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Abstract: In this work, we demonstrate how the blockchain and the off-chain storage interact via
Oracle-based mechanisms, which build an effective connection between a distributed database and
real assets. For demonstration purposes, smart contracts were drawn up to deal with two different
applications. Due to the characteristics of the blockchain, we may still encounter severe privacy
issues, since the data stored on the blockchain are exposed to the public. The proposed scheme
provides a general solution for resolving the above-mentioned privacy issue; that is, we try to
protect the on-chain privacy of the sensitive data by using homomorphic encryption techniques.
Specifically, we constructed a secure comparison protocol that can check the correctness of a logic
function directly in the encrypted domain. By using the proposed access control contract and the
secure comparison protocol, one can carry out sensitive data-dependent smart contract operations
without revealing the data themselves.

Keywords: blockchain; smart contract; privacy; homomorphic encryption

1. Introduction

Recently, the blockchain has aroused intensive discussions and has attracted much attention
across a wide span of industries, including finance [1], healthcare [2], medical records [3], real estate [4],
etc. One of the important reasons for this trend is that, with the aid of blockchain-based technology,
many valuable transactions can now be operated in a fully decentralized and asynchronized manner i.e.,
without the need of a central authority, the transaction and/or exchange of valuable assets can still be
done safely between two mutually distrusted parties. The absence of a central authority induces faster
communications among the transacting parties and reduces the overhead caused by intermediaries.
Using cryptographic primitives (such as digital signatures and secure Hash functions) is one of the
key characteristics of the blockchain that allows for achieving authority in a distributed network.
Certain self-executing scripts called “smart contracts” reside on the blockchain, allowing workflows
to be executed properly, distributively and automatically. We leverage these concepts to implement
our system: an autonomous stock management system working in the domain of the Internet of
Things (IoTs) [5], where the on-chain access control scheme is secured. It is well-known that not every
application is transferable to a decentralized network; therefore, a blockchain-based network may not
fulfill the requirements of all applications. The blockchain might bring many advantages, but also carry
certain concerns. One of the major concerns for developing blockchain- and/or smart contract-based
applications is the privacy issue. Since all nodes on the network have rights to access all on-chain data,
transactions are transparent to all participants who were exploring the blockchain; clearly, it is hard to
maintain data privacy in this situation. Fortunately, there are some cryptographical techniques, such as
multiparty computation [6], zero-knowledge proof [7] and homomorphic encryption [8], that might be
applied to address this challenging issue. In general, they tackle the privacy issue by restricting the
transaction’s inputs and outputs visible only to senders and receivers while still permitting all other
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nodes of the network to verify the transaction. In this work, an Oracle-based mechanism is proposed
to integrate the above-mentioned superiorities of smart contracts with the desired on-chain privacy
protection concerns. The contributions of this work include the following: (1) We demonstrate how the
blockchain and off-chain storage properly interact with an Oracle to establish a connection between
distributed databases and real assets. (2) We construct a blockchain-based access control scheme
focusing on the on-chain privacy protection. Although this seems contradictory to the original purpose
of the blockchain, it is necessary when we need to keep sensitive data on-chain. This paper is organized
as follows. Some preliminary background, such as the definitions of transactions, the blockchain,
smart contracts and the Paillier cryptosystem, is briefly addressed in Section 2.1 and some related
works are reviewed in Section 2.2. The proposed mechanism is introduced in Section 3 and the
concerned security issues are analyzed in Section 4. Some comparisons of our work with related works
are given in Sections 5 and 6 concludes this work.

2. Background Review and Related Work

2.1. Background Review

2.1.1. Blockchain

Blockchain can be viewed as a distributed and globally shared database. It is a public ledger of
transactions and digital events that have been executed and shared among participating parties.
Blockchain was first introduced in a Bitcoin-related writeup [9] to solve the “double spending”
issue [10] of digital currencies. Even if participants are not deliberately behaving maliciously, this issue
still possibly exists due to the propagation delays in peer-to-peer networks. Blockchain can also be
considered as a log file split into many time-stamped blocks. Each block contains the hash of the
previous block, which guarantees that no previous block or the associated contents have been changed
without being noticed; therefore, blockchain can be regarded as a trustworthy platform for providing
correctness and availability.

