectively. Likewise, from (59) and (60), αM+i+min
and αM+i+max

satisfy

Ch > αM+i+min
≥ 0, Ch > αM+i+max

> 0, (105)

respectively.
We set αM+s = αM+ikmin

. Then from (87) and (88),

∂Q(αM+ikmax
)

∂αM+ikmax

= −yikmax
(Fikmax

− Fikmin
),

∂2Q(αM+ikmax
)

∂(αM+ikmax
)2 ≤ 0, (106)

If we correct αM+i−max
and αM+i−min

(yi−max
= yi−min

= −1), ∆αM+i−max
> 0 and ∆αM+i−min

< 0.
From (104), this correction is possible.

Likewise, if we correct αM+i+max
and αM+i+min

(yi+max
= yi+min

= 1), ∆αM+i+max
< 0 and ∆αM+i+min

> 0.
From (105), this correction is possible.

If both V2 and V3 are larger than τ, we select αM+i−min
and αM+i+max

. Then from (104) and (105),
these variables are correctable whether they be increased or decreased.

Because the corrections are not zero, the objective function increases.

5. Computer Experiments

First we analyze the behavior of the ML1 SVM and ML1v SVM using a two-dimensional
iris dataset and then to examine the superiority of the proposed classifiers over the L1 SVM,
we evaluate their generalization abilities and computation time using two-class and multiclass
problems. All the programs used in the performance evaluation were coded in Fortran and tested
using Windows machines.

5.1. Analysis of Behaviors

We analyzed the behaviors of the ML1 SVM and ML1v SVM using the iris dataset [36], which is
frequently used in the literature. The iris dataset consists of 150 data with three classes and four
features. We used Classes 2 and 3 and Features 3 and 4. For both classes, the first 25 data were used for
training and the remaining data were used for testing. We used linear kernels: K(x, x′) = x>x′.

We evaluated the h+ and h− values for the change of the Ch value from 0.1 to 2000 fixing C to
1000. Figure 1 shows the result for the ML1v SVM. Both h+ and h− values are constant for Ch = 0.1
to 100 and they decrease as the Ch value is increased. For the ML1 SVM, the h+ and h− values
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are constant for the change of Ch and are the same as those of the ML1 SVM with Ch = 0.1 to 100.
For Ch = 2000, η = 1960.00. Thus, ∑yi=1,i=1,...,M αM+i = 20.00. For Ch = 10,000, η = 9732.75. Thus,
∑yi=1,i=1,...,M αM+i = 133.63. This means that Ch value is too small to obtain the solution comparable
to that of the ML1v SVM. Therefore, the ML1 SVM is insensitive to the Ch value compared to the
ML1v SVM.
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Figure 1. Upper bounds h+ and h− for the change of the Ch value with C = 1000.

Figure 2 shows the h+ and h− values for C = 10. For the ML1v SVM, the h+ and h− values
become smaller than 1 for Ch larger than 100. This means that the Ch value is so large that the solution
is no longer valid. However, for the ML1 SVM, the h+ and h− values are larger than 1 and thus
valid solutions are obtained for Ch = 0.1 to 2000. This is because ∑yi=1,i=1,...,M αM+i = 58.96 even at
Ch = 2000.
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Figure 2. Upper bounds h+ and h− for the change of the Ch value with C = 10.

Figure 3 shows the decision boundary of the ML1v SVM for C = 1000 and Ch = 0.1, 1000.
For Ch = 0.1, the decision boundary is almost parallel to the x1 axis. However, for Ch = 1000, the
decision boundary rotates in the clockwise direction to make the data more condensed to the decision
boundary. The accuracy for the test data is 92% for Ch = 0.1 and is increased to 94% for Ch = 1000.

From the above experiment we confirmed that the solutions of the ML1 SVM and the ML1v SVM
are the same for small Ch values but for large Ch values both are different and in extreme cases the
solution of the ML1v SVM may be infeasible.
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5.2. Performance Comparison

In this section, we compare the generalization performance of the ML1 SVM and ML1v SVM
with the L1 SVM, MLP SVM [29], LS SVM, and ULDM [20] using two-class and multiclass problems.
Our main goal is to show that the generalization abilities of the ML1 SVM and ML1v SVM are better
than the generalization ability of the L1 SVM.

5.2.1. Comparison Conditions

We determined the hyperparameter values using the training data by fivefold cross-validation,
trained the classifier with the determined hyperparameter values, and evaluated the accuracy for the
test data.

We trained the ML1 SVM, ML1v SVM, and L1 SVM by SMO combined with Newton’s method.
We trained the MLP SVM by the simplex method and the LS SVM and ULDM by matrix inversion.

