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Abstract: This paper is a continuation of works based on a previously developed new granulation
method—homogeneous granulation. The most important new feature of this method compared to
our previous ones is that there is no need to estimate optimal parameters. Approximation parameters
are selected dynamically depending on the degree of homogeneity of decision classes. This makes
the method fast and simple, which is an undoubted advantage despite the fact that it gives a slightly
lower level of approximation to our other techniques. In this particular article, we are presenting its
performance in the process of missing values absorption. We test selected strategies on synthetically
damaged data from the UCI repository. The added value is to investigate the specific performance of
our new granulation technique in absorbing missing values. The effectiveness of their absorption in
the granulation process has been confirmed in our experiments.

Keywords: granular rough computing; missing values handling; homogeneous granulation

1. Introduction

Granular computing is a paradigm, dedicated to computing, based on objects similar to each other
on the basis of selected similarity measure. The idea was proposed by Lotfi Zadeh [1,2]. Granulation is
a part of the fuzzy theory by the very definition of fuzzy set, where inverse values of fuzzy membership
functions are the basic forms of granules. Shortly after Lotfi Zadeh proposed the idea of granular
computing, the granules were introduced in terms of rough set theory by T.Y. Lin, L. Polkowski,
and A. Skowron. In rough set theory, granules are defined as classes of indiscernibility relations.
Interesting research on more flexible granules based on blocks was conducted by (Grzymala–Busse),
and templates by (H.S. Nguyen). The granules based on rough inclusions was introduced by
(Polkowski and Skowron [3]), based on tolerance or similarity relations, and, more generally, binary
relations by (T.Y. Lin [4], Y. Y. Yao [5–7]). Being in the context of rough mereology was proposed by
L. Polkowski and A.Skowron, approximation spaces by A. Skowron and J. Stepaniuk [8,9], and logic
for approximate reasoning by L.Polkowski and M. Semeniuk-Polkowska [10], and Qing Liu [11].
Examples of interesting studies from recent years can be found in [12–18].

This is a work about using granular rough computing techniques to absorb missing values [19].
The exact theoretical introduction to the family of approximation methods to which our methods
belong to can be found in [20–22]. Of course, to understand the body of the algorithmic work, we have
included all the relevant details in the following sections.

Computers 2020, 9, 13; doi:10.3390/computers9010013 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0001-5508-9856
https://orcid.org/0000-0001-8314-0276
http://dx.doi.org/10.3390/computers9010013
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/1/13?type=check_update&version=2


Computers 2020, 9, 13 2 of 14

Our recently developed homogeneous granulation method is described in [23]. The main
difference in our granulation algorithm, to the previously developed ones, is that there is no
need to estimate the granulation radius. This parameter is being set automatically depending on
the indiscernibility level of the decision classes. The degree of indiscernibility is the percentage
of attributes for which objects are identical. Homogeneous granulation was also implemented in
the epsilon variant for numerical data, which was described in [24–26] as well as being a part of a novel
ensemble model—Ensemble of granular reflections—described in detail in [27]. The main motivation
to carry out the tests were our previous research results in the context of absorption of unknown
values, which gave very interesting results. The creation of a new technique naturally caused scientific
curiosity to examine its performance in the same context.

This paper presents some preliminary experiments of using the homogeneous granulation as
a missing values absorption technique. We have taken into consideration four absorption strategies,
which we have named A, B, C, and D. Results of using those strategies with other granulation methods
are available in Polkowski and Artiemjew [28,29].

Below is a detailed description of the strategies used.

1.1. Selected Key Variants

The strategies to consider are as follows:

1. Variant A: in granulation process ∗=each value, when fixing the unadsorbed values ∗, ∗=each value.
2. Variant B: in granulation process ∗=each value, when fixing the unadsorbed values ∗, ∗ = ∗.
3. Variant C: in granulation process ∗ = ∗, when fixing the unadsorbed values ∗, ∗=each value.
4. Variant D: in granulation process ∗ = ∗, when fixing the unadsorbed values ∗, ∗ = ∗.