2.1.2. Smart Contract

The smart contract concept was first introduced in 1994 by Nick Szabo [11], where he defined
a smart contract as “a computerized transaction protocol that executes the terms of a contract.”
He believed that we would be starting to leverage smart contracts for real property in the future by
implementing contractual clauses into the contract that are self-executing and self-enforcing. A smart
contract ensures minimizing the occurrence of malicious intervention, the appearance of accidental
exceptions and the transaction cost of the intermediaries.

Bitcoin has a pretty similar mechanism by offering a limited programmability through a scripting
language. The main problem is its non-Turing-completeness and not being user friendly. Of course,
there are also some smart contract-like applications built on top of Bitcoin, e.g., lottery [12],
micro-payments [13] and verifiable computation [14]. These applications reduced the difficulty of
leveraging the limited script on Bitcoin; it then motivates people to develop a Turing complete and
user-friendly smart contract language.

To be more specific, a smart contract is an event-driven program with states that runs and takes
custody over assets on a replicated, shared ledger. We consider this as the best explanation of the smart
contract. In summary, a smart contract is a replicated state machine that receives inputs, executes logic
operations on the states according to the input data and then provides an output depends on its
function. Smart contracts are scripts stored on the blockchain, allowing us to have general-purpose
computation occurring within the chain. It is powerful enough to implement some business logic
through the contract beyond “Bob paying money to Alice.”
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Each smart contract has a unique address and its own states to manage the corresponding
assets on the blockchain. The correctness of the contract has to be inspected before deploying it on
the network. A smart contract is triggered by sending a transaction with the contract’s address as
the receiver. Then, the contract is executed automatically and independently on every node in the
network. Every node is running the smart contract on a virtual machine (VM), which makes the whole
blockchain network act as a distributed VM; we provide a more comprehensive explanation in the next
section. Since the whole network gets cryptographically verifiable traces of the contract’s operations,
the whole structure offers the merest possibility of controversies on the processes. If the destination of
the transaction is another External Owned Account (EOA), then the transaction may transfer some
digital currencies (e.g., ethers) nothing than other else.

An essential feature of a smart contract is that it is always deterministic; the same input should
always give the same output. If it was non-deterministic, there would be many results after different
nodes executed the contract, preventing the blockchain network from reaching consensus. In practical
realization, there is no random behavior function. Thus, non-deterministic features should be avoided;
therefore, if one attempts to induce random behavior in a smart contract, the blockchain network will
not accept the contract; however, in practice, it is hard to ensure that a contract could cover all possible
conditions of the desired outcome, even if it is a well written one.

2.1.3. Oracle

Blockchains and smart contracts cannot access data directly from the outside of their network.
To know where the data are and what contents are provided, a smart contract often needs to access
information from the physical world relevant to the contractual agreement in the form of electronic data,
also referred to as “Oracles.” These Oracles are services that send and verify real-world occurrences
and submit the related information to smart contracts, triggering state changes on the blockchain.
In general, Oracles link the outside world and the smart contract by transferring, processing and
sometimes storing the needed information and data between them to fulfill the objective of smart
contract autonomously; however, new system security holes may be created if the integration of the
Oracles and the blockchain network has not been carefully conducted. Although the decentralized
nature of blockchain ensures the privacy of peers’ identity and the use of hash-chaining structure
makes the on-chain data even more protected, there are still issues with the overall system security.
For example, since blockchain techniques do not have thorough security measures yet, hackers and
inner-circle scammers can steal information and tokens of the outside world through the bridging
of the Oracles. A proper security and privacy protection mechanism is a must for building effective
blockchain-Oracle based applications. In this work, we focus on providing a general solution to the
challenge using homomorphic encryption techniques.

