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Abstract: With the growing popularity of cloud computing, it is convenient for data owners to
outsource their data to a cloud server. By utilizing the massive storage and computational resources
in cloud, data owners can also provide a platform for users to make query requests. However, due to
the privacy concerns, sensitive data should be encrypted before outsourcing. In this work, a novel
privacy preserving K-nearest neighbor (K-NN) search scheme over the encrypted outsourced cloud
dataset is proposed. The problem is about letting the cloud server find K nearest points with respect
to an encrypted query on the encrypted dataset, which was outsourced by data owners, and return
the searched results to the querying user. Comparing with other existing methods, our approach
leverages the resources of the cloud more by shifting most of the required computational loads, from
data owners and query users, to the cloud server. In addition, there is no need for data owners to
share their secret key with others. In a nutshell, in the proposed scheme, data points and user queries
are encrypted attribute-wise and the entire search algorithm is performed in the encrypted domain;
therefore, our approach not only preserves the data privacy and query privacy but also hides the
data access pattern from the cloud server. Moreover, by using a tree structure, the proposed scheme
could accomplish query requests in sub-liner time, according to our performance analysis. Finally,
experimental results demonstrate the practicability and the efficiency of our method.
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1. Introduction

By outsourcing data and/or tasks to the cloud, even devices with low computational ability can
conduct analytic works with a large amount of data. Otherwise, data owners need to build a data
warehouse for hosting their data so that other users can make queries on it, for further researches or
services. Cloud server does benefit to the above application scenarios; however, it is well-known that
security issues are arisen if sensitive data are involved. For example, the medical records have not
yet been stored on the cloud platform because the records may contain sensitive information which
needs specific privacy protection before being released to public. A compromised cloud server might
expose the medical dataset outsourced from medical data owners or infringe upon patients’ privacy by
leaking out the associated symptoms or diagnosis results.

For the protection of sensitive data, data owners usually encrypt their data before outsourcing
them to the cloud. Moreover, to make sure none of the others can retrieve the private data, no one
except the data owner themselves can access the decryption key. At the same time, other users who
want to access the data can make query requests to the cloud. Interestingly, sometimes these users also
want to preserve their query privacy from data owners and the cloud server. Therefore, the query
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would be encrypted as well. The above-mentioned security issues can be solved if we can process the
queries directly over the encrypted dataset and make sure that the whole scheme works as a searchable
privacy preserving data storage system.

In this work, we focus on solving the K-nearest neighbor (K-NN) search problem over the
encrypted dataset in the cloud. The K-NN search is a basic method widely used for classification and
regression in pattern recognition or data mining areas. The K-NN search algorithm takes a dataset and
a query as input and outputs K data points closest to the query. Both data points in the dataset and
the query can be multi-dimensional data and the measurement of the distance between them is the
norm defined in a specific space, usually the Euclidean space. In the proposed scheme, data points are
encrypted attribute-wise and so is the query. The entire search algorithm is performed in the encrypted
domain and the user obtains the unencrypted results relative to his query. Apparently, the user has to
be trusted by data owners since they can obtain a small portion of the plaintext data, eventually.

There are several works proposed to solve the pre-described privacy-preserving K-NN (PPkNN)
search problem, but all of them have certain limitations, such as the need of sharing the data owner’s
decryption key to others, adding additional storage to the user’s end, using two non-colluding servers,
and refining the resultant data by the query user, etc. In this work, we try to overcome those limitations
and find a new approach which meets the needs of privacy preserving and searchability simultaneously.
Moreover, unlike most of existing methods that search the K-NN results linearly through the entire
dataset, our approach leverages a tree structure, named R-tree [1], to store the data, making the search
complexity faster than the linear ones. In short, the contributions of our work can be summarized
as follows:

a. We build a new encryption scheme by combining the ideal secure order-preserving encryption [2]
with the well-known Paillier cryptosystem [3] and show that the resultant scheme is still
ideally secure.

b. We propose a PPkNN search scheme based on the new encryption method described above,
which can perform comparison and addition operations in the encrypted domain, and use an
R-tree structure to achieve sub-linear search complexity.

c. Benefiting from the new encryption method, the construction of an R-tree can also be done by
the cloud server on the encrypted domain, which can reduce the computational overhead of data
owners and enhance the query user’s security by preventing data owners from knowing the data
access pattern.

d. We address and overcome the limitations of related works and make a comparison of our work
with them.

e. Experimental results over synthetic datasets show that our method is practical and efficient.
Moreover, the workloads on user ends are very lightweight.

The rest of this paper is organized as follows. In Section 2, we survey some related works and
discuss their limitations. The preliminary backgrounds to understand our scheme are introduced in
Section 3 and the proposed work is addressed in Section 4. The security guarantees, such as the ideal
security definition, the data privacy, and the query privacy, are analyzed in Section 5. In Section 6,
we evaluate the performances of our work by complexity analyses and demonstrate them by the
experimental results. Finally, Section 7 concludes this work.

2. Related Works

2.1. A Brief Survey of the Access Control Mechanisms

As mentioned by one of the anonymized reviewers, cloud computing provides the on demand and
scalable services, therefore, the corresponding environment is highly dynamic. In addition to seeking
for the assistance of cryptographic techniques, applying the access control mechanism is another
fundamental and important choice that can meet the security requirements in the cloud environment.
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The main goal of applying access control mechanism is to restrict the users from performing any
unauthorized activity to protect the sensitive information.

As summarized in [4], there are wide variety of models, methods, and policies proposed for
designing an access control system. Each access control system has its own attributes, methods, and
functions based on set of policies. For example, the Mandatory Access Control model (MAC) [5] is
an access control policy in which a subject or request initiator can perform some sort of operation on
a particular object or resource. When a subject or user attempts to access an object or resources, an
authorization rule is enforced to determine whether the access can take place by examining the security
attributes. Discretionary Access Control model (DAC) [6] is another well-known access control policy
which determines the owner of an object. The owner decides who is allowed to access the service
based on users’ identities. Some researchers analyze the dynamic requirements for cloud environment
and introduce the Role Based Access Control model (RBAC) [7] to the cloud environment. RBAC is an
access control policy determined by the systems rather than by the owner itself. RBAC model can only
be applied within a closed network and it is based on identification. It only checks the user identity
and roles assigned to users and based on this role it checks if the user is authorized or not.

However, as commented also in [4], both MAC and DAC can only be applied to specific
environments like operating and database management systems, while RBAC model fails to check
the malicious activity done by the authorized users. In facing of the above-mentioned shortages, the
trust-based mechanisms (TBMs) [8] and the context-aware RBAC (CA-RBAC) [9–12], which well fit
today’s dynamic environments provided by cloud and fog computing, are arisen. Both TBMs and
CA-RBAC do effectively secure the sensitive information by authorizing legal users and protecting
the cloud resources from the malicious activities. However, the focus of this work is to find
cryptography-based security solution for Cloud-based K-NN search problem, and a complete survey
of TBMs and AC-RBAC cannot be provided within such a limited space. Interested readers can find
the corresponding details in the listed references and the references therein.