We used RBF kernels:
K(x, x′) = exp(−γ‖x− x′‖2/m), (107)

where γ is the parameter to control the spread of the radius and m is the number of inputs to normalize
the kernel, and polynomial kernels including linear kernels:

K(x, x′) = (P + x>x′)d, (108)

where P = 0 and d = 1 for linear kernels and P = 1 and d = 2, 3, . . . for polynomial kernels.
In cross-validation, we selected the γ values for RBF kernels from {0.01, 0.1, 0.5, 1, 5, 10, 15,

20, 50, 100, 200}, the d values for polynomial kernels from {1, 2, . . . , 8}, and the C and Ch
values from {0.1, 1, 10, 50, 100, 500, 1000, 2000}. For the ULDM, the C value was selected from
{0.1, 1, 10, 100, 1000, 104, 106, 108} [21]. The value of τ in (99) was set to 0.01 for the ML1 SVM, ML1v

SVM, and L1 SVM.
For the L1 SVM, LS SVM, and ULDM, we determined the γ (d) and C values by grid search.

For the ML1 SVM, ML1v SVM, and MLP SVM, we need to determined the value of Ch in addition
to γ (d) and C values. (For the MLP SVM we evaluated the performance using only RBF kernels.)
To shorten computation time in such a situation, first we determined the γ (d) and C values with
Ch = 1 (Ch = 0.1 for the MLP SVM) by grid search and then we determined the Ch value by line search
fixing the γ (d) and C values with the determined values.

After model selection, we trained the classifier with the determined hyperparameter values and
calculated the accuracy for the test data. For two-class problems, which have multiple sets of training
and test pairs, we calculated the average accuracies and their standard deviations, and performed
Welch’s t test with the confidence level of 5%.
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5.2.2. Two-Class Problems

Table 1 lists the two-class problems used [37], which were generated using the datasets from the
UC Irvine Machine Learning Repository [38]. In the table, the numbers of input variables, training
data, test data, and training and test data pair sets are listed. The table also includes the maximum
average prior probability shown in the accuracy (%). The numeral in parentheses shows that for the
test data. According to the prior probabilities, the class data are relatively well balanced and there are
not much differences between training and test data.

Table 1. Benchmark datasets for two-class problems.

Problem Inputs Training Data Test Data Sets Prior (%)

Banana 2 400 4900 100 54.62 (55.21)
Breast cancer 9 200 77 100 70.59 (71.19)
Diabetes 8 468 300 100 65.03 (65.22)
Flare-solar 9 666 400 100 55.25 (55.27)
German 20 700 300 100 69.92 (70.18)
Heart 13 170 100 100 55.53 (55.60)
Image 18 1300 1010 20 57.40 (56.81)
Ringnorm 20 400 7000 100 50.27 (50.50)
Splice 60 1000 2175 20 51.71 (52.00)
Thyroid 5 140 75 100 69.51 (70.25)
Titanic 3 150 2051 100 67.83 (67.69)
Twonorm 20 400 7000 100 50.52 (50.01)
Waveform 21 400 4600 100 66.90 (67.07)

Table 2 shows the evaluation results using RBF kernels. In the table, for each classifier and each
classification problem, the average accuracy and the standard deviation are shown. For each problem
the best average accuracy is shown in bold and the worst, underlined. The “+” and “−” symbols at the
accuracy show that the ML1 SVM is statistically better and worse than the classifier associated with
the attached symbol, respectively. For instance, the ML1 SVM is statistically better than the ULDM
for the flare-solar problem. The “Average” row shows the average accuracy of the 13 problems for
each classifier and “B/S/W” denotes the number of times that the associated classifier show the best,
the second best, and the worst accuracy. The “W/T/L” row denotes the number of times that the ML1
SVM is statistically better than, comparable to, and worse than the associated classifier.

According to the “W/T/L” row, the ML1 SVM is statistically better than the MLP SVM but is
slightly inferior to ULDM. It is comparable to the remaining classifiers. From the “Average” measure,
the ULDM is the best, the ML1v SVM, the second, the L1 SVM and the ML1 SVM, the third. From the
“B/S/W” measure, the ULDM is the best and the LS SVM is the second best.

Table 3 shows the results for polynomial kernels. For each problem the best average accuracy is
shown in bold and the worst, underlined. We do not include the MLP SVM for comparison. From the
table, the ML1 SVM is statistically comparable to the L1 SVM, slightly better than ML1v SVM, and
better than the LS SVM and ULDM. From the average accuracies, the L1 SVM is the best, ML1 SVM,
the second best, and the ULDM, the worst.