2.1.4. Homomorphic Encryption Algorithms

Homomorphic encryption is a class of encryption algorithms in which certain operations can be
directly carried out on ciphertexts to generate the corresponding encrypted results. After decrypting
the encrypted result, it will match the result of the same operations performed on the corresponding
plaintexts. For example, m denotes a plaintext message and [m] denotes the corresponding ciphertext.
As a result, [m] = Epk(m) means m is encrypted with a public key pk, and m = Dsk([m]) means [m]
can be decrypted with the secret key sk. A homomorphic encryption scheme that works well with
both additions and multiplications is denoted as a fully homomorphic encryption (FHE) scheme.
Other methods that work with only one of the two operations are called partial homomorphic
encryption (PHE) schemes. The Paillier cryptosystem [15] is one of the PHE algorithms that provides
a complete additive feature and a multiplicative feature with constraint. In addition to being
an additive homomorphism, the Paillier scheme can be computed rapidly; therefore, it is widely
used in the fields of data security and privacy preservation applications.
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2.2. Related Work

To preserve the on-chain privacy, lots of users applied the so-called “one-time keys” to Bitcoin
blockchain, which became ubiquitous thanks to Pieter Wuille’s open-sourced “hierarchical deterministic
wallets” [16]. A variety of practical blockchain solutions have also adopted this approach; however,
one-time keys only provide privacy of identity, but do not address the privacy of amounts and the
privacy of history. In other words, observers can analyze patterns in the remaining data to de-anonymize
and trace the history of certain transfers on the chain, compromising even the privacy of identity.
Maxwell et al. developed “Confidential Transactions” [17], a protocol for encrypting the input and
output amounts of a transaction to allow on-chain members to validate the balances of the transactions.
Notably, the Confidential Transactions scheme is independent of any cryptographic assumptions other
than those used for the Elliptic Curve digital signatures, which are already used in Bitcoin and other
blockchain protocols. Another concern about on-chain privacy is that the inputs used in a transaction
can be traced back to its previous transactions that created them. This backward linkage reveals sensitive
information about where the asset transfers originated. Protocols such as CoinJoin [18], TumbleBit [19],
MimbleWimble [20], CryptoNote [21] and Zerocash [22] (a zero knowledge-based method and had
implemented in Zcash) have been proposed to deal with this problem. The three most-related works to
our approach are addressed in this sub-section. One of them was also chosen as one of the benchmarks
for a comparison.

Zyskind et al. [23] developed a personal data management system based on a decentralized
peer-to-peer network, enabling different "compound identities" to store and process computations on
data jointly. A compound consists of a user and a server, while the user’s identity has the authority to
modify the access rights of the server. They proposed to store data off-chain because the required heavy
computation and privacy protection cannot be realized on the current blockchain directly. As a result,
an off-chain solution for data storage is more desirable and functional. The data are encrypted in the
database, and only the data pointers are logged on the chain.

The authors of MedRec [3] built their scheme based on the idea mentioned above. They developed
a smart contract-based permission scheme that supports data retrieving and sharing on medical records.
They are the first team to introduce blockchain technology to the application of medical record storing,
which empowered individuals with record authenticity and data sharing. They saved an assortment
of data pointers and associated access permissions on a contract. Each pointer consists of a query
string that returns a subset of data when executed on the database. To enable users to share records
with others, they implemented a dictionary (a hash table) that maps the viewers’ addresses to a list
of additional query strings. Each string can specify a portion of the user’s data to which third party
viewers are allowed to access. Delgado-Mohatar et al. explored practical tradeoff in blockchain-based
biometric template storage [24]. They had recently experimentally studied the fundamental tradeoffs
involved in the integration of Biometric (such as face and handwritten signatures) template storage
with the Ethereum blockchain [25], including latency, processing time, gas cost and recognition rate.
Experiments were conducted based on three different implementation schemes (i.e., full on-chain
storage, data hashing and Merkle trees). They reported in popular biometrics research benchmarks,
including deep approaches and databases captured in the wild. As a result, the authors found
that straightforward schemes for data storage in the blockchain may be prohibitive for biometric
template storage using state-of-the-art biometric methods. Still, the system based on Merkle trees had
an excellent cost-performance tradeoff; however, no specific security and privacy protection scheme
other than digital signature and hashing has been considered in [24]. In this work, we try to provide
a general security and privacy-preserving approach to blockchain-Oracle combined applications by
using homomorphic encryption techniques.
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3. The Proposed Mechanisms

We offer two application scenarios that involve leveraging the Ethereum blockchain to show the
effectiveness of the proposed mechanism. Before presenting these two applications, the execution
environment of the adopted Ethereum blockchain is first introduced.