2.2. A General Survey of Privacy-Preserving K-NN Problem

As mentioned in Section 1, many works have been proposed to solve the secure K-NN search
problem over the encrypted outsourced dataset in the cloud. In [13], a PPkNN approach was
proposed to provide the privacy of dataset, input query, kNN result, and data access pattern, but it
is vulnerable to collusion attacks. In other words, it assumed that there is neither collusion among
cloud servers nor collusion between any data owner and cloud server. In [14], a privacy preserving
medical diagnosis system using E-health was proposed, in which the cloud server worked in a privacy
preserving manner even though the medical datasets are owned by multiple data owners. As a
building block of the proposed diagnosis system, the authors designed a deterministic K-NN based
privacy preserving protocol for finding the k data with the highest similarity to a queried symptom,
which reduces the average running time by 35% compared to that of a previous probabilistic-behaved
work [15]. Basically, this PPkNN protocol is constructed on the basis of multiparty computation
(MPC) based on secret sharing, and therefore works in a distributed manner without any trusted
server. A survey about existing works related to PPkNN can be found in [14]. Similarly, in [16], the
authors focused on solving the clustering problem over encrypted cloud data. In particular, they
proposed a privacy-preserving k-means clustering technology over encrypted multi-dimensional
cloud data by leveraging the scalar-product-preserving encryption primitive, called PPK-means.
The proposed technique is able to achieve efficient multi-dimensional data clustering as well as
preserve the confidentiality of the outsourced cloud data. The authors claimed that their work is the
first one to explore the privacy-preserving multi-dimensional data clustering in the cloud computing
environment. Extensive experiments in simulation data-sets and real-life data-sets demonstrate that
the proposed PPK-means is secure, efficient, and practical.
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2.3. A Survey of the Most Related Works

In this subsection, we briefly describe the most related works and their corresponding
characteristics such as the scheme structure, the main idea of searchable encryption, the security
definition and the corresponding performances.

Wong et al. [17] presented an asymmetric scalar-product preserving encryption (ASPE) scheme to
perform the secure K-NN computation on encrypted databases. The word asymmetric indicates the fact
that the data owner and the query user perform their encryption in different ways. The scalar-product
between encrypted query and data points is preserved and the encryption equations built by ASPE
allow the user to find out the K closest points among all the encrypted data. The data owner is forced to
share the decryption key with users so that they can recover the encrypted results after receiving them.
We consider that as a risk of revealing more unexpected private information to users. In addition, the
method simply uses linear scan to find the results, but the requirement of complexity we consider is a
sub-linear one.

Hu et al. [18] discussed the general problem of query processing over untrusted data cloud
including K-NN query and range query. Unlike most of the other methods which simply outsourced
the data to cloud server, they restructured their data based on an R-tree and sent the associated indexes
to users. The query processing procedure is executed by the cloud server, who has the decryption key,
and the user. They leverage a privacy homomorphism encryption method to make the secure version
of K-NN best first search (BFS) algorithm over R-tree executable. However, most of the computational
cost associated with the processing procedure is endured at the user end which is against the original
intention of using the cloud. Moreover, the indexes of R-tree need to be stored which consumes
additional memories from the user. Furthermore, the scheme was proved not secure under probing
attack [19]. After sending an adequate number of query requests, the user is able to recover the
plaintext owned by the data owner.

Some security issues of [17,18] have been reported by Yao et al. in their work [19]. They revisited
the above two methods and proved that they are insecure under chosen plaintext attack by introducing
a new attack model. Another secure nearest neighbor finding scheme using a secure Voronoi Diagram
(SVD) was presented in [19]. The SVD scheme induces a partition of the dataset and the data owner
encrypts those partitions and sends them to the server with their identifiers. The query user finds
the nearest neighbor of his query by asking server to return the partitions relative to the results.
However, the above-mentioned limitations such as the need of sharing decryption key with users
and the additional storage consumption (to store the descriptions of partitioned data) still exist in
this scheme. Users also need to provide extra computational resources to retrieve the accurate results
among the returned partitions. Worst of all, the construction of SVD on data with higher than two
dimensions needs large computational cost.

Considering the security level more strictly, Elmehdwi et al. [20] proposed a fully secure K-NN
search protocol over encrypted datasets in outsourced environment. They introduced several basic
security protocols, e.g., secure multiplication, secure squared Euclidean distance, secure minimum,
and secure bit-or with Paillier cryptosystem to build the whole secure scheme, which not only
preserve the data privacy and query privacy but also hide the data access pattern from the cloud
server. Unfortunately, the protocols are based on the setup of two non-colluding cloud servers and
the corresponding complicated protocols between the two servers leads to a long query response
time. Those characteristics are regard as the disadvantages of this fully secure scheme which may
handicap its value in practical usage. Our approach tries to relax the security guarantee of this
approach by preventing the data access pattern revealed to server into considerations so as to enhance
the practicability.

Wang et al. [21] proposed a practical method using the ideal secure order preserving encryption
and the R-tree structure to solve the similar problem on large-scale data. In their work, the search
procedure includes two interaction communications between the user and the server. In the first round
of interaction, the server narrows down the candidate results by identifying which minimum bounding
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rectangle (MBR) contains the query and sends the points within MBR back to the user. Then the user
creates a search box according to the nearest point in the returned set and sends it to the server, and the
server outputs all points in that box as the resulting set. One can see that this scheme, the same as [19],
does not return accurate results, and extra distance calculations must be operated by the user. The
problem structure of this work is also different from the ordinary ones, for example, in [21] a user plays
the roles of both the data owner and the query user. That is, if we want to allow a third-party user to
make a query request, the data owner needs to share out the decryption key, after all.

In addition, a few new works have been proposed to solve the same problem, but most of
them did not meet our needs as well. Those works either need two non-colluding servers as
model-assumption [22] or only return the indexes of search results [23,24]; moreover, decryption key
shared from the data owner is a must, if the user wants to obtain the unencrypted results.

In summary, plenty of privacy preserving K-NN search schemes have been proposed but all of
them have certain shortages and put up barriers on their usage in practice. On the other hand, our
approach achieves the relaxed security level, which preserves the data privacy of the data owner and
the query privacy of the query user but reveals the data access pattern to the cloud server. Notice that
the leakage of data access pattern is not an issue when the stored data has been encrypted. In other
words, without the decryption key, no damage occurs even if the server knows what ciphertext the
user has accessed. More importantly, the limitations of the other works have been released somewhat
by our scheme. We summarize the characteristics of the proposed scheme as follows and also show the
comparisons with some related works in Table 1:

a. The search complexity of our scheme is faster than linear.
b. The data owner does not have to share the decryption key to the cloud server or other query users.
c. Our approach does not need extra local storage at users’ end and consumes extremely small

computational resources.
d. The cloud server returns neither the approximate results nor the indexes of resultant data points,

but the accurate K-NN values.
e. Not only suitable for two dimensional spatial tuples, our approach can be extended to high

dimensional dataset, directly.
f. Comparing with some methods in which two non-colluding servers are required, one

honest-but-curious server is good enough to our scheme.

Table 1. The comparison between related works and the proposed scheme.

[13] [14] [15] [16] [17] Our Scheme

Sub-linear search complexity 5 3 3 5 3 3

No need to share private key with other 5 5 5 5 5 3

No need to store local data at user end 3 5 5 3 3 3

Return only accurate K-NN set 3 3 5 3 5 3

Applicable to high dimensional data 3 3 5 3 3 3

Single Sever 3 3 3 5 3 3

3. Preliminaries

For the ease of explanation, the three most important components of the proposed scheme: Paillier
Cryptosystem, Order-preserving Encryption, and R-tree will be briefly reviewed in this section.