In the granulation process, taking A and B strategies into consideration, stars evaluation
of the similarity to any other value is always positive. For C and D variants, stars are treated
as stars—so they evaluate as positive only when comparing with other stars. Those strategies bring
up the following granulation definition:

In the following variants, we see the process of granule formation, where we use two basic options
when comparing descriptors ∗ = each value and ∗ = ∗. Obviously, in the ∗ = each value variant,
the granules increase their size, i.e., after approximation they absorb potentially more damage values.

Considering ob1 as the center of the granule, ob2 as the compared object of the training system,
r as the indiscernibility degree of the descriptors, IND as the indiscernibility relation, and d as
the decision attribute, we have considered the following options of internal processes for repairing
unknown values. For readability, we have placed the legend of the applied markings in Table 1.

Table 1. The legend of the applied markings.

Name Description

TRAINi i-th training decision system, used in cross validation process
obi i-th object of selected decision system

gran granule
radius granulation radius
Attr set of conditional attributes
IND indiscernibility relation

d decision attribute
MaVot Majority Voting procedure

conc_dep concept-dependent variant of granulation
|set| cardinality of the set



Computers 2020, 9, 13 3 of 14

1.1.1. For Variant ∗ = each Value, the Granulation Process of the i-th Training Set TRAINi Looks as
Follows (A, B Variants)

granconc_dep,∗=each value
radius (ob1) = {ob2 ∈ TRAINi :

|IND∗=each value(ob1, ob2)|
|Attr| ≤ radius & d(ob1) = d(ob2)},

for IND defined as

IND∗=each value(ob1, ob2) = {a ∈ Attr : a(ob1) = a(ob2) ‖ a(ob1) = ∗ ‖ a(ob2) = ∗}.

where & means AND, ‖ means OR.

1.1.2. For Variant ∗ = ∗, The Granulation Process of the Set TRAINi Looks as Follows (C, D Variants)

granconc_dep,∗=∗
radius (ob1) = {ob2 ∈ TRAINi :

|IND∗=∗(ob1, ob2)|
|Attr| ≤ radius & d(ob1) = d(ob2)},

for IND defined as
IND∗=∗(ob1, ob2) = {a ∈ Attr : a(ob1) = a(ob2)}.

1.1.3. For Variant ∗ = each Value, the Way We are Fixing the Unadsorbed Values of TRAINi Looks as
Follows (A, C Variants)

In this variant, the saved stars are replaced with the most frequently appearing attribute value of
the training system.

For variant A, granule surrounding the defective sample MaVot(granconc_dep,∗=each value
radius (ob1))

(further mark as temp) looks like the below:

if aj(temp) = ∗,

The repairing process looks as follows:

granconc_dep,∗=each value
radius,aj

(temp) = {ob2 ∈ TRAINi :
|IND∗=each value

aj
(temp, ob2)|

|Attr| ≤ radius & d(temp) = d(ob2)},

IND is defined as

IND∗=each value
aj

(temp, ob2) = {a ∈ Attr : (a(temp) = a(ob2) ‖ a(temp) = ∗ ‖ a(ob2) = ∗) & aj(ob2)! = ∗}.

For variant C, granule surrounding the defective sample MaVot(granconc_dep,∗=∗
radius (ob1)) (further

mark as temp2) looks like the below:

if aj(temp2) = ∗,

The repairing process looks as follows:

granconc_dep,∗=each value
radius,aj

(temp2) = {ob2 ∈ TRAINi :
|IND∗=each value

aj
(temp2, ob2)|

|Attr| ≤ radius & d(temp2) = d(ob2)},
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IND is defined as

IND∗=each value
aj

(temp2, ob2) = {a ∈ Attr : (a(temp2) = a(ob2) ‖ a(temp2) = ∗ ‖ a(ob2) = ∗) & aj(ob2)! = ∗}.

1.1.4. For Variant ∗ = ∗, the Way We Fix the Unabsorbed Values of TRAINi Looks as Follows
(B, D Variants)

In this variant, the saved stars are completed with the most frequently appearing attribute value
of the training system.

For variant B, granule surrounding the defective sample MaVot(granconc_dep,∗=each value
radius (ob1))

(further mark as temp3) can be defined as follows:

granconc_dep,∗=∗
radius,aj

(temp3) = {ob2 ∈ TRAINi :
|IND∗=∗aj

(temp3, ob2)|
|Attr| ≤ radius & d(temp3) = d(ob2)},

IND is defined as

IND∗=∗aj
(temp3, ob2) = {a ∈ Attr : a(temp3) = a(ob2) & aj(ob2)! = ∗}.