3.1. Execution Environment

An Ethereum Virtual Machine (EVM) is designed to serve as a runtime environment for smart
contracts based on Ethereum. It can read and execute the bytecodes that are compiled from the
completed contracts. All the nodes execute contracts with their EVMs. Actual computations in an EVM
are conducted through a stake-based bytecode language. Note that EVM is a closure performing
environment, and every executing processes are done in EVM. In other words, contracts cannot get
any data outside the EVM environment. This characteristic critically limits EVM in the development
of decentralized applications (DApps). For instance, there is no random number generator in the
contract language, so dealing with applications based on a random variable in contracts is impossible
and prohibited. Oracle is a solution to solve the limitation mentioned above. The idea of including
a distributed Oracle network on-chain has been presented for a long time. Oracle behaves like
a third party listening to the events that occur on the blockchain and responds to them. For example,
you can interact with an Oracle when you need some data, including those you cannot fetch yourself.
Leveraging Oracle, interestingly, one can complete an N-out-of-M multi-signature transaction by
giving only one private key to each of the receivers. The transaction will be validated once N-out-of-M
Oracles have a consensus on signing the transaction. More generally, it not only provides a signature
on the transaction once some conditions are satisfied, but also provides the data one requested and
then triggers the succeeding transactions or state changes. In this way, contracts can interact with the
off-chain world, sending external data to contracts that the contract could not initially access.

As illustrated in Figure 1, the Oracle listens for a particular event and receives the query from
some contract re-sites on an EVM. After receiving the query, the Oracle reaches the external database
or web-APIs to acquire the desired data. After getting the desired data, the Oracle calls the callback
function in the contract to return the data that the contract requested. This process is the primary
interaction workflow of the whole proposed mechanism.

Figure 1. A blockchain diagram of the proposed scheme, where an Ethereum Virtual Machine (EVM)
is connecting with an Oracle.
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3.2. Application Scenario 1

In this section, we first demonstrate how the proposed mechanism works in our application
scenario 1: the automation of a stock management system (AoSMS). Since all the data and records are
stored on the blockchain, tampering or modifying them is prevented. Also, the whole process can
be viewed as being executing by a trusted black-box. As shown in Figure 2, there are five entities
involved in this application including: the user (which is a customer), the service provider (which is
a logistics company), the oracle (which has the escrow behavior), suppliers and nodes (which maintain
the operation of the blockchain).

Figure 2. The sketch map of the proposed application scenario 1.

Let us draw up our first contract: The Storage Contract, which is re-sited on an EVM. It contains
digital assets listed on the inventories, which keeps track of the assets in the real world. Our goal is to
make the management process as autonomous as possible. We can apply this system to any logistics
company dealing with her inventory management. First, we introduce some primary functions of
this contract.

There are three main functional modules in this contract, NewRecord, Restock and Sell.
The NewRecord function is for establishing a new item record, like making an archive for a new
item. It registers the item name, item type, item cost and the first arrive quantity in-stock. The Restock
function is an external linking function for our Oracle. The call for this function is valid only for some
particular accounts, such as the suppliers’ accounts. It adjusts the stock quantity after restocking the
assets. The Sell function sells the item that was requested, only if payment and storage quantity are
both sufficient. We withdraw the item that has the earliest in-stock time by checking the timestamp of
every item. Note that customers can call the Sell function attached with the currency as the parameters
of the transaction.

In our system, the Oracle acts like an escrow. It receives the contract requests when the codes,
given in Figure 3, read the events that are highlighted in lines 4, 16, 21, 23 and 26. We now explain the
processes among some logistics companies’ stocking process in detail.