3.1. Paillier Cryptosystem

Paillier cryptosystem is a probabilistic public key cryptographic system proposed by Pascal
Paillier in 1999 [3]. Since it is a secure and efficient cryptography along with the additive homomorphic
property, it has been utilized in many existing applications such as E-voting. The Paillier encryption
scheme, denoted as (KeyGen, Enc, Dec)paillier, is defined as follows:
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a. KeyGenpaillier

The key generation procedure is responsible for generating a pair of keys (pk, sk). Public key pk
is for data encryption and available to all public users in the system. Secret key sk is for decryption
and only the privilege member, e.g., official manager has the right to access it. A simplified variant of
generation steps [25] can be described as follows:

(1) Randomly select two large primes p and q, such that pq and (p− 1)(q− 1) are relatively prime,
i.e., gcd(pq, (p− 1)(q− 1)) = 1.

(2) Compute n = pq and λ = (p− 1)(q− 1).
(3) Compute g = n + 1 and µ = λ−1mod n.
(4) Public key pk is (n, g) and secret key sk is (λ, µ).

b. Encpaillier

The encryption procedure takes the plaintext message m ∈ Zn and pk as input, while the output
is the encrypted ciphertext c. Notation Epk(·) is used to represent the encryption procedure with the
encryption key pk. The following two steps complete the corresponding encryption process.

(1) Select a random number r ∈ Zn

(2) c = Epk(m) = gm
·rn mod n2

c. Decpaillier

The decryption procedure takes the ciphertext c ∈ Z∗
n2 and sk as input, while the output is the

decrypted plaintext message m. Notation Dsk(·) is used to represent the decryption procedure with the
decryption key sk. The decryption procedure can be represented by the following formulas.

m = Dsk(c) = L
(
cλ mod n2

)
·µ mod n (1)

where function L(x) = x−1
n .

The most well-known feature of Paillier cryptosystem is its additive homomorphic property,
which enables users to do additive operation directly in the encrypted domain without decrypting the
ciphertext first. The additive homomorphic property of Paillier cryptosystem, from the decryption
point of view, includes:

(1) The decryption of the product of two ciphertexts c1 and c2 can be realized by the
addition of the two corresponding plaintexts m1 and m2 directly, that is Dsk(c1·c2) =

Dsk
(
Epk(m1)·Epk(m2) mod n2

)
= Epk(m1 + m2 mod n).

(2) The decryption of a ciphertext c1 raised to the power of a plaintext m2 can be realized by
computing the product of the corresponding plaintexts m1 and m2 directly, that is Dsk(c1

m2) =

Dsk
(
Epk(m1)

m2 mod n2
)

= m1·m2 mod n.

3.2. Order-Preserving Encryption

Order-preserving encryption or order-preserving encoding (OPE) [26] is a special kind of
encryption scheme in which the order relationship between plaintext messages is preserved after the
encryption is done. The security of an ideal OPE should be defined with indistinguishability under
ordered chosen plaintext attacks (IND-OCPA) [27]. That means the ciphertexts of an OPE should
reveal nothing more but the ordering of the plaintexts. Popa et al. [2] presented the first ideal-security
protocol for OPE. They showed that the mutability of some ciphertexts is required for ideal-security
OPE even if the encryption model is already stateful and interactive. The proposed mutable order
preserving encoding (mOPE) protocol is conducted between a client (or data owner) and an OPE
server. A basic mOPE protocol scheme, denoted as (KeyGen, InitState, Enc, Dec, Order)mOPE, can be
understood as follows:
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a. KeyGenmOPE

The client takes a security parameter κ as input and generates the secrete key sk by the key
generation module of any symmetric deterministic encryption scheme (SDES), which obeys the pseudo
random function security property [28].

b. InitStatemOPE

The server initializes its state st by creating a binary search tree, or a b-ary B-tree, as OPE tree and
a table as OPE table. The nodes on an OPE tree after encryption contain the ciphertexts and the values
of the decrypted ciphertexts in the tree’s left subtree nodes are smaller than those in the right subtree
ones. The OPE table records a mapping from each ciphertext to its corresponding OPE value.

c. EncmOPE

The encryption algorithm of mOPE is run interactively by a client and a server. The client takes sk
as input to encrypt the original plaintext m. After running the algorithm, the server state st is updated.
The full encryption scheme can be addressed as follows:

(1) Client: Encrypt m by SDES and send the ciphertext c to the server.
(2) Server: If OPE table already contains c, do nothing.
(3) Client↔ Server: Otherwise the client helps the server insert c to OPE tree by starting a traversal

from the root of OPE tree:

(a) The server sends back the ciphertext c′ to the client when it encounters a node.
(b) The client decrypts c′ to m′. If m′ > m, the client tells the server to go left, otherwise go right.
(c) Repeat steps a and b until the traversal goes to an empty leaf node and then puts c in there.
(d) Rebalance OPE tree if needed and update the OPE table.

A ciphertext value in OPE table is computed according to a path from the root to the node and the
position of the ciphertext in that node is obtained based on Equation (2):

OPE value = [path][pos]0 . . . 0, (2)

where [path] is the concatenation of the binary strings of path pointer indexes from root to the node,
where [pos] is the binary string of one plus position index of the ciphertext in that node. The total
length of both of them depends on b, which is the maximum ciphertext number in a node. Figure 1
shows an example of the pre-described encryption algorithm. The texts in each node represent a
plaintext-ciphertext pair. The blue strings represent the path string from the root to the target node.
The red strings represent the ciphertext positions in that node.
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Figure 1. An example of a mutable order preserving encoding (mOPE) scheme using 3-ary B-tree.

Suppose that there are five integers: 12, 10, 18, 27, and 14 to be encrypted by the client. The state
of the 3-ary B-tree and the content of OPE table after the first four insertions are on the left of Figure 1.
After the insertion of the fifth number 14, the B-tree on the right rebalances its structure and the server
updates the OPE table. Take the number 27 as an example. Before the insertion, its path index from the
root was 1 so [path] = “01” and one plus its position index becomes 1 + 1 = 2 so [pos] = “10”. After
the encryption of number 14, the path index of number 27 becomes 2 so [path] = “10” and one plus
the position index becomes 1 + 0 = 1 so [pos] = “01”. The OPE value of number 27 changed from 6 to
9 but the relative ordering did not change. The padding zeros at the end of Equation (2) are used to let
all binary strings of OPE values have the same length.

d. DecmOPE
The decryption of mOPE is just the same as the decryption of SDES. There are no additional

operations needed for calculating OPE value or OPE binary string.

e. OrdermOPE

Since OPE table stores the ordered OPE values for each ciphertext, by taking ciphertexts as input,
we can compare which corresponding plaintext is larger by using the ordering function Ord(·). Take
numbers 10 and 14 in Figure 1 as an example, since 10 < 14, Ord(”x2b017”) = 1 < Ord(”x6481d”) = 6.

3.3. R-Tree

R-tree is a tree data structure proposed by Antonin Guttman in 1984 [1]. It is widely used in
many multi-dimensional data management tasks, such as K-NN or geometric search. Each node in
an R-tree represents an MBR of all its children MBRs. At the leaf level, each MBR contains a specific
number of spatial data points or data objects as its children. R-tree is also a balanced tree, like B-tree,
so the average time complexity for searching a data point on it is O

(
logM N

)
, where M is the maximum

number of children in each node and N is the total number of data points. Figure 2 shows an example
of a two-dimensional R-tree, in which M = 3 and N = 10.
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3.3.1. Bulk-Loading

Bulk-loading is a kind of construction method for R-tree which loads several data points to an
R-tree at once. Apart from the normal construction method, where the data points are inserted one
by one, bulk-loading provides a more efficient construction but needs to know the whole data points
beforehand. The R-tree constructed by bulk-loading method also has better query performance since
the overlap between MBRs can be reduced.