For variant D, the granule surrounding the defective sample MaVot(granconc_dep,∗=∗
radius (ob1))

(further mark as temp4) looks like that shown below:

granconc_dep,∗=∗
radius,aj

(temp4) = {ob2 ∈ TRAINi :
|IND∗=∗aj

(temp4, ob2)|
|Attr| ≤ radius & d(temp4) = d(ob2)},

IND is defined as

IND∗=∗aj
(temp4, ob2) = {a ∈ A : a(temp4) = a(ob2) & aj(ob2)! = ∗}.

2. Homogenous Granulation in ∗ = ∗ and ∗ = each value Variant

For IND∗=each value(ob1, ob2), and variant ∗ = each value, we create the granule,

granhomogenous,∗=each value
ru = {ob2 ∈ U : |granconc_dep,∗=each value

ru | − |gran∗=each value
ru | == 0,

f or minimal ru f ul f ills the equation}

granconc_dep,∗=each value
ru = {ob2 ∈ U :

IND∗=each value(ob1, ob2)

|Attr| ≤ ru & d(ob1) == d(ob2)}

gran∗=each value
ru = {ob2 ∈ U :

IND∗=each value(ob1, ob2)

|Attr| ≤ ru}

ru = { i
|Attr| , where i = 0., 1., ..., |Attr|}

in case of ∗ = ∗ variant and earlier defined IND∗=∗(ob1, ob2), the granule is as follows:

granhomogenous,∗=∗
ru = {ob2 ∈ U : |granconc_dep,∗=∗

ru | − |gran∗=∗ru | == 0,

f or minimal ru f ul f ills the equation}

granconc_,∗=∗
ru = {ob2 ∈ U :

IND∗=∗(ob1, ob2)

|Attr| ≤ ru & d(ob1) == d(ob2)}
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gran∗=∗ru = {ob2 ∈ U :
IND∗=∗(ob1, ob2)

|Attr| ≤ ru}

ru = { i
|Attr| , where i = 0., 1., ..., |Attr|}

3. Testing Session

This section is describing the experimental part followed by presentation of the results.
The effectiveness was calculated on an artificially damaged datasets (10 percent of the data has
been replaced with stars) chosen from UCI Repository [30].

3.1. The Steps of the Procedure

(i) Selected dataset was uploaded,
(ii) The data have been prepared for the Cross Validation 5 model,
(iii) The TRAINcomplete

i was granulated using a proper variant,
(iv) The TESTi was classified based on TRAINcomplete

i using kNN (the nil case),
(v) TRAINcomplete

i was filled with a fixed percentage of random stars;
(vi) TRAINi was fixed by granulation based on the chosen variant—A, B, C, or D
(vii) classification of TESTi was performed based on a fixed training system using kNN,
(viii) the average result of the classification was calculated from all of the folds,

We perform the procedure five times, receiving the mean value from each test 5Cross_V5).

3.2. Verification of Results Stability

We have computed an additional parameter to show the bias of accuracy, defined as follows:

Bias_Acc =
∑5

i=1(max(accuracyCross_V5
1 , accuracyCross_V5

2 , ..., accuracyCross_V5
5 )− accuracyCross_V5

i )

5
, (1)

for

accuracy =
∑5

i=1 accuracyCross_V5
i

5
.

The classifier used for our experiments is a classical kNN, where the smallest summary distance of
k-nearest objects indicates the decision parameter value. k parameters are estimated with the Cross_V5
method on a sample of data, which resulted in k = 5 for Australian Credit. k = 3 for Pima Indians
Diabetes, k = 19 for Heart Disease, k = 3 for Hepatitis, and k = 18 for the German Credit data set.
We have selected the kNN classifier for testing due to the fact that, in past tests, testing other granulation
variants to absorb unknown values, we used the same classification variant as the base classifier.
Our performance tests, NB classifier, kNN, SVM, and deep neural networks, showed that kNN is fully
comparable with the best classifiers in the context of granular reflection based classification.