The ML1v SVM is statistically inferior to ML1 SVM for the cancer and splice problems. We study
why this happened. For the second file of the breast-cancer problem, the accuracy for the test data
is 67.53% by the ML1v SVM, which is by 7.79% lower than by the ML1 SVM. The parameter values
are selected as d = 2, C = 1, and Ch = 10. For the Ch value higher than or equal to 50, the accuracy
is 75.32%, which is the same as that by ML1 SVM. Therefore, model selection did not work properly.
For the 17th file of the splice problem, the accuracy for the ML1v SVM is 83.68% with d = 1, and C =

Ch = 1. This is caused by Ch = 1 when the d and C values are determined by grid search. If Ch = 0.1,
by model selection d = 2, C = Ch = 0.1 are obtained, and the accuracy is 87.36%, which is better than
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87.22% by the ML1 SVM. Therefore, in this case also, the low accuracy was obtained by the problem of
model selection.

Table 2. Accuracies of the test data for the two-class problems using RBF kernels.

Problem ML1 SVM ML1v SVM L1 SVM MLP SVM LS SVM ULDM

Banana 89.18 ± 0.70 89.10 ± 0.70 89.17 ± 0.72 89.07 ± 0.73 89.17 ± 0.66 89.13 ± 0.72
Cancer 73.03 ± 4.45 73.12 ± 4.43 73.03 ± 4.51 72.81 ± 4.59 73.13 ± 4.68 73.82− ± 4.44
Diabetes 76.17 ± 2.25 76.33 ± 1.94 76.29 ± 1.73 76.05 ± 1.74 76.19 ± 2.00 76.50 ± 1.94
Flare-solar 66.98 ± 2.14 66.99 ± 2.16 66.99 ± 2.12 66.62 ± 3.10 66.25+ ± 1.98 66.34+ ± 1.94
German 75.91 ± 2.03 75.97 ± 2.21 75.95 ± 2.24 75.63 ± 2.57 76.10 ± 2.10 76.15 ± 2.29
Heart 82.84 ± 3.26 82.96 ± 3.25 82.82 ± 3.37 82.52 ± 3.27 82.49 ± 3.60 82.70 ± 3.66
Image 97.29 ± 0.44 97.29 ± 0.47 97.16 ± 0.41 96.47+ ± 0.87 97.52 ± 0.54 97.15 ± 0.68
Ringnorm 98.12 ± 0.36 97.97 ± 1.11 98.14 ± 0.35 97.97+ ± 0.37 98.19 ± 0.33 98.16 ± 0.35
Splice 89.05 ± 0.83 88.99 ± 0.83 88.89 ± 0.91 86.71+ ± 1.27 88.98 ± 0.70 89.13 ± 0.60
Thyroid 95.32 ± 2.41 95.37 ± 2.50 95.35 ± 2.44 95.12 ± 2.38 95.08 ± 2.55 95.29 ± 2.34
Titanic 77.37 ± 0.81 77.40 ± 0.79 77.39 ± 0.74 77.41 ± 0.77 77.39 ± 0.83 77.40 ± 0.85
Twonorm 97.36 ± 0.28 97.38 ± 0.25 97.38 ± 0.26 97.13+ ± 0.29 97.43 ± 0.27 97.43 ± 0.25
Waveform 89.72 ± 0.73 89.67 ± 0.75 89.76 ± 0.66 89.39+ ± 0.53 90.05− ± 0.59 90.24− ± 0.50

Average (B/S/W) 85.26 (1/3/1) 85.27 (3/3/1) 85.26 (1/2/0) 84.84 (1/0/9) 85.23 (3/4/3) 85.34 (6/2/0)

W/T/L — 0/13/0 0/13/0 5/8/0 1/11/1 1/10/2

For each problem the best average accuracy is shown in bold and the worst underlined.

The ULDM performs worse than the ML1 SVM for banana and thyroid problems. For the banana
problem by the ULDM, the average accuracy is by 6.66% lower than by the ML1 SVM. This was
caused by mal-selection of the parameter ranges. By setting C = {108, 1010, 1012, 1014, 1016} and
d = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, the average accuracy and standard deviation are 88.35 ± 1.10%,
which are statistically comparable to those by the ML1 SVM. However, for the thyroid problem, the
change of the parameter ranges does not improve the average accuracy much.

According to the experiment for the two-class problems, generally the accuracies using the RBF
kernels are better than those using polynomial kernels, but for both RBF and polynomial kernels,
the ML1 SVM, ML1v SVM, and L1 SVM perform well, while the LS SVM and ULDM do not for the
polynomial kernels.

Table 3. Accuracies of the test data for the two-class problems using polynomial kernels.