Suppose a logistics company is leveraging the smart contract, given in Figure 3. The owner of
the company first calls the NewRecord function by sending transactions to this contract to archive
all inventories. The oracle will listen to the event mentioned in line 4 of Figure 3, which works as
a notification to the user. The contract allows buyers to send transactions by calling the Sell function
to request for items. The contract checks the item quantity first, if the stock is insufficient to fulfil
the request, the event in line 26 of Figure 3 will be triggered and fetched by the Oracle. The Oracle
will notify the suppliers to activate the restock process. After a while, when the suppliers finish
restocking, the Oracle automatically sends a transaction by calling the Restock function to conduct the
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quantity adjustment. The buyers can now resend the transaction requesting items. After checking the
item quantity, the contract will review the payment amount from the buyer. This flow completes the
whole automation process for stock management. Note that the Oracle plays a critical role, such as
handling notifications, negotiating among data transfers and acting like a bridge between on-chain
and off-chain worlds.

Figure 3. The storage contract for supporting the proposed automation of a stock management
system (AoSMS).

3.3. Application Scenario 2

In the second application scenario, we assume sensitive and valuable data are stored in the
database. On-chain data are always exposed to the public, and an access control mechanism is a must
while leveraging the blockchain technology. One way to implement such an access control system
(ACS) is to embed an encryption hierarchy on the sensitive data and handle the decryption key
distribution issue, which depends on the security level the query user demanded.

As an example, we will now build a smart and secure data access control scheme of a company,
which is located on each node of the blockchain network. In our ACS, contracts are made for containing
metadata about the human resources records, granting permissions and rules for maintaining data
integrity. To successfully navigate through this relatively elaborate scheme, we constructed three types
of contracts. Figure 4 illustrates the contract structures and the relationships among the contracts.
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Figure 4. The sketch map of the proposed access control system (ACS) for protecting sensitive databases.

3.3.1. Register Contract (RC)

This contract maps the identity strings of the participants (i.e., the employees of the company) to
their Ethereum account addresses (which plays a role similar to their public keys) along with some
attributes (e.g., job-grade and salary). This contract also maps each identity string to an address on the
blockchain, where the so-called “Personal Contract (PC)” resided. Notice that each participant owns
only one personal contract (PC) in our RC. For security and privacy consideration, PC can only be
accessed by some specific accounts (e.g., the manager or human resources staff).

3.3.2. Personal Contract (PC)

A PC is usually constructed for a particular purpose: it is created immediately when a participant’s
identity is registered to an RC. A PC holds a data pointer pointing towards one’s sensitive personal
data stored on the database. The data pointer consists of a query string that matches to one entry of the
stored key-value database. That is, when a participant works on the contract with a pointer pointing
towards the database, the set of the participant’s data (associated with the pointer) will be returned.
The query string is affixed with the hash value of the corresponding data set to ensure the returned data
have not been altered at the source (database). Also, PC stores the access information to the database
where the sensitive data are stored. At the same time, company employees have fine-grained access
control to their data records, such as selecting essentially any portion of the records they wish to share,
by updating their personal data and the associated data pointer. We demonstrate the effectiveness of
our design by leveraging the levelDB database [26], which supports the above-mentioned key-value
storage structure.

Note that the data files in the database have been encrypted with the employee’s secret key.
So even if an adversary gets the personal data set, the leaked data will not reveal any sensitive
information. In our system, we do not claim to protect the security of individual databases, as we
believe that local administrators are responsible for data protection.

3.3.3. Access Control Contract (ACC)

This particular contract functions as an authorization center: it gives the permit for accessing
the resources. In our ACS, the resources indicate the data stored on PCs, RCs and some classified
investment plans of the company. We strictly control the access rights to setters and getters of those
data through this contract. That is, the only way to access or modify the data stored on PCs and RCs is
to send a valid transaction to ACC. To be more specific, only the human resources staff or manager’s
accounts can register new records on RC and update the attributes of the employees; only the employee
themselves can set or update the data pointer stored on their individual PC. Each employee can give
access rights to some participants for accessing their sensitive data stored on the database. We also
developed some policies for making extra queries; that is, we stipulated for specific information
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requisition regulations. For example, if one satisfied the condition of one’s salary amount or the level
of job grade, they are granted the information about the classified investment plan.