3.3. Overview of the Testing Results

The results of missing values absorption using concept dependent granulation are shown in
Tables 2–6. For homogeneous granulation, please refer to Tables 7–11. As a conclusion of the research
presented in [22], we can say that granulation is an effective technique of absorbing some degree of
missing values placed in the dataset. Our observations were proved by comparable classification results
with the non-missing values data case. We need to point out that granulation brings another important
benefit—it can significantly (up to 80 percent) reduce the number of objects used for classification.
As shown in [22], this behavior strictly depends on the diversity of used datasets. Using strategies A
and B for lower values of granulation radius, the approximation is faster because the ∗ = each value
variant causes a higher number of objects in the granules. In case of ∗ = ∗, stars can increase diversity
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of the data and consequently a higher number of granules containing fewer number of objects than in
the ∗ = each value case.

Table 2. Missing values handling using conc_dep granulation technique; 5 × Cross_V5; A, B, C, D
variants vs. nil case (classification based on original, undamaged training system); Australian Credit;
synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation (1);
Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

radius nil A B C D nil A B C D

0 0.772 0.773 0.773 0.773 0.773 0.002 0.005 0.005 0.005 0.005
0.0714286 0.772 0.773 0.773 0.772 0.773 0.002 0.005 0.005 0.006 0.006
0.142857 0.77 0.773 0.772 0.773 0.773 0.012 0.005 0.006 0.01 0.01
0.214286 0.79 0.776 0.777 0.805 0.795 0.01 0.011 0.013 0.026 0.009
0.285714 0.798 0.777 0.778 0.812 0.808 0.012 0.015 0.017 0.017 0.008
0.357143 0.815 0.783 0.778 0.829 0.829 0.018 0.017 0.015 0.008 0.008
0.428571 0.837 0.788 0.794 0.842 0.837 0.016 0.008 0.003 0.012 0.006

0.5 0.838 0.82 0.818 0.841 0.848 0.011 0.008 0.017 0.01 0.016
0.571429 0.847 0.831 0.824 0.846 0.849 0.011 0.012 0.022 0.01 0.006
0.642857 0.849 0.839 0.835 0.852 0.848 0.014 0.014 0.009 0.005 0.007
0.714286 0.851 0.836 0.833 0.855 0.85 0.008 0.011 0.013 0.006 0.006
0.785714 0.858 0.837 0.84 0.846 0.852 0.013 0.008 0.01 0.012 0.013
0.857143 0.861 0.849 0.848 0.848 0.849 0.013 0.008 0.007 0.02 0.011
0.928571 0.863 0.849 0.847 0.848 0.85 0.011 0.012 0.012 0.011 0.011

1 0.862 0.849 0.849 0.85 0.85 0.012 0.008 0.008 0.011 0.011

(b)

Gran_Size

radius nil A B C D

0 2 2 2 2 2
0.0714286 2.48 2 2 2.92 2.84
0.142857 3.6 2.12 2.16 4.56 4.48
0.214286 5.08 2.88 2.88 8.6 8.12
0.285714 8.44 4.24 4.28 15.36 15.52
0.357143 15.28 6.4 6.2 32.88 33.16
0.428571 32.24 9.16 9.88 70.12 70.08

0.5 70.04 18.4 17.88 148.8 148.48
0.571429 157.76 33.4 34.68 283.36 283.28
0.642857 318.04 73.44 73.64 431.72 431.56
0.714286 467.12 165 163.6 520.72 521.04
0.785714 536.08 322.56 321.24 546.76 546.72
0.857143 547.16 469.64 469.96 550.76 550.8
0.928571 548.72 536.48 536.52 551.8 551.8

1 552 550.56 550.56 552 552
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Table 3. Missing values handling using conc_dep granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
Pima Indians Diabetes; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in
Equation (1); Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

radius nil A B C D nil A B C D

0 0.598 0.606 0.606 0.606 0.606 0.008 0.014 0.014 0.014 0.014
0.125 0.598 0.601 0.607 0.586 0.601 0.024 0.005 0.015 0.006 0.015
0.25 0.621 0.598 0.611 0.622 0.626 0.018 0.027 0.028 0.005 0.01
0.375 0.644 0.606 0.594 0.647 0.645 0.026 0.022 0.03 0.023 0.006