Problem ML1 SVM ML1v SVM L1 SVM LS SVM ULDM

Banana 88.97 ± 0.69 89.01 ± 0.62 89.01 ± 0.62 88.07+ ± 1.00 82.31+ ± 2.49
Cancer 72.90 ± 5.10 71.66+ ± 4.86 72.84 ± 5.25 72.75 ± 4.61 72.75 ± 4.71
Diabetes 76.19 ± 1.75 76.22 ± 1.67 76.29 ± 1.75 76.39 ± 1.91 76.29 ± 1.66
Flare-solar 67.30 ± 2.01 67.26 ± 2.12 67.19 ± 2.17 66.46+ ± 1.92 67.09 ± 1.97
German 75.62 ± 2.16 75.71 ± 2.23 75.79 ± 2.26 75.70 ± 2.05 75.23+ ± 1.92
Heart 82.77 ± 3.62 82.93 ± 3.25 82.85 ± 3.46 83.60− ± 3.39 83.22− ± 3.48
Image 96.59 ± 0.51 96.62 ± 0.51 96.74 ± 0.47 97.01− ± 0.43 95.35+ ± 0.55
Ringnorm 93.29 ± 1.02 93.31 ± 0.94 93.39 ± 0.95 92.43+ ± 0.85 94.71− ± 0.73
Splice 87.27 ± 0.79 86.00+ ± 1.47 87.67 ± 0.68 86.22+ ± 0.71 87.62 ± 0.67
Thyroid 95.09 ± 2.58 94.99 ± 2.59 95.04 ± 2.68 91.37+ ± 3.41 89.99+ ± 3.56
Titanic 77.60 ± 0.72 77.63 ± 0.66 77.61 ± 0.68 77.52 ± 0.74 77.59 ± 0.74
Twonorm 97.30 ± 0.42 97.25 ± 0.43 97.42 ± 0.34 97.47− ± 0.24 97.14+ ± 0.51
Waveform 89.14 ± 0.73 89.16 ± 0.86 89.13 ± 0.76 89.70− ± 0.71 90.00− ± 0.62

Average (B/S/W) 84.62 (3/0/2) 84.44 (2/2/2) 84.69 (3/7/0) 84.21 (4/1/3) 83.79 (2/3/5)

W/T/L — 2/11/0 0/13/0 5/4/4 5/5/3

For each problem the best average accuracy is shown in bold and the worst underlined.
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5.2.3. Multiclass Problems

We used pairwise (one-vs-one) classification for multiclass problems. To resolve unclassifiable
regions occurred by pairwise classification, we used fuzzy classification, introducing the membership
function for each decision function [2].

Table 4 shows the ten multiclass problems used for performance evaluation. Unlike the two-class
problems, for each problem there is one training dataset and one test dataset. The numeral problem [2]
is to classify numerals in the Japanese license plates, and the thyroid problem [38] is a medical diagnosis
problem. The blood cell problem [2] classifies white blood cells labeled according to the maturity of the
growing stage. Three hiragana problems [2] are to classify hiragana characters in the Japanese license
plates. The satimage problem [38] classifies lands according to the satellite images. The USPS [39]
and MNIST [40,41] problems treat numeral classification and the letter problem [38] treats alphabets.
Because the original training dataset of the MNIST problem is too large especially for the LS SVM and
ULDM, we switched roles of the training data and the test data.

Except for the thyroid problem, the class data are relatively well balanced. For the thyroid data,
almost all data belong to one class. Moreover, the classification accuracy of a classifier smaller than
92.41% is meaningless.

Table 4. Benchmark datasets for the multiclass problems.

Problem Inputs Classes Training Data Test Data Prior (%)

Numeral 12 10 810 820 10.00 (10.00)
Thyroid 21 3 3772 3428 92.47 (92.71)
Blood cell 13 12 3097 3100 12.92 (12.90)
Hiragana-50 50 39 4610 4610 12.90 (5.64)
Hiragana-13 13 38 8375 8356 6.29 (6.29)
Hiragana-105 105 38 8375 8356 6.29 (6.29)
Satimage 36 6 4435 2000 24.17 (23.50)
USPS 256 10 7291 2007 16.38 (17.89)
MNIST 784 10 10,000 60,000 11.35 (11.23)
Letter 16 26 16,000 4000 4.05 (4.20)

Table 5 lists the accuracies using the RBF kernels for the test data. For each problem, the best
accuracy is shown in bold, and the worst, underlined. For the MLP SVM, the accuracies for the thyroid,
MNIST, and letter problems were not available. The “Average” row shows the average accuracy of
the associated classifier for the ten problems and “B/S/W” shows the numbers of times that the best,
the second best, and the worst accuracies are obtained. Among the ten problems, the accuracies of the
ML1 SVM and ML1v SVM are better than or equal to those of the L1 SVM for nine and eight problems,
respectively. In addition, the best average accuracy is obtained for the ML1v SVM, the second best,
the ML1 SVM, and the third best, the L1 SVM. This is very different from the two-class problems where
the ML1 SVM and ML1v SVM are comparable to the L1 SVM.