3.4. On-Chain Privacy

We have addressed the issue of on-chain privacy from the viewpoint of the transactions of
a smart contract. Consequently, the statuses and contents of contract states are kept private from
the public, including all chain participants except those involved in the contract. That is, the only
exception is the case where the involved parties voluntarily disclose the information. Unlike Hawk [27],
which achieved its security guarantee by compiling the program via a cryptographic protocol, we only
provided partial privacy-preservation when compared to Hawk. In other words, our scheme keeps the
desired sensitive data private but let the remaining data be publicly accessible.

What does the above-mentioned on-chain privacy mean? Let us first consider the following
situation: if the logic or function of a contract depends on some data that are so sensitive that they
have to be protected, but at the same time, we want to leverage the benefits of blockchain technology,
what should we do? Recall that the blockchain is a distributed public ledger, that is, the on-chain data
are expected to be publicly accessible; therefore, it is infeasible to encrypt the data or the logic function
directly, because we cannot verify the result from nodes that do not have the decrypt key. What if we
had a way to test the truthfulness of the encrypted logic condition? Consider the following example
shown in Figure 5.

Figure 5. An illustrative example of an encrypted data-dependent access control mechanism. Note that
the public key encrypts each employee’s salary, and R represents a random number that is selected by
the employees they themselves.

In line 5 of Figure 5, an employee can request the company’s investment plan.
The RequestInvestmentQualification function sends an event to the Oracle. Let’s assume Node A is the
Oracle server with the highest authority in this company. It has the highest authority account that
only this account can execute the function listed in line 9. Node A then follows the protocol described
below to interact with Node B, another node in the same blockchain network. We constructed a secure
comparison protocol that allows our contract to have the ability to compare the encrypted numbers
directly on the blockchain.

Notions: The parameters with [[·]] show that they are Paillier encrypted, and [·] show that they are
QR [28] encrypted. Let pk1 and sk1 denote the data owner’s public key and private key, respectively;
pk2 and sk2 indicate Node A’s public key and private key. Let S denote Salary and V denote the
number to be compared. Table 1 presents the proposed secure comparison protocol.



Computers 2020, 9, 69 10 of 15

Table 1. The proposed secure comparison protocol.

Node A Node B
(holding decryption key sk2) (holding decryption key sk1)

1: receive [[S + R]]pk1

2: get [[R]]pk1 from data owner
[[S]]pk1← [[S + R]]pk1 ·[[R]]−1

pk1

3: [[V]]pk1
encrypt←−−−− V

4: Set [[S]]pk1 , [[V]]pk1 with
same bit length l, execute
secure comparison protocol

5: Secure Comparison Protocol [29]
Input: [[S]]pk1 and [[V]]pk1

Result: Node A gets a bit t′ (where t′ = 1 if a ≤ b)

6: [[X]]pk1 ← [[V]]pk1 · [[2l ]]pk1 · [[S]]−1
pk1 mod N2

(X ← V + 2l − S)

7: [[Z]]pk1 ← [[X]]pk1 · [[R]]pk1 mod N2

(Z ← X + R)

8:
[[Z]]pk1−−−→

9: Z
decrypt←−−−− [[Z]]pk1

10: c← R mod 2l d← Z mod 2l

11: Note A and Note B privately compute the encrypted bit [t] such that
{ (t = 1) ≡ (d < c) }

12: [Rl+1]pk2
encrypt←−−−− Rl+1 [Zl+1]pk2

encrypt←−−−− Zl+1

13:
[Rl+1]pk2−−−−→

14:
[t′]pk2 ← [t]pk2 · [Zl+1]pk2 · [Rl+1]pk2

(t′ ⊕ Zl+1 ⊕ Rl+1)

15:
[t′ ]pk2←−−−

16: t′
decrypt←−−−− [t′]pk2

3.5. The Applicability of the Proposed Scheme

Besides the time required to upload data to and download data from the Ethereum blockchain,
the most time-consuming operations occur at the proposed secure comparison protocol because
encryption, decryption and comparison in the ciphertext domain are conducted at this stage.
Fortunately, as there has been significant progress in cryptography, the involved partial homomorphic
encryption schemes (Paillier and OR) can be realized in a sub-second time extent on a personal
computer. To illustrate the processes of the discussed application scenarios, an operational demo
video of the system operation is provided at the following link: https://www.dropbox.com/s/
nm3c65lm4uctl2l/App_demo_with_sub.mp4?dl=0.