0.5 0.647 0.591 0.581 0.64 0.64 0.01 0.029 0.055 0.028 0.006
0.625 0.649 0.6 0.595 0.64 0.64 0.004 0.051 0.038 0.01 0.006
0.75 0.651 0.633 0.63 0.633 0.636 0.006 0.012 0.024 0.006 0.014
0.875 0.651 0.637 0.638 0.637 0.636 0.006 0.011 0.011 0.008 0.014

1 0.651 0.636 0.636 0.636 0.636 0.006 0.014 0.014 0.014 0.014

(b)

Gran_Size

radius nil A B C D

0 2 2 2 2 2
0.125 34.2 3.2 3.16 32.56 31.96
0.25 154.44 9.24 8.44 146.92 147.44
0.375 365.8 30.4 28.96 363.48 363.28

0.5 539.36 94.12 90.16 546.92 547.08
0.625 609.92 250.08 248.36 610.08 610.12
0.75 614.4 485.6 490.72 614.24 614.24
0.875 614.4 597.48 598.6 614.4 614.4

1 614.4 613.48 613.48 614.4 614.4

Table 4. Missing values handling using conc_dep granulation technique; 5 × Cross_V5; A, B, C, D
variants vs. nil case (classification based on original, undamaged training system); Heart disease;
synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation (1);
Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

radius nil A B C D nil A B C D

0 0.787 0.787 0.787 0.787 0.787 0.016 0.021 0.021 0.021 0.021
0.0769231 0.787 0.787 0.787 0.789 0.789 0.016 0.021 0.021 0.019 0.019
0.153846 0.788 0.787 0.787 0.794 0.794 0.019 0.021 0.021 0.013 0.013
0.230769 0.798 0.792 0.791 0.809 0.811 0.01 0.016 0.016 0.013 0.019
0.307692 0.807 0.79 0.787 0.813 0.815 0.012 0.021 0.017 0.02 0.015
0.384615 0.827 0.793 0.798 0.823 0.823 0.006 0.01 0.017 0.01 0.007
0.461538 0.824 0.813 0.81 0.821 0.817 0.013 0.016 0.019 0.008 0.005
0.538462 0.834 0.804 0.812 0.825 0.826 0.007 0.003 0.01 0.016 0.004
0.615385 0.823 0.82 0.821 0.827 0.831 0.014 0.024 0.016 0.006 0.006
0.692308 0.833 0.819 0.819 0.831 0.827 0.012 0.018 0.018 0.006 0.013
0.769231 0.829 0.823 0.823 0.832 0.83 0.004 0.01 0.01 0.009 0.007
0.846154 0.829 0.827 0.827 0.828 0.83 0.008 0.01 0.014 0.013 0.007
0.923077 0.829 0.829 0.829 0.83 0.83 0.008 0.008 0.008 0.007 0.007

1 0.829 0.83 0.83 0.83 0.83 0.008 0.007 0.007 0.007 0.007

(b)

Gran_Size

radius nil A B C D

0 2 2 2 2 2
0.0769231 2.04 2 2 2.76 2.76
0.153846 3.16 2.16 2.2 4.56 4.56
0.230769 4.76 2.8 2.8 8 8
0.307692 8.96 3.8 3.76 15.12 15.12
0.384615 16.64 6 5.92 30.4 30.28
0.461538 34.44 11.16 11.24 60.68 60.56
0.538462 70.12 20.12 20.12 111.76 111.76
0.615385 127.32 38.4 38.4 168.68 168.68
0.692308 181.16 78.84 79.2 204.12 204.12
0.769231 210.56 142.16 142.16 214.56 214.56
0.846154 216 192.44 192.44 215.96 215.96
0.923077 216 212.72 212.72 216 216