Table 6 shows the accuracies of the test data using polynomial kernels. For each problem the
best accuracy is shown in bold and the worst, underlined. From the average accuracy, the ML1v SVM
performs best, LS SVM performs the second best, and the L1 SVM and ULDM the worst. The difference
between the LS SVM and ML1 SVM is very small. Improvement of the ML1 SVM and ML1v SVM over
the L1 SVM is larger than that using the RBF kernels. For all the 10 problems, they are better than or
equal to the L1 SVM. However, as seen from the Average rows in Tables 5 and 6, the accuracies using
polynomial kernels are in general worse than those using RBF kernels. The reason for this is not clear
but the ranges of parameter values in model selection might not be well tuned for polynomial kernels.

In the previous experiment we evaluated RBF kernels and polynomial kernels separately, but we
can choose the best kernel from RBF and polynomial kernels. If we have cross-validation results for
both kernels, we can select the better one that has the higher accuracy. Table 7 shows the accuracies by
cross-validation for RBF and polynomial kernels. For each problem and for each classifier, the better
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accuracy is shown in bold. The last row of the table shows the average accuracies. The average
accuracies for the polynomial kernels are worse than those for the RBF kernels for all the classifiers.
For each classifier, the number of problems that the polynomial kernels perform better or equal is
one to two. Moreover, if we select RBF kernels when both average accuracies are the same, selecting
kernels with the better average accuracy results in improving the accuracy for the test dataset as seen
from Tables 5 and 6. However, employing polynomial kernels in addition to RBF kernels does not
improve the accuracy significantly.

Table 5. Accuracies of the test data using RBF kernels for the multiclass problems.

Problem ML1 SVM ML1v SVM L1 SVM MLP SVM LS SVM ULDM

Numeral 99.76 99.76 99.76 99.27 99.15 99.39
Thyroid 97.26 97.23 97.26 — 95.39 95.27
Blood cell 93.45 93.55 93.16 93.36 94.23 94.32
Hiragana-50 99.11 99.22 99.00 98.96 99.48 98.96
Hiragana-13 99.89 99.94 99.79 99.90 99.87 99.89
Hiragana-105 100.00 100.00 100.00 100.00 100.00 100.00
Satimage 91.85 91.85 91.90 91.10 91.95 92.25
USPS 95.42 95.37 95.27 95.17 95.47 95.42
MNIST 96.96 96.95 96.55 — 96.99 97.03
Letter 98.03 98.03 97.85 — 97.88 97.75

Average (B/S/W) 97.17 (4/1/0) 97.19 (4/1/0) 97.05 (3/0/3) —(1/1/3) 97.04 (3/3/1) 97.03 (4/1/3)

For each problem, the best accuracy is shown in bold, and the worst underlined.

Table 6. Accuracies of the test data using polynomial kernels for the multiclass problems.

Problem ML1 SVM ML1v SVM L1 SVM LS SVM ULDM

Numeral 99.63 99.63 99.63 99.02 99.27
Thyroid 97.38 97.38 97.38 94.66 94.66
Blood cell 94.32 93.77 92.13 94.39 94.55
Hiragana-50 98.92 99.05 98.81 99.24 98.76
Hiragana-13 99.75 99.77 99.64 99.89 99.44
Hiragana-105 100.00 100.00 99.99 100.00 100.00
Satimage 89.25 89.25 89.25 90.30 88.85
USPS 94.92 95.27 94.42 95.42 95.37
MNIST 96.14 96.39 95.85 96.84 96.54
Letter 96.90 97.10 96.10 97.53 96.10

Average (B/S/W) 96.72 (3/1/0) 96.76 (3/4/0) 96.32 (2/1/5) 96.73 (7/1/2) 96.35 (2/2/5)

For each problem the best accuracy is shown in bold and the worst underlined.

Table 7. Cross-validation accuracies using RBF and polynomial kernels for the multiclass problems.