In this proposed scheme demo, we set up our private Ethereum-based blockchain with the
web3 API, an open-source API. We implemented our Registrar, Personal and Access Control smart
contracts with Solidity, an object-oriented and high-level language, to implement the smart contracts
and deployed the private blockchain. We also set up three Oracles with Node.js and named them

https://www.dropbox.com/s/nm3c65lm4uctl2l/App_demo_with_sub.mp4?dl=0
https://www.dropbox.com/s/nm3c65lm4uctl2l/App_demo_with_sub.mp4?dl=0
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Node A, Node B and DataServer, respectively. Node A is for listening to the event from the Access
Control contract, waiting to execute the secure comparison protocol with Node B requested from the
received event. Node B has the single purpose of being the execution party of the secure protocol.
The DataServer returns the decrypted investment plan if the protocol returns the right result.

We created two accounts in the Registrar contract with different job grades and salary bases to
provide two examples, one that was successful and one that failed. The encrypted investment plan
was stored in our levelDB, key-value database, previously. We handled the request by sending our
blockchain transactions, which will trigger our contract code to execute. We used an account to send
the transaction to the Access Control contract. After calling the Access Control contract, it automatically
sent an event to Node A, starting the secure comparison protocol with Node B. The final result decides
whether we can get the decrypted data in the DataServer. The whole process was done in a few
seconds, which is a reasonable timeframe, especially if a company has a lot more oracles and can
handle more requests.

4. Security Analysis

Like all the previous works in designing smart contract applications on an underlying
decentralized blockchain, we rely on blockchain being tamper-free. We assume the blockchain
consensus protocol is secured under the assumption that the adversary does not own a large enough
computation power to dominate the whole network, since the Ethereum blockchain is also based on
the proof-of-work consensus protocol. We indicated some security situations that our system may
encounter as follows:

4.1. What If Some Adversaries Send Fake Transactions and Try to Tamper with the System?

We assume the involved parties have the intention to protect the blockchain network and correct
the result. In application scenario 1, we set strict limits to the contract, where only the company sieved
accounts can call the NewRecord function. Only the supplier accounts can call the Restock function if
necessary. In application scenario 2, any access or modification of the involved data is controlled by
sending transactions to ACC and then interacting with RC and PC. By binding ACC’s account to the
other two contracts, there is no way to access both contracts’ data; therefore, in general, we can prevent
data-tampering caused by fake transactions.

4.2. What If an Adversary Can Read the Variable of the Contract Code?

Although all the contract codes are stored in the bytecode form, a participant can still read
and even comprehend the codes once he knew how to transfer the contract codes into bytecodes;
therefore, we assume all the contract codes are transparent to any participant involved in the blockchain.
In application scenario 1, since our purpose is to show all the stock information on-chain publicly,
it is no harm to allow anyone reading the states of the contract or other information. In application
scenario 2, one can learn a participant’s publicly accessible personal information like name, account and
job-grade. One may rely on the protection job in the hash function used in PC; however, that data hash
is used only to validate the data integrity. In other words, the hash is only used to ensure that the data
are not tampered with after being stored on the database. Fortunately, we kept the security of our
on-chain sensitive data by encrypting them with a random number. It can prevent any other node,
even if it has the decryption key, from decrypting the data directly. Recall that we kept the random
number and the decryption key separately, so the on-chain sensitive data are safe and can still be
verified by the blockchain network.

4.3. Is an Adversary Still Be Able to Tamper with Our System without Going through the Register Account?

In application scenario 1, although the unregistered account can send transactions successfully,
the contract statuses remain unchanged. We limited the access rights of the working function to
some specific accounts. The Restock function will only be automatically executed through the Oracle,
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which holds the supplier’s signature key. This is why we assume the Oracle was set up on the supplier’s
server; therefore, the unregistered accounts should not be able to do anything. In application scenario 2,
the reasons are pretty much the same as the above. The proposed ACC will block the unregistered
accounts from accessing anything about the data. That is, ACC made our system tamper-proofed to
the unregistered accounts.