1 216 215.64 215.64 216 216
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Table 5. Missing values handling using conc_dep granulation technique; 5 × Cross_V5; A, B, C, D
variants vs. nil case (classification based on original, undamaged training system); Hepatitis;
synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation (1);
Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

radius nil A B C D nil A B C D

0 0.817 0.822 0.822 0.822 0.822 0.022 0.017 0.017 0.017 0.017
0.0526316 0.817 0.822 0.822 0.822 0.822 0.022 0.017 0.017 0.017 0.017
0.105263 0.817 0.822 0.822 0.822 0.822 0.022 0.017 0.017 0.017 0.017
0.157895 0.817 0.822 0.822 0.822 0.822 0.022 0.017 0.017 0.017 0.017
0.210526 0.817 0.822 0.822 0.823 0.823 0.022 0.017 0.017 0.022 0.022
0.263158 0.817 0.822 0.822 0.83 0.83 0.022 0.017 0.017 0.015 0.015
0.315789 0.825 0.822 0.822 0.843 0.843 0.021 0.017 0.017 0.015 0.015
0.368421 0.823 0.825 0.825 0.843 0.843 0.009 0.021 0.021 0.015 0.015
0.421053 0.836 0.826 0.823 0.857 0.859 0.022 0.019 0.022 0.046 0.044
0.473684 0.868 0.841 0.84 0.872 0.871 0.009 0.017 0.012 0.025 0.026
0.526316 0.863 0.852 0.849 0.883 0.89 0.008 0.013 0.015 0.021 0.026
0.578947 0.877 0.859 0.855 0.874 0.879 0.019 0.031 0.028 0.01 0.012
0.631579 0.883 0.871 0.863 0.885 0.872 0.021 0.026 0.014 0.018 0.025
0.684211 0.889 0.883 0.877 0.885 0.879 0.008 0.008 0.013 0.025 0.025
0.736842 0.881 0.892 0.885 0.893 0.881 0.015 0.031 0.037 0.023 0.028
0.789474 0.893 0.885 0.89 0.898 0.88 0.004 0.05 0.045 0.025 0.017
0.842105 0.892 0.879 0.868 0.893 0.886 0.005 0.018 0.022 0.023 0.017
0.894737 0.892 0.876 0.883 0.875 0.883 0.005 0.021 0.014 0.035 0.034
0.947368 0.892 0.875 0.876 0.884 0.884 0.005 0.022 0.027 0.026 0.019

1 0.892 0.884 0.884 0.884 0.884 0.005 0.019 0.019 0.019 0.019

(b)

Gran_Size

radius nil A B C D

0 2 2 2 2 2
0.0526316 2 2 2 2 2
0.105263 2 2 2 2.04 2.04
0.157895 2.08 2 2 2.24 2.24
0.210526 2.32 2 2 3.08 3.08
0.263158 2.72 2.12 2.12 4.32 4.32
0.315789 3.44 2.24 2.24 6.24 6.24
0.368421 5.24 2.96 3 9.6 9.6
0.421053 7.48 3.76 3.76 15.52 15.52
0.473684 11.72 5 5 24.88 24.88
0.526316 19.28 7.56 7.56 38.52 38.52
0.578947 30.48 11.96 11.96 58.24 58.24
0.631579 47.68 18.28 18.48 79.8 79.8
0.684211 69.96 28.72 28.72 99.4 99.4
0.736842 90 46.52 46.56 112 112
0.789474 109.48 69.28 69.28 119.2 119.2
0.842105 116.96 94.2 94.2 122.48 122.48
0.894737 121 111.32 111.36 123.56 123.56
0.947368 121.96 119.84 119.8 123.96 123.96

1 124 123.36 123.36 124 124
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Table 6. Missing values handling using conc_dep granulation technique; 5 × Cross_V5; A, B, C, D
variants vs. nil case (classification based on original, undamaged training system); German credit;
synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation (1);
Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