Leutenegger et al. [29] proposed an efficient R-tree bulk-loading algorithm in 1997. The leaf-MBRs
of an R-tree constructed by this algorithm do not overlap at all and the rest MBRs in higher levels
overlap just a little. The following is the construction algorithm for N D-dimensional data points,
where M is the maximum children number in a node:

(1) Set d = D; if N < M, simply create the root-MBR and end the algorithm.

(2) Calculate the number of leaf-MBR pages, that is P =
⌈

N
M

⌉
, where dxe denotes the ceiling function.

(3) Sort the data points according to the d-th coordinate and divide them into S =
⌈
P

1
d

⌉
slices.

Each slice has M·
⌈
P

d−1
d

⌉
data points.

(4) Recursively process each slice, by repeating steps 2 and 3, where N is the current data number in
this slice, and d = d− 1 until each slice contains only M data points.

(5) Create an MBR for each slice with pointers pointing to all data points in that slice.
(6) Treat MBRs created in step 5 as data points and create higher level MBRs based on step 1.

3.3.2. K-NN Search over R-Tree

The structure of an R-tree can improve the performance of a K-NN search. By traversing a part
of MBRs and the data points in them, there is no need to compute the distance between the query
point and the whole data points. The idea of the best first search (BFS), proposed in [20] for K-NN
search over R-tree, is to access the nearest MBRs or data points all the time by using a priority queue.
The input of the algorithm is an R-tree, Rt, and a query point q, and the output will be R, the set of K
data points nearest to q. The algorithm can be understood as follows:

(1) Initialize a priority queue Q and the result set R.
(2) Enqueue the root of Rt into Q.
(3) While Q is not empty

(a) Dequeue element e from Q.
(b) If e is a data point, put it in R. If |R| = K, return R.
(c) Otherwise

i. Compute the distance from q to each of the children of e.
ii. Enqueue all children of e into Q using their distance to q as priority.
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At the beginning, we enqueue the root of an R-tree to the priority queue. For every element
dequeued from the priority queue, we check if it is a data point. If so, add it into the resulting set or
recursively enqueue its children to the priority queue if it is still an MBR. The algorithm ends if the
resulting set has K elements. Since the priority used in the priority queue is the distance to query point,
we can always access to the best candidate containing the resultant points.

4. The Proposed Scheme

4.1. Overview

In this section, the structure of our proposed scheme and some notations will be described first,
and the details of the scheme will be addressed in the remaining paragraphs. There are three characters
(or players) involved in the proposed scheme, the data owner (DO) who owns the original data, the
cloud server (CS) who provides the storage for data and shares the computation loads of K-NN search,
and the query user (QU) who makes the K-NN search query request to CS, and obtains the final results.
In order to preserve the privacy of the data, DO encrypts his data before outsourcing them to CS.
On the other hand, QU wants to protect his own query privacy from revealing it to CS and DO, so
he also encrypts the query. We assume that CS mentioned here is an honest-but-curious third party,
i.e., it will follow the protocol to maintain its business credit but will try to know the data or query as
much as it can during the execution of procedures. We leverage Paillier cryptosystem as the encryption
method for DO and QU so that both of them can perform encryption with the same public key while
the privilege of decryption retained to DO. The homomorphic properties of Paillier will help us shift
some operations to CS on the encrypted domain. At the same time, the ordering between the encrypted
data should be preserved if we want to outsource the construction of R-tree and the running-job of BFS
algorithm as well. After executing BFS algorithm, the results returned to QU should be decrypted
but without revealing them to DO; otherwise the approximate value of query will be known by DO.
CS scrambles the results before sending them to DO for decryption and helps QC restore them, and
then obtains the real data results. The structure of the proposed scheme and the detail steps of the
proposed protocol are presented in Section 4.3.4.

In the next section, we describe the main encryption method used in the proposed scheme.
Some security data management building blocks, used by server for protecting query privacy, are
introduced in Section 4.3 and a newly proposed privacy preserving K-NN search method is described
in Section 4.3.4.

4.2. Encryption Method

As mentioned above, the encryption method in the proposed protocol is a combination of Paillier
cryptosystem and OPE. By utilizing both of their properties, CS is able to do additive operations
without asking DO to decrypt the ciphertexts first and checking the order between them. First of all,
we try to replace SDES in mOPE by Paillier cryptosystem. There are plenty of issues to be considered
because Paillier is neither a symmetric nor a deterministic cryptosystem. In an mOPE, the order
relation is preserved by OPE tree whose construction needs decryption. If we change the cryptosystem
from symmetric to asymmetric ones, the whole members in that system are able to encrypt data using
the public key but cannot obtain the order unless the accessibility to secret key is provided. Therefore,
no matter how the other members encrypt their own new data by the public key, they are unable to
find out the original data of DO through probing attack. More security analyses will be presented
in Section 5. On the other hand, the original mOPE made use of a deterministic algorithm so the
ciphertexts will be the same if there are two equal plaintexts. mOPE protocol can easily come to an end
if a ciphertext already existed in OPE table. If we change SDES to Paillier, two equal plaintexts will be
encrypted into two different ciphertexts and their OPE values will also be different. It is no big deal
here, after we described the whole scheme, because the corresponding OPE values still adjacent to
each other in ascending or descending order and the equal ciphertexts are always decrypted to the
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same number. The homomorphic properties of Paillier also need to be considered in this combination.
The situation that some system members, without having secret key, may create new ciphertexts with
the aid of homomorphic addition is similar to that of the pre-described symmetric/asymmetric situation.
The OPE value of the new ciphertext obtained from homomorphic addition will not be the addition of
two OPE values. In order to obtain the real one, one has to access to secret key from DO, first. The full
encryption scheme combining Paillier and mOPE is denoted as (KeyGen, InitState, Enc, SmOPE, Dec,
Order) in the rest of this paper.

a. KeyGen

The same as KeyGenpaillier, DO generates public key pk for CS and QU for encryption and keeps
the secret key sk to himself for conducting the decryption job.

b. InitState

Similar to InitStatemOPE, CS initializes an OPE tree and an OPE table before DO encrypts any
data. A node in OPE tree contains the ciphertexts of Paillier and OPE table gives the map between the
ciphertexts of Paillier to the values of OPE table.

c. Enc

The same as Encpaillier, the one with pk encrypts a plaintext to a ciphertext by Paillier cryptography.

d. SmOPE

SmOPE stands for the secure mOPE. First of all, we replace the encryption of SDES by taking
the ciphertext from Enc in the first step of EncmOPE. Secondly, we do not need to check whether the
ciphertext is already in OPE table (in step 2) or not because Paillier is a non-deterministic algorithm.
The rest of the protocols will be described, as a security building blocks, in Section 4.3.

e. Dec
DO is the only one who owns sk in this scheme and the decryption of a ciphertext is the same as

that of Decpaillier.

f. Order
We can obtain the ordering between ciphertexts of Paillier because of the functionality of mOPE.

However, the difference apart from OrdermOPE is that if m1 and m2 are two plaintexts and m1 = m2,
there will be two different ciphertexts c1 and c2, where c1 , c2 and Ord(c2) < Ord(c1) if c1 is encrypted
before c2.

4.3. Security Building Blocks

In our scheme, only DO has the right to use sk to decrypt data. This concern is about not letting
anybody except DO himself have the authority to obtain the original data. DO will be more willing to
provide data to QU through CS if he has such a security guarantee. On the other hand, QU wants to
access the data from DO by sending queries without revealing his own personal query to any other
people. However, the query of QU, even encrypted by the scheme described in Section 4.2, can easily
be revealed to DO through conducting Dec. Thus, CS plays an important role here to meet the needs
of both. Some security building blocks are needed to be used by CS such that DO does not need to
share his secret key with others and QU can keep his query privacy after decryption at the same time.