Problem ML1 SVM ML1v SVM L1 SVM LS SVM ULDM

RBF Poly RBF Poly RBF Poly RBF Poly RBF Poly

Numeral 99.63 99.51 99.63 99.63 99.63 99.51 99.63 99.51 99.51 99.51
Thyroid 97.61 98.20 97.61 98.20 97.59 98.20 95.97 95.71 95.81 94.75
Blood cell 94.87 94.77 94.93 94.74 94.87 94.64 94.83 94.87 94.80 94.70
Hiragana-50 99.70 99.63 99.72 99.65 99.57 99.46 99.67 99.63 99.63 99.59
Hiragana-13 99.81 99.76 99.80 99.77 99.64 99.51 99.86 99.90 99.83 99.63
Hiragana-105 99.95 99.86 99.94 99.86 99.89 99.79 99.98 99.92 99.95 99.89
Satimage 92.60 89.83 92.56 89.90 92.47 89.83 92.72 89.85 92.36 89.11
USPS 98.37 98.01 98.37 98.24 98.27 97.64 98.44 98.42 98.46 98.31
MNIST 97.56 96.86 97.58 97.14 97.31 96.68 97.60 97.48 97.65 97.14
Letter 97.64 96.97 97.72 97.10 97.43 95.52 97.83 97.37 97.73 96.18

Average 97.77 97.34 97.79 97.42 97.67 97.08 97.65 97.27 97.57 96.88

For each problem and for each classifier, the better accuracy is shown in bold.
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5.3. Training Time Comparison

First, we examine the complexity of computation for each classifier excluding the MLP SVM.
We trained the ML1 SVM, ML1v SVM, and L1 SVM by SMO combined with Newton’s method.
Therefore, the complexity of computation for the subproblem with working set size W is O(W3).
Because the ML1 SVM and ML1v SVM solve two quadratic programming programs, each having the
same number of variables, M, the complexity of computation is the same with that of the L1 SVM.
Therefore, the three classifiers are considered to be trained in comparable time.

Because the matrices associated with the LS SVM and ULDM are positive definite, they can be
solved by iterative methods such as stochastic gradient methods [17]. However, we trained the LS
SVM and ULDM by Cholesky factorization to avoid the inaccuracy caused by insufficient convergence.
Therefore, the complexity of computation of both methods is O(M3).

The purpose of this section is to confirm that the ML1 SVM, ML1v SVM, and L1 SVM can be
trained in comparable time.

Excluding that of the MLP SVM, we compared the time for training and testing a classifier using
a Windows machine with 3.2GHz CPU and 16 GB memory. For the two-class problems, we set the
parameter values with the frequently selected values and trained the classifier using a training dataset
and tested the trained classifier using the associated test dataset. For the multiclass problems, we
trained a classifier with the parameter values obtained by cross-validation and tested the trained
classifier with the test dataset.

Because the tendency is similar we only show the results using RBF kernels. Table 8 shows the
parameter values selected for the two-class and multiclass problems. In the table Thyroid (m) denotes
the multiclass thyroid problem. For each problem, the γ values in bold, the γ and C values in bold,
and γ, C, and Ch values in bold show that they appear more than once.

Table 8. Selected parameter values for the RBF kernels. For two-class problems, most frequently
selected values (γ, C, Ch) are shown.

Data ML1 SVM ML1v SVM L1 SVM LS SVM ULDM

Banana 10, 1, 1 50, 1, 1 20, 1 50, 10 50, 104

B. cancer 0.5, 1, 1 0.5, 1, 1 0.5, 1 5, 1 10, 10
Diabetes 0.1, 50, 1 0.1, 1, 1 0.1, 500 0.5, 1 5, 100
Flare-solar 0.01, 50, 1 0.01, 50, 1 0.01, 50 0.01, 10 0.01, 0.1
German 0.1, 1, 1 0.1, 1, 1 0.1, 1 0.1, 1 10, 100
Heart 0.01, 500, 1 0.01, 500, 1 0.01, 100 0.01, 10 0.01, 108

Image 100, 10, 1 100, 50, 1 100, 50 50, 50 15, 108

Ringnorm 100, 0.1, 1 50, 1, 1 50, 1 50, 0.1 50, 10
Splice 10, 10, 10 5, 10, 1 10, 10 10, 10 10, 104

Thyroid 5, 50, 1 5, 500, 1 5, 50 100, 1 50, 10
Titanic 0.01, 50, 1 0.01, 50, 1 0.01, 50 0.01, 10 0.01, 104

Twonorm 0.01, 50, 1 0.01, 50, 1 0.01, 1 0.01, 50 0.01, 1000
Waveform 5, 1, 1 50, 1, 1 15, 1 20, 1 50, 100
Numeral 5, 10, 1 5, 10, 1 5, 10 1, 100 15, 104