radius nil A B C D nil A B C D

0 0.564 0.57 0.57 0.57 0.57 0 0.012 0.012 0.012 0.012
0.05 0.564 0.57 0.57 0.57 0.57 0 0.012 0.012 0.012 0.012
0.1 0.564 0.57 0.57 0.57 0.57 0 0.012 0.012 0.012 0.012
0.15 0.564 0.57 0.57 0.58 0.58 0 0.012 0.012 0.01 0.01
0.2 0.569 0.57 0.569 0.585 0.58 0.001 0.012 0.01 0.005 0.007
0.25 0.584 0.57 0.569 0.606 0.604 0.002 0.012 0.01 0.01 0
0.3 0.617 0.578 0.583 0.647 0.649 0.006 0.011 0.007 0.004 0.003
0.35 0.647 0.585 0.583 0.673 0.674 0.028 0.016 0.013 0.006 0.002
0.4 0.657 0.597 0.598 0.692 0.692 0.008 0.003 0.002 0.006 0.01
0.45 0.696 0.64 0.635 0.687 0.682 0.002 0.014 0.014 0.003 0.002
0.5 0.7 0.664 0.657 0.716 0.71 0.003 0.008 0.009 0.009 0.002
0.55 0.698 0.64 0.639 0.718 0.716 0.006 0.018 0.016 0.005 0.016
0.6 0.713 0.688 0.694 0.725 0.719 0.002 0.008 0.002 0.006 0.004
0.65 0.726 0.688 0.686 0.732 0.718 0.004 0.017 0.007 0.002 0.006
0.7 0.73 0.714 0.716 0.728 0.726 0.01 0.004 0.002 0.002 0
0.75 0.739 0.721 0.723 0.726 0.726 0.004 0.015 0.006 0 0.001
0.8 0.735 0.723 0.725 0.723 0.724 0.004 0.001 0.001 0.004 0.002
0.85 0.728 0.722 0.726 0.717 0.72 0.013 0.004 0.001 0.006 0.007
0.9 0.728 0.721 0.722 0.719 0.715 0.013 0.002 0.001 0.006 0.004
0.95 0.727 0.715 0.715 0.717 0.715 0.013 0.004 0.005 0.004 0.004

1 0.727 0.715 0.715 0.715 0.715 0.012 0.004 0.004 0.004 0.004

(b)

Gran_Size

radius nil A B C D

0 2 2 2 2 2
0.05 2 2 2 2.2 2.2
0.1 2.12 2 2 2.68 2.76

0.15 2.28 2.12 2.12 4.36 4.48
0.2 3.8 2.12 2.12 5.8 5.44

0.25 4.64 2.32 2.52 8.36 8.68
0.3 7.64 3.28 3.52 14 13.96

0.35 11.64 4.44 4.44 23.6 23.64
0.4 19.44 7 6.96 42.64 42.76

0.45 34.48 9.92 9.68 78.48 78.32
0.5 60.48 18.16 18.16 142.24 142.36

0.55 104.2 26.52 26.52 247.16 248.76
0.6 186.76 49.36 49.2 400.92 398.32

0.65 317.76 84.28 87.48 569.32 573.2
0.7 486.04 160.16 160 710.44 708.8

0.75 650.08 284.2 276.24 772.68 772.2
0.8 750.72 455.84 465.68 795.2 795.12

0.85 789.48 653.04 657.44 798.72 798.72
0.9 796.2 761 761.52 799.6 799.6

0.95 798.6 794.48 794.48 799.88 799.88
1 800 799.36 799.36 800 800
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Table 7. Missing values handling using conc_dep homogeneous granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
Australian Credit; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in
Equation (1); Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

nil A B C D nil A B C D

0.842 0.847 0.85 0.848 0.845 0.003 0.001 0.001 0.001 0.006

(b)

Gran_Size

nil A B C D

283.8 436.56 438 313.96 315.36

Table 8. Missing values handling using conc_dep homogeneous granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
Pima Indians Diabetes; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in
Equation (1); Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

nil A B C D nil A B C D

0.651 0.642 0.641 0.645 0.65 0.009 0.015 0.012 0.01 0.02

(b)

Gran_Size

nil A B C D

487.52 578.52 579.56 489.72 493.2

Table 9. Missing values handling using conc_dep homogeneous granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
Heart Disease; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation
(1); Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

nil A B C D nil A B C D

0.825 0.826 0.824 0.83 0.827 0.012 0.011 0.013 0.014 0.024

(b)

Gran_Size

nil A B C D

120.48 159.08 157.96 127.16 126.84
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Table 10. Missing values handling using conc_dep homogeneous granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
Hepatitis; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in Equation (1);
Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

nil A B C D nil A B C D

0.876 0.877 0.876 0.875 0.877 0.034 0.013 0.027 0.015 0.013

(b)

Gran_Size

nil A B C D

45.76 57.12 57.68 50.92 51.4

Table 11. Missing values handling using conc_dep homogeneous granulation technique; 5 × Cross_V5;
A, B, C, D variants vs. nil case (classification based on original, undamaged training system);
German credit; synthetic 10% damage; radius = indiscernibility ratio; Bias_Acc = defined in
Equation (1); Gran_Size = the number of training objects after granulation.