4.3.1. R-Tree Construction on the Encrypted Domain

In existing methods, which leveraged R-tree data structure to speed up their K-NN search, the
construction steps are done by data owners in the plaintext domain. After data owners constructed the
tree, they encrypted the plaintext values at the tree nodes and left the pointers between parents and
children unencrypted and sent the tree structure to the server. Though the server would not obtain the
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real plaintext value in each node, it obviously could know the data access pattern of the query since the
pointers are unencrypted. Therefore, if we use similar construction procedure to the existing methods,
the data access pattern will be revealed to DO when running BFS algorithm. That is unacceptable
because DO is the one who built the tree in this situation. Once he obtains the access pattern, he can find
out nearby data of the query and thus obtains an approximation of the personal query value of QU.

To make sure that the above-mentioned problem will not happen, we decided to shift the
construction steps of R-tree from DO to CS. By doing this, we can hide the access pattern from
DO for one thing and share the computation cost of construction for another. As we can see, the
R-tree construction method introduced in the previous section, only needs to sort along with different
dimensions and a few computations about the total data number N, dimension D, and the maximum
number of children M in a node. The sorting procedure can be successfully done in the encrypted
domain by Ord(.). Parameters N and D should be known by CS even if the data outsourced by DO
are encrypted. In our method, we will let CS decide which dimension the sorting procedure will be
followed up in addition to parameter M as a randomness of construction. The altered algorithm of
R-tree construction on the encrypted domain, denoted as RtConstruct, is shown in Algorithm 1.

Algorithm 1. RtConstruct

Input: N D-dimensional encrypted data points
Output: Encrypted R-tree root pointer Rt

(1) Generate a proper number M and a random sequence Rnd = {r1, r2, . . . , rD}, which is a permutation of
numbers from 1 to D.

(2) Set d = D and i = 1; if N < M, simply create the root MBR; let Rt point to it and return.

(3) Calculate the number of the leaf MBR pages, P =
⌈

N
M

⌉
.

(4) Sort the encrypted data points by Ord() according to coordinate ri and divide them into S =
⌈
P

1
d
⌉

slices.

Each slice has M·
⌈
P

d−1
d
⌉

data points.

(5) Recursively process on each slice by repeating steps 3 and 4; while N becomes the current data number of
this slice, let d = d− 1 and i = i + 1 until each slice contains only M data points.

(6) Create an MBR for each slice with pointers pointing to all data points in that slice.

Treat MBRs created in step 6 as data points and create higher level MBRs based on step 2.

By adding two parameters decided by CS and the function Ord(.) to sort the ciphertexts, DO
cannot directly know which MBRs or data points are nearby QU’s query during the execution of BFS
algorithm. The data access pattern is revealed to CS, which is the same as the construction process of
existing methods; but it does not matter since CS cannot perform the decryption to find the plaintext
value out.

4.3.2. Secure Compare and Secure mOPE

CS keeps the structure of R-tree in order to prevent DO from finding out the query through data
access pattern. However, DO already has a chance to know it before searching if we simply follow
the original mOPE protocol. The problem is that mOPE requires pre-decryption by DO and that will
directly reveal the query value, which is unacceptable. We need a secure protocol that can make the
procedure mOPE more robust. DO should know nothing about query, including its plaintext value or
the ordering to any of his data point. We leverage a secure comparison protocol, SCompare as shown
in Algorithm 2, as a building block and propose the secure version of mOPE, denoted as SmOPE,
shown in Algorithm 3. We also let CS decide the order of data points input to SmOPE once he obtains
all the outsourced data. As a result, DO does not obtain the structure details of OPE tree (just like an
R-tree); thus, he truly has no idea what the query value is.
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Algorithm 2. SCompare

Input: two ciphertexts Epk(a) and Epk(b)
Output: a > b?
CS :

(1) Generate a random number r and a Boolean flag f
(2) Encrypt r by Enc: Epk(r)

(3) If f == true, swap Epk(a) and Epk(b).

(4) Add a random number r to both ciphertexts by homomorphic additions: Epk(a + r) = Epk(a)·Epk(r),
Epk(b + r) = Epk(b)·Epk(r)

(5) Send Epk(a + r) and Epk(b + r) to DO.

DO :

(6) Decrypt Epk(a + r) and Epk(b + r) to a + r and b + r by Dec.

(7) If a + r > b + r, send 1, otherwise send -1 to CS as “result”.

CS :

(8) If f == true, return “–result”, otherwise return “− result”.

Algorithm 3. SmOPE

Input: ciphertext c
Output: the newest state st of OPE table
CS :

(1) Start a traversal from OPE tree root
(2) Obtain the ciphertext c′ on encountering with a node.

CS↔ DO :

(3) Run SCompare, use c and c′ as input.

CS :

(4) Receive result
(5) If result = 1, go right; otherwise go left.
(6) Repeat steps 1 to 3 until the traversal goes to an empty leaf node and put c in there.
(7) Rebalance OPE tree if needed and update the state st of OPE table.

4.3.3. Secure Square Euclidean Distance

The last security building block introduced in this section is the secure square Euclidean distance
protocol, SSED. This protocol allows CS and DO to compute the Euclidean distance between two data
points together without revealing the plaintext distance value to both of them. It comes up from the
security protocols proposed in [20]. In this protocol, first, the distance between two encrypted data
points is calculated through homomorphic subtraction. Each dimension of that difference vector is then
used to compute the square of the difference vector through a secure multiplication protocol. Finally,
the ciphertext of the square Euclidean distance is computed by homomorphically adding all the
components of the square difference vector. We do not need to further compute the square root of the
previous distance square because it will be used just for finding the priority in BFS algorithm. The secure
multiplication, SM, is a multiplication protocol between CS and DO for two given ciphertexts, and
it outputs the ciphertext of multiplication of two corresponding plaintexts without letting both of
them know any one of the plaintext values. Details of SM and SSED are shown in Algorithms 4 and
5, respectively.
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Algorithm 4. SM

Input: ciphertexts Epk(a) and Epk(b)
Output: Epk(ab)
CS :

(1) Generate two random numbers ra and rb

(2) Encrypt ra and rb by Enc and obtain Epk(ra) and Epk(rb).

(3) Add random numbers to both ciphertexts by homomorphic addition:Epk(a + ra) = Epk(a)·Epk(ra),
Epk(b + rb) = Epk(b)·Epk(rb).

(4) Send them to DO.

DO :

(5) Receive Epk(a + ra) and Epk(b + rb).

(6) Decrypt them to a + ra and b + rb by Dec.
(7) Compute (a + ra)·(b + rb) = ab + arb + bra + rarb.
(8) Encrypt it by Enc and obtain Epk(ab + arb + bra + rarb).

(9) Send it to CS.

CS :

(10) Receive Epk(ab + arb + bra + rarb).

(11) Compute Epk(a)
rb = Epk(arb), Epk(b)

ra = Epk(bra) and Epk(ra)
rb = Epk(rarb)

(12) Remove the random numbers by computing

Epk(ab + arb + bra + rarb)·Epk(arb)
−1
·Epk(bra)

−1
·Epk(rarb)

−1 = Epk(ab).

(13) Return Epk(ab).