4.4. What If the Oracle Is Not Trustworthy?

Using a single Oracle does induce a trust issue, as expected, because asking a decentralized
contract to trust a single outside data-source is a dangerous and unacceptable choice. This issue
can be somewhat mitigated by using multiple Oracles independently located on different nodes.
They respond to the same queries, and reach a common consensus. On the other hand, one may also
wonder about the feasibility of leveraging multi-signature Oracles to verify transactions to achieve
the purpose of access control. Since an elliptic curve-based verification process takes longer execution
time than running a few secure hash functions, we believe that the blockchain-based approach is easier
and faster. The Oracle’s best role is in dealing with the external data and the protocol or computation
related to the privacy matters. So, we choose to leverage Oracles to achieve our system goal.

In short, the advantages of the proposed Oracle-based on-chain privacy-preserving mechanism
can be summarized in Table 2.

Table 2. The security merits of the proposed scheme.

Adversary Tamper Sensitive Data Access Control Distributed System
Resistance Protection Mechanism Consensus

our system 3 3 3 3

5. Discussion

Comparisons of the proposed system to some related works are presented in this section, where
the merits of leveraging blockchain technology are also provided.

In Table 3, we compare our access control scheme with two related works [23] and MedRec [3].
There are four simple remarks about the comparison: (i) Both MedRec and our system leveraged the
benefits of smart contracts while [23] was implemented on the UTXO-based blockchain. (ii) We apply
the off-chain storage method to store the sensitive data while only keeping the data pointer on-chain
to examine the data correctness. (iii) We can all achieve data sharing through the adjustment of access
control. (iv) Only the proposed system supports on-chain privacy, allowing the encrypted sensitive
data storage on-chain while the execution on other nodes are not affected.

Table 3. The comparison between the proposed access control scheme and two related works.

Model
Off-Chain Data Sharing On-Chain

Storage Feature Privacy

[23] UTXO-based 3 x x
MedRec Account-based 3 3 x

Proposed Account-based 3 3 3

Building the proposed systems on a blockchain has the following advantages: (i) The records
on the blockchain will not be tampered with. There is no room for tampering with the data without
leaving a trace. Consequently, the storage list of our AoSMS is correctly maintained, and the access
right of our ACS is appropriately managed. (ii) The system services will not crash or disappear even if
encountering attacks. A few nodes crashing will not affect our systems’ regular operations due to their
decentralized nature. (iii) The self-execution property of smart contracts will ensure the execution
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of logic codes from the beginning to the end, autonomously producing the correctness of the results.
(iv) Only the signature of an account is revealed as an identification in the blockchain. A signature in
the account-based model is hard to imitate; that is, it is difficult for an adversary to disguise themselves
as someone else. This fact is critical for the accounts that have high authority or a considerable amount
of wealth.

Of course, there are some disadvantages to blockchain technology in practical usage. For example,
in a traditional stock management system, when we purchase items, the deal is done after paying the
cash; however, for leveraging blockchain, the agreement does not count until the transaction has been
successfully collected into a block. The buyer has to wait for a block miner to deploy the block that
contains his transactions. If there is a transaction traffic, the waiting time may be too long to tolerate.

6. Conclusions and Future Work

We take advantage of the blockchain record’s immutability and decentralized nature and the
smart contract’s autonomy to illustrate how Oracles work to establish the bridge between on-chain and
off-chain storages. This construction can be easily extended to any item-based management scheme.
A blockchain-based access control scheme with the specific on-chain privacy feature is also presented.
We conquered the on-chain privacy challenge by applying the time-efficient partial homomorphic
encryption scheme to encrypt the sensitive data. For demonstration, we constructed an on-chain secure
comparison protocol so that we can check the truthfulness of a logic function in the encryption domain,
directly. With the aids of the proposed ACC and the secure comparison protocol, we can carry out
sensitive data-dependent smart contract operations without revealing the data themselves.

In the future, we will continue to leverage the idea of privacy protection to a distributed database.
The goal is to increase the security of both on-chain and off-chain storage. Having only the secure
comparison scheme in the encryption domain is far beyond the need to provide privacy-preserving
smart contracts. We will devote ourselves to developing other kinds of on-chain secure operations,
which is, of course, one of our primary research directions.
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