(a)

Accuracy Bias_Acc

nil A B C D nil A B C D

0.726 0.72 0.718 0.733 0.728 0.007 0.004 0.013 0.002 0.007

(b)

Gran_Size

nil A B C D

511.12 599.6 603.76 535.88 538.92

Comparing those results to the homogeneous granulation as a missing values absorption
method, those gave the following findings. This technique is increasing the number of granules
in the coverings—see Tables 7–11—and the indiscernability, in the context of decision classes, is
lowering. This gives a higher probability of finding an object which breaks the homogeneity of
the formed granule. Despite the fact that strategies A and B are returning smaller granules than in
case C or D, the final granular reflection systems are bigger.

For given parameters, our methods work in a stable way, and the results are comparable to
the nil case. A single run which is performed during the homogeneous granulation process is its
biggest advantage, which might be the decisive factor when looking for the most robust method.

The results, showing our techniques using the strategy of completing unknown values with
the most common values [31], can be found in Table 12. As we can see, they are equivalent to
the results for the radius 1, in our strategies, where there is no approximation of training systems.
Additionally, in Table 13, we have included degrees of homogeneity of the examined systems, i.e.,
the range of radii that appears during the homogeneous granulation process.
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Table 12. Missing values handling using the most common value strategy; 5 × Cross_V5;
we consider repair options when ∗ =each value, ∗ = ∗ and nil case (classification based on
original, undamaged training system) synthetic 10% damage; Bias_Acc = defined in Equation (1);
Trn_Size = Average number of training objects, d1 = Australian Credit, d2 = Pima Indians Diabetes,
d3 = Heart Disease, d4 = Hepatitis, d5 = German Credit.

Accuracy Bias_Acc Trn_Size

Data Set nil ∗ = Each Value ∗ = ∗ nil ∗ = Each Value ∗ = ∗ nil ∗ = Each Value ∗ = ∗
d1 0.862 0.849 0.849 0.012 0.008 0.008 552 550.56 550.56
d2 0.651 0.636 0.636 0.006 0.014 0.014 614.4 613.48 613.48
d3 0.829 0.83 0.83 0.008 0.007 0.007 216 215.64 215.64
d4 0.892 0.884 0.884 0.005 0.019 0.019 124 123.36 123.36
d5 0.727 0.715 0.715 0.012 0.004 0.004 800 799.36 799.36

Table 13. The degree of homogeneity—in the sense of homogeneous granulation—of the examined systems.

Name Radii_Range

Australian− credit ru ≥ 0.5
Diabetes ru ≥ 0.25

Heartdisease ru ≥ 0.461
Hepatitis ru ≥ 0.579

German− credit ru ≥ 0.6

4. Conclusions

Comparing concept dependent and homogeneous granulation as a missing values absorption
technique, we can point to the following conclusions.

The ∗ = each value variant used with concept dependent granulation generates more approximate
datasets (diversity reduction) while the ∗ = ∗ case may increase the diversity. The granules are smaller
for C and D strategies compared to the strategies A and B. Granulation of systems containing missing
values reduces its size to a much higher degree than the granulation of undamaged datasets.

We can observe specific results when using homogeneous granulation as a missing values
absorption technique. When comparing the results to the nil case—granulation of the undamaged
dataset—granules in A and B strategies are smaller than those from C and D. It is happening because
the ∗ = each value case is breaking the homogeneity of the decision classes to a higher degree than
the ∗ = ∗ case. The approximation level is decreasing for damaged datasets.

Granulation techniques are absorbing missing values in an effective way as confirmed by
the classification results of the Cross_V model. The most missing values are repaired during
the granulation process no matter which technique is being used.

In our research, we are going to choose the most effective technique among known classifiers for
specific types of data. We also plan to implement and check effectiveness of homogeneous granulation
in the context of classification based on deep neural networks.
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