Algorithm 5. SSED

Input: encrypted data points Epk(X) =
(
Epk(x1), Epk(x2), . . . , Epk(xD)

)
and Epk(Y)

Output: encrypted square Euclidean distance Epk(‖ (X− Y) ‖)2.
CS :

(1) Compute Epk(X− Y) =
(
Epk(x1 − y1), Epk(x2 − y2), . . . , Epk(xD − yD)

)
, where

Epk(xi − yi) = Epk(xi)·Epk(yi)
−1, for i = 1 to D

(2) Compute Epk
(
(X− Y)2

)
=

(
Epk

(
(x1 − y1)

2
)
, . . . , Epk

(
(xD − yD)

2
) )

, where Epk
(
(xi − yi)

2
)

is the output of
SM. And two Epk(xi − yi), for 1 ≤ i ≤ D, are used as input

(3) Epk(‖ (X− Y) ‖)2 = Epk
(
(x1 − y1)

2
)
·Epk

(
(x2 − y2)

2
)
· . . . ·Epk

(
(xD − yD)

2
)
.

(4) Return Epk(‖ (X− Y) ‖)2.

4.3.4. A Newly Proposed Privacy Preserving K-NN Search Scheme (PPKSS)

The setup of our scheme starts from the encryption of all data points by DO using sk. DO publishes
the public key pk of Paillier and then outsources the encrypted data points to CS. Upon receiving
the encrypted data, CS permutes them and runs SmOPE one ciphertext by another. The maximum
ciphertexts number in the node of an OPE tree is also decided by CS so that DO cannot obtain
the structure details of OPE tree. After CS processed the RtConstruct algorithm, we are ready for
responding to any query request from QU now.

QU is able to encrypt his own query any time he wants using pk, broadcasted by DO, and sends
the encrypted query to CS. In order to prevent DO from keeping himself online all the time (which is
impractical), QU needs to notify DO every time he wants to make a query request. Upon receiving the
request from QU, DO checks if he is a trusted query user and ready for participating the protocols
starting from CS. The first protocol CS needs to start is SmOPE for inserting the query to OPE tree
and keeping its order relation with other data points in OPE table. Secondly, CS runs the secure BFS
algorithm, SBFS as shown in Algorithm 6, in the encrypted domain by using encrypted distance as
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priority, calculating the encrypted distance by SSED and pushing it into priority queue by SCompare.
Notice that the distance between the query and an MBR should be the distance from the query to the
closest point in that MBR which can be found by using Ord(). Figure 3 shows two examples of finding
the closest points to queries in an MBR with the aid of the pre-described order-preserving properties.
The output returned by the algorithm is a set of encrypted data points which represents the K-NN
search results of the query. CS then adds a random number to each dimensional component of each
point by homomorphic addition and sends the resultant set to DO. DO decrypts the whole resultant set
and returns it to QU. At the same time, CS would send the plaintexts of the random numbers matrix
he adds on the encrypted results to QU to help QU recover the real plaintext results. The steps of the
full privacy preserving K-NN search scheme, PPKSS, is shown in Algorithm 7 and the corresponding
flow diagram is given in Figure 4.
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Algorithm 6. SBFS

Input: encrypted query Epk(q), R-tree Rt and K.
Output: encrypted resultant set Epk(R)

CS↔ DO :

(1) Initialize an encrypted priority queue Q and the result set R
(2) Enqueue the root of Rt into Q
(3) While Q is not empty

(a) Dequeue element Epk(e) from Q

(b) If e is a data point, put it in R; if |R| = K, return R
(c) Otherwise,

i. Compute the distance from Epk(q) on the basis of all the children of Epk(e) by SSED.

ii. Enqueue all children of Epk(e) into Q using their encrypted distance to Epk(q) as priority and
compare them by SCompare.

Algorithm 7. PPKSS

Input: DO : generate data points P =
{
p1, p2, . . . , pN

}
, where pi =

(
pi

1, pi
2, . . . , pi

D

)
, pi

j ∈ Z; QU : make a query

q =
(
qi

1, qi
2, . . . , qi

D

)
), qi

j ∈ Z and K
Results: QU : receive K-NN result R = {r1, r2, . . . , rK}

Setup
DO :
¬ Encrypt all dimensions of all points of P by Enc and obtain Epk(P).

 Outsource Epk(P) to CS.
CS :
® InitState.
CS↔ DO :
¯ For each encrypted dimension of each point in Epk(P), do SmOPE.
CS :
° RtConstruct.
Search
QU :
± Encrypt all dimensions of q by Enc and obtain Epk(q).

² Send Epk(q) and K to CS.

³ Send a request to DO.
CS↔ DO :
´ For each dimension of Epk(q), do SmOPE.

µ Run SBFS algorithm, and obtain encrypted result set Epk(R).
CS :
11O Generate a K ×D random matrix M.
12O For i = 1 to K, j = 1 to D, add the random number M(i, j) to result by

Epk(ri
j)·Epk(M(i, j)) = Epk

(
ri

j + M(i, j)
)

and denote the result as Epk(R′)

13O Send Epk(R′) to DO.

14O Send M to QU.
DO :
15O Decrypt Epk(R′) to R

′

.

16O Send R′ to QU.
QU :
17O For i = 1 to K, j = 1 to D, remove the random number M(i, j) out. ri

j + M(i, j)−M(i, j) = ri
j and obtain R
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5. Security Analysis

5.1. Indistinguishability under Order Chosen Plaintext Attack

The ideal security of OPE is founded on its indistinguishability under order chosen plaintext
attack (IND-OCPA), defined by Boldyreva et al. [27]. Generally speaking, the ideal OPE method
is IND-OCPA secure if the encryption procedure leaks nothing more than the ordering between
ciphertexts. An IND-OCPA security game between DO, CS, and a malicious adversary (MA) can clearly
describe the definition. Consider that there are two sequences x = {x1, x2, . . . , xl} and y =

{
y1, y2, . . . , yl

}
sent from an MA to DO, where l is the sequence length and the sequences have the same order relation,
that is, xi < x j if and only if yi < y j for all i, j ∈ Z∗l . DO then randomly selects a sequence to encrypt
and MA would attack the model by guessing which sequence has been chosen. The definition assumes
that MA is able to check every ciphetexts of the chosen sequence and the corresponding state of the
server if it is an interactive scheme. We say MA wins, WinMA, if the right sequence randomly selected
by DO is guessed and the satisfaction of Equation (3) realizes the IND-OCPA security. That is

Pr[WinMA] ≤
1
2
+ negl(κ), (3)

where Pr[A] denotes the probability of event A and negl(κ) is a negligible function with parameter
κ. That means MA can only have a negligible advantage over random guessing if the scheme is
IND-OCPA secure.

We prove that our modified mOPE combining with Paillier cryptosystem is IND-OCPA secure
based on their primitive security guarantees. Paillier cryptosystem has been proved to provide
semantic security against chosen plaintext attack (IND-CPA), so, by definition, it meets a higher security
requirement than an OPE scheme. That is, the order relationships of the two sequences sent by MA
are not necessary the same, if the scheme is IND-CPA secure. Therefore, we can prove the proposed
encryption method provides IND-OCPA security merely by discussing that the information leaks from
CS while running mOPE is indistinguishable between two sequences. We inductively prove it on the
basis of the number of encrypted messages. The base case is at the beginning of the procedure, when no
message is encrypted yet, CS initializes the server state, which leaks the same original information to
MA. We assume that MA receives the same information no matter which sequence has been encrypted
and cannot distinguish the results after conducting the i-th encryption. At the (i + 1)-th encryption,
the sustentation of the indistinguishability completes the proof. Since sequences x. and y have the
same order relation, the associated OPE trees have the same structure after the i-th encryption has
been conducted. The traversal over the tree and the update of OPE table, at the (i + 1)-th encryption,
are also in the same way as before. Therefore, by observing the server state, MA can obtain nothing
but the ordering between the ciphertexts, which is the same on both sequences. By mathematical
induction, the procedure of mOPE reveals the same ordering information to MA. Additionally, owing
to IND-CPA security of Paillier, we complete the proof that the encryption scheme can survive the
order chosen plaintext attack (IND-OCPA).