Thyroid (m) 10, 2000, 1 10, 2000, 10 10, 2000 50, 2000 200, 108

Blood cell 5, 100, 100 5, 100, 50 5, 100 5, 500 5, 108

Hiragana-50 5, 100, 50 5, 100, 50 5, 100 10, 100 10, 106

Hiragana-13 50, 50, 500 50, 50, 50 15, 1000 15, 2000 20, 108

Hiragana-105 20, 10, 500 20, 10, 50 10, 10 15, 2000 10, 106

Satimage 200, 10, 10 200, 10, 10 200, 10 200, 10 200, 104

USPS 10, 50, 2000 10, 50, 2000 10, 100 5, 500 5, 108

MNIST 20, 10, 500 20, 10, 500 20, 10 10, 50 10, 106

Letter 100, 10, 10 100, 10, 100 200, 10 50, 50 50, 106

For each problem, the γ values in bold, the γ and C values in bold, and γ, C, and Ch values in bold show that
they appear more than once.
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From the table, it is clear that the ML1 SVM, ML1v SVM, and L1 SVM selected the same γ and C
values frequently and the ML1 SVM and ML1v SVM selected the same γ, C, and Ch values 10 times
out of 23 problems.

Table 9 sows the CPU time for training and test with the optimized parameter values listed
in Table 8. For each problem the shortest CPU time is shown in bold and the longest, underlined.
The CPU time for the two-class problem is that per file. For the multiclass problems, we used fuzzy
pairwise classification. Therefore, the training time includes that for determining n(n− 1)/2 decision
functions where n is the number of classes. For example, for the letter problem, 329 decision functions
need to be determined. The last row of the table shows the numbers of times that the associated
classifier are the fastest (B), the second fastest (S), and the slowest (W).

From the table, the ML1 SVM and ML1v SVM show comparable computation time. Moreover,
except for the hiragana-50, hiragana-13, hiragana-105, USPS, MNIST, and letter problems, computation
time for the ML1 SVM and ML1v SVM is comparable to that of the L1 SVM. For these problems, the
ML1 SVM and ML1v SVM are much slower than L1 SVM. Analyzing the convergence process, we
found that for these problems, monotonicity of the objective function value was sometimes violated.
To improve convergence, we need to clarify why it happens and to find a way to speed up training in
such a situation. However we leave this problem in the future study.

Table 9. Computation time using the RBF kernels (in seconds).

Data ML1 SVM ML1v SVM L1 SVM LS SVM ULDM

Banana 0.096 0.053 0.067 0.192 0.254
B. cancer 0.006 0.005 0.005 0.010 0.018
Diabetes 0.025 0.026 0.029 0.119 0.222
Flare-solar 0.057 0.059 0.055 0.341 0.693
German 0.059 0.055 0.059 0.418 0.783
Heart 0.004 0.004 0.005 0.010 0.013
Image 0.306 0.354 0.327 8.24 21.7
Ringnorm 0.226 0.141 0.130 0.362 0.420
Splice 5.29 1.79 8.52 3.77 8.52
Thyroid 0.003 0.002 0.002 0.005 0.008
Titanic 0.017 0.016 0.017 0.028 0.031
Twonorm 0.244 0.250 0.336 0.422 0.484
Waveform 0.122 0.156 0.106 0.268 0.334
Numeral 0.125 0.125 0.047 1.17 1.14
Thyroid (m) 1.53 1.52 0.938 621 1452
Blood cell 2.91 3.08 0.734 33.1 49.7
Hiragana-50 47.3 97.7 8.67 244 268
Hiragana-13 348 295 9.67 740 920
Hiragana-105 950 920 48.5 1779 1997
Satimage 27.4 28.9 19.7 292 693
USPS 513 634 35.5 1089 1996
MNIST 6143 6670 1435 8323 11,372
Letter 1390 2123 439 3036 6544

B/S/W 4/11/0 7/7/0 15/4/1 0/1/1 0/0/22

For each problem the shortest CPU time is shown in bold and the longest underlined.

5.4. Discussions

As discussed in Section 3.3, the ML1 SVM and ML1v SVM are equivalent for a small Ch value
but for a large Ch value they are different. The computer experiments in Section 5.1 also revealed
that the ML1 SVM is insensitive to the change of a Ch value. However, the difference of the
generalization performance between the ML1 SVM and ML1v SVM is not large for the two-class
and multiclass problems.
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The execution time for the ML1 and ML1v SVM was sometimes longer than that for the L1 SVM.
This will cause problem in model selection. While we leave the discussions of speeding up training,
for the model selection, this problem may be alleviated for the ML1v SVM. If h+ < 1 or h− < 1 is
satisfied, the solution is infeasible. Therefore, we can skip cross-validation at the current Ch value and
the larger ones.