5.2. Privacy Preserving of Data

We claim that the data privacy of our scheme is preserved if the following two statements can
be justified:

(1) CS is prevented from knowing the actual plaintexts of the original data.
(2) QU receives only K-NN search results in every query request, and has no idea about the rest of

the dataset.

Since the data are encrypted by Paillier cryptosystem before outsourcing and sk is held by DO
all the time, CS cannot know the plaintexts directly. Therefore, our analyses focus on the interactions
within mOPE. Despite assuming an honest-but-curious server, we consider the situation that CS takes
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wrong ciphertexts while running SmOPE as launching a probing attack and tries to find the plaintexts
of dataset out. DO can prevent this kind of attack by setting a reasonable threshold on the maximum
number of SCompare taken by CS to complete the system setup. The exceeding amount of SCompare
is regarded as a malicious behavior and DO could shut the comparison service down before the
privacy exposes.

The second requirement for preserving the data privacy is achieved much simpler than the first
one, since QU has no chance at all to directly contact with the encrypted dataset. The data involved by
K-NN search are only shared by CS and DO, so QU has no idea about the dataset except the receiving
results. Certainly, one should also setup a threshold for the maximum acceptable value of K to prevent
QU from sending an extremely large K value and retrieving the entire dataset.

5.3. Privacy Preserving of Query

Apart from the preserving of data privacy, the proposed scheme preserves query privacy as well.
Similarly, two required statements have to be justified to fulfill the privacy preserving of query.

(1) CS is prevented from knowing the actual value of query.
(2) While running the search scheme, DO must have no idea about the query, including the plaintext of

it, the order relation with any other point in the dataset and the corresponding K-NN search result.

The first statement can be justified in a similar way to that of the previous section, i.e., the query can
be treated as another new encrypted data point. By executing SmOPE protocol, the only information
leaks to CS is the order relation. On the other hand, since our approach needs QU to make a request
to DO at the same time, CS is unable to maliciously pretend as a fake query user and send a large
sequence of values to probe for the plaintext data.

The issues of query privacy prevention against DO are more complicated because DO is the one
has decryption key sk. We design the scheme carefully by bringing in randomness on every part of
operations involving the decryption process. First of all, the structure of OPE tree is unknown to
DO as the parameters are decided by CS. Under the above condition, SmOPE involves a sequence of
comparisons of random values at DO’s aspect. The true value of the query and the order relation with
data points in the dataset are hidden as a result. Secondly, the structure of R-tree is also unknown
to DO, similar to the case of OPE tree. Therefore, DO has no choice but treats SBFS algorithm as an
ordinary sequence of multiplications and comparisons. Moreover, the protocols used in SBFS, i.e.,
SSED and SCompare, always add random numbers to the ciphertexts, which then will be decrypted
by Paillier homomorphic property, so that DO is performing operations on obscured data values.
Finally, DO receives a set of encrypted results at the end of PPKSS; however, even if the decryption is
performed upon all of them, DO still cannot obtain the K-NN search result associated with the query
eventually, since they have been randomly permuted in advance.

6. Performance Evaluation

The effectiveness of our scheme, PPKSS, is demonstrated in the following two different ways.
First, we analyze the complexity of the scheme in the next section. Secondly, we show the experimental
results in Section 6.2. The full PPKSS can be separated into different parts and each part will be
discussed independently.

6.1. Complexity Analysis

First of all, DO encrypts the dataset attribute-wise and outsources them to CS, which takes
O(N ∗D) encryptions. This part of tasks can be fully parallelized since the encryption of each data
can be done separately. After the outsourcing, CS performs O(N ∗D) SmOPE protocol to preserve
the order relation of each ciphertext. We further disassemble SmOPE protocol and find that it is
composed of O(log(N ∗D)) SCompare and O(1) OPE table update, where log(N ∗D) indicates the
height of the OPE tree. The computation load of SCompare is shared by DO and CS, where they
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need O(1) Paillier decryption and plaintext comparison and O(1) Paillier encryption and ciphertext
multiplication, respectively. Additionally, a hash table is used to implement the OPE table, so we claim
that the average update and access complexity takes O(1) plaintext operations.

After the construction of OPE tree, we leverage the order relation store in OPE table to build
the R-tree, RtConstruct, which is done simply based on sorting. The complexity of RtConstruct is
O(DN log(N)), and it can be derived as follows.

Since RtConstruct sorts data along with every dimension at each level of an R-tree, the comparison
time using quick sort is the multiplication of D and the summation of sorting complexity at each level.
That is,

D ∗
∑logM N

i=0
N
Mi log

(
N
Mi

)
= DN(

(
log(N) ∗

∑logM N
i=0

1
Mi

)
−

(
log(M) ∗

∑logM N
i=0

i
Mi

)
)

≈ DN(log(N) −
(
log(M) ∗

∑logM N
i=0

i
Mi

)
) (sin ce N �M)

≤ DN log(N)

QU enrolls the system after the setup steps were completed. We will discuss why the scheme
is claimed to be with lightweight user loads, later. The complexity of query encryption is the same
as the complexity of encryption of an individual data point, where the Paillier encryption is done by
QU. We analyze the complexity of SBFS based on the original search algorithm over an R-tree in the
plaintext domain [29]. The analysis is simplified under the assumption that the data in the dataset are
uniformly distributed. Let H be the hypersphere centered at the query q, with r (the distance from q to
the K-th result rK), as radius. The search complexity or the total time SSED would take is the access
number of MBRs from the root of an R-tree to the leaf-MBRs, which is O(log N), plus the total access
number of data points of the leaf-MBRs (i) inside H, which is O(K), or (ii) intersected by H, which is
the most complicated part to analyze and it is derived as follows.

For simplification, another assumption is made, that is, we assume each leaf-MBR intersected by
H forms a hypercube with average occupancy of c data points. Since the data points are assumed to be
uniformly distributed, the expected volume of search region is K

N and the expected volume of each leaf-

MBR is c
N . Moreover, the volume of H is proportional to π

D
2 rD, so if π

D
2 rD = K

N , r = D

√
K

π
D
2 N

. Similarly,

the side volume of each leaf-MBR s =
D

D−1

√
c
N . In addition, the number of leaf-MBRs intersected by H is

the same as that intersected by the circumscribed cube of H [30,31], so the 2 ∗D sides of a circumscribed

cube intersect
⌊
(2r)D−1

s

⌋
≤

(2r)D−1

s regions, where bxc denotes the floor function. Thus, the total expected

data access number of leaf-MBRs intersected by H is:

2D ∗ (2r)D−1

s ∗ c

= 2D ∗
2D−1

 K

π
D
2 N


D−1

D

( c
N )

D−1
D

∗ c ≈ 2D∗
D

D−1
√

cK

In summary, the total number operations of SSED is bounded by O
(
log N + K + DK

D−1
D

)
and

O
(
log N + DK

D−1
D

)
is the expected node number in the priority queue.