We used line search to speed up cross-validation. If grid search was used, in fivefold
cross-validation we needed to train the ML1 SVM or ML1v SVM 3520 (11× 8× 8× 5) times, instead of
480 ((11× 8 + 8)× 5) times. The speed up ratio is estimated to be 7.3. We evaluated the difference
between the grid search and line search for the heart problem. We measured the execution time of
cross-validation, training the classifier with the determined parameter values, and testing the classifier
using the test data. For the ML1 SVM, the speed up ratio by line search was 35.7, and the average
accuracy with the standard deviation of the grid search was 82.78 ± 3.45 %, which was slightly lower.
By the ML1v SVM, the speed up ratio was 40.0, and the average accuracy with the standard deviation
was 82.85 ± 3.31 %, which was also lower than that by line search. Therefore, because model selection
slowed down very much and the improvement of the average accuracy was not obtained at least for
the heart problem, grid search will not be a good selection.

To speed up model selection of the ML1 SVM or ML1v SVM, we may use the L1 SVM considering
that the same values were selected frequently for the γ(d) and C values (see Table 8 for γ values).
For the multiclass problems, four problems do not have the same values. To check whether the idea
works, we performed model selection of Ch values fixing the values of γ and C determined by model
selection of the L1 SVM for the hiragana-13, hiragana-105, USPS, and letter problems. Among the four
problems, the ML1 SVM and ML1v SVM performed worse than the L1 SVM for the letter problem.
Moreover, the resulting average accuracies of the ML1 SVM and ML1v SVM for ten problems were
97.14 % and 97.16%, respectively, which were lower than by the original model selection by 0.03%
(see Table 5) but were still better than the accuracy of the L1 SVM. If we switch back the roles of the
training and test data for the MNIST problem, the selected parameter values for the L1 SVM were the
same. The accuracies for the test data were 98.55%, 98.77%, and 98.78% for the L1 SVM, ML1 SVM,
and ML1v SVM, respectively.

For the polynomial kernels, different kernel parameters were selected for six problems:
the numeral (only for the ML1v SVM), blood cell, hiragana-50, hiragana-13, hiragana-105, and USPS
problems. For each problem we determined the Ch value by cross-validation fixing the values of d and
C determined by the L1 SVM. The accuracies for the test datasets were all better than or equal to those
by the L1 SVM. The average accuracies of the ML1 SVM or ML1v SVM for all the ten problems were
96.53% and 96.64%, respectively, which were lower than by the original model selection by 0.19% and
0.12%, respectively. For the MNIST problem with the switched training and test data, the selected
parameter values for the L1 SVM were the same. Moreover, the accuracies for the test data were 98.17%,
98.23%, and 98.34% for the L1 SVM, ML1 SVM, and ML1v SVM, respectively.

6. Conclusions

The minimal complexity machine (MCM) minimizes the VC dimension and generalizes better
than the standard support vector machine (L1 SVM). However, according to our previous analysis,
the solution of the MCM is non-unique and unbounded.

In this paper, to solve the problem of the MCM and to improve the generalization ability of the
L1 SVM, we fused the MCM and the L1 SVM, namely, we introduced minimizing the upper bound of
the absolute decision function values to the L1 SVM. This corresponds to minimizing the maximum
margin. Converting the original classifier into dual one, we derived two subproblems: the first
subproblem corresponds to the L1 SVM and the second subproblem corresponds to minimizing the
upper bound. We further modified the second subproblem by converting the inequality constraint
into two equality constraints: one for optimizing the variables associated with the positive class and
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the other for the negative class. We call this architecture ML1v SVM and the original architecture,
ML1 SVM.

We derived the exact KKT conditions for the first and second subproblems that exclude the bias
term and the upper bound and discussed training the two subproblems alternatingly, fusing sequential
minimal optimization (SMO) and Newton’s method.

According to computer experiments of the two-class problems using RBF kernels, the average
accuracy of the ML1 SVM is statistically comparable to that of the ML1v SVM and L1 SVM.
Using polynomial kernels, the ML1 SVM is statistically comparable to the L1 SVM but is slightly better
than ML1v SVM.

For the multiclass problems using RBF kernels, the ML1v SVM and ML1 SVM generalize better
than the L1 SVM and the ML1v SVM performs best, and the ML1 SVM, the second, among six classifiers
tested. Using polynomial kernels, the ML1v SVM performs best, the LS SVM the second best, ML1 SVM
the third, and the L1 SVM worst.

Therefore, the idea of minimizing the VC dimension for the L1 SVM worked to improve the
generalization ability of the L1 SVM.

Execution time for the ML1 SVM and ML1v SVM is comparable to that for the L1 SVM for most
of the problems tested, but in some problems, execution time is much longer. In the future study,
we would like to clarify the reason and propose a fast training method in such cases. Another study
will be to consider robustness for outliers by the soft upper bound, instead of the hard upper bound.
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