Each sub-task of SSED is analyzed separately to see the workload in detail. From the pseudo-codes
given in Section 4.3.3, it follows that SSED runs O(D) SM protocols, each of which needs O(1)
decryption, plaintext multiplication and encryption on the site of DO, and O(1) encryption, ciphertext
multiplication, and exponentiation on the site of CS.

On the other hand, a heap is used to implement the priority queue. If the expected number of
MBRs and data points in the priority queue is |Q|, which is about O

(
log N + DK

D−1
D

)
in total, then it

takes O(log(|Q|)) SCompare individually to enqueue or dequeue data from the queue. Moreover, the
complexity of our enqueue and dequeue approximates to O

(
log N + K + DK

D−1
D

)
.
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In the end of PPKSS, CS takes O(DK) Paillier encryptions and multiplications to randomly
permute the results and DO takes O(DK) decryptions. Finally, only extremely light, O(DK), plaintext
subtractions need to be done by QU.

We summarize our complexity analysis results in Table 2 by showing the executed complexities of
different type of operations in different protocols of our scheme. Clearly, from the table, the operations
in Paillier ciphertext domain, which cost most expensively, are performed by CS. As for DO, he or she
focuses mainly on the decryption tasks and needs to do a few plaintext operations. Most importantly,
a very lightweight workload is put on QU, which raises the possibility of extending our approach to
a user with resource-limited mobile devices. Another highlight of our approach is that the search
complexity, O

(
log N + K + DK

D−1
D

)
, is faster than linear scan, whose complexity is O(N), since N is

much greater than D and K, in general.

Table 2. The complexity analysis results of the proposed scheme. The complexities represented by red,
blue, and green colors indicate the computational loads of data owner (DO), cloud server (CS), and
query user (QU), respectively.

Enc/Dec Paillier Operation Plaintext Operation

Enc for Data O(ND)

SmOPE for Data
O(ND log(ND)) O(ND log(ND))
O(ND log(ND)) O(ND log(ND)) O(ND)

RtConstruct O(DN log(N))

Enc for Query O(D)

SmOPE for Query O(D log(ND)) O(D log(ND))
O(Dlog(ND)) O(D log(ND)) O(D)

SBFS
SSED

O
(
D
(
log N + K + DK

D−1
D

))
O
(
D
(
log N + K + DK

D−1
D

))
O
(
D
(
log N + K + DK

D−1
D

))
O
(
D
(
log N + K + DK

D−1
D

))
Access

O
(
log|Q|

(
log N + K + DK

D−1
D

))
O
(
log|Q|

(
log N + K + DK

D−1
D

))
O
(
log|Q|

(
log N + K + DK

D−1
D

))
O
(
log|Q|

(
log N + K + DK

D−1
D

))
Return Results

O(DK)
O(DK) O(DK) O(DK)

6.2. Experimental Results

The overall performance of our proposed scheme is also demonstrated by several simulation
experiments. We realized the proposed scheme, including DO, CS, and QU, in C-language and executed
them on a laptop running macOS Sierra 10.12.3, with 2.7 GHz Intel Core i5 and 8 GB 1867 MHz DDR3
memory. The test dataset for DO is randomly generated with different N and D. We use 4-ary B-tree as
an OPE tree and M = 5 for R-tree. The key length of Paillier cryptosystem is set to 1024 bits. The rest
of this section shows the executing time of each part of PPKSS except for the encryption operations
of dataset and query, which are simply accomplished by applying the original Paillier encryption.
In general, a Paillier encryption of a plaintext data or a query takes about 7.5 milliseconds (ms) under
our settings. Specifically, the timing responses of the proposed scheme will be examined separately so
as to represent the workload of each character, independently. Moreover, the communication cost is
also listed because the proposed procedures always include interactions between two parties.

First of all, Figure 5 shows the timing cost of performing SmOPE on a single Paillier ciphertext,
that is, the time required to insert one ciphertext into an OPE tree and update the corresponding OPE
table. When the total number of encrypted attributes grows from 100,000 to 1,000,000, each insertion
may take longer time, changing from 40 ms to 45 ms, since the height of the tree grows. Notice that
it may take a long time to complete the order preserving setup, but that does not matter since it is a
one-time job.
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Figure 5. Average execution time for secure mOPE (SmOPE) per attribute with respect to different
numbers of total attributes.

The second task of the setup is RtConstruct, which can totally be accomplished by CS. We illustrate
the required timing for constructing the R-tree of the testing datasets with different sizes and dimensions
in Figure 6. As the size of 2-dimensional dataset grows from 20,000 to 100,000, the construction costs
changed from 8 s to 45 s. Since the required construction time is proportion to the dimension of the
dataset, as expected, Figure 6 shows it grows linearly with the respect to the number of involved
data attributes.
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We define the query search time of our scheme as a specific time-duration, which starts from the
time after CS completed SmOPE for inserting the encrypted query into an OPE table, and ends after
QU removed the random numbers out and got the unencrypted results correctly. The size of dataset N,
the dimension of data D, and the range value K for a K-NN search are used as parameters to generate
various sets of experiments. Each experimental result (corresponding to a different set of parameters)
is obtained by running 100 queries on it and we record the resultant average search time. First, by
fixing D = 2 and K = 1, that is, to find the nearest neighbors in a 2-dimensional dataset, we illustrate
the obtained average search time, for datasets with sizes changed from 10,000 to 100,000, in Figure 7.
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Since our approach utilizes R-tree structure to manage the dataset, the search time grows only a little
while the size of dataset increases tremendously. Next, by setting K = 1 and N = 20, 000, Figure 8
shows the search time behavior of our work over multi-dimensional dataset. The average search time
grows apparently as the data dimension increases, for example, the search time changed from 3.52 s
to 53.49 s when D changed from 2 to 6. The reasons for this phenomenon come from the relatively
complicated structure of R-tree and the increase of the number of necessary visited data points in
MBRs, if high dimensional datasets are involved. In the last experiment, we fix N = 20, 000 and D = 2
and conduct K-NN searches by varying K, and the resulting search time is shown in Figure 9. As the
value of K increases from 1 to 20, the search time grows linearly from 3.52 s to 9.17 s.
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Finally, we separate the search time of our approach into the combination of DO’s CPU time, CS’s
CPU time, and QU’s CPU time to clearly identify the workload of each character. The data transmission
costs are also listed to evaluate the extra communication overhead of the proposed scheme. We take
N = 20, 000, K = 20 and different D as testing parameters and report the details of the composition of
a search time in Table 3. One can see that although the search time is a little bit longer as the dimension
of dataset is increased, about 80% of computational loads are outsourced to CS, and DO takes care
of the rest 20%. At the QU site, the computation overhead is extremely lightweight and is negligible.
This fact makes the proposed scheme more applicable and practical even if DO and QU are worked on
resource-limited environments. Notice that there is a high correlation between the communication cost
and the total query search time, which is quite reasonable.

Table 3. Details of the query search time of different D with N=20,000 and K=20. (Time is measured in
seconds and communication cost is measured in Kb, Percentage abbreviated to Per.).

D Total Query
Time

DO
Time Per. CS

Time Per. QU Time Per. Communication
Cost

2 9.17 2.05 22.3% 7.04 76.7% 0.000003 <0.01% 469.003
3 19.03 3.93 20.7% 14.91 78.4% 0.000003 <0.01% 978.568
4 40.24 7.85 19.5% 32.01 79.5% 0.000003 <0.01% 2091.073
5 77.8 14.52 18.7% 62.55 80.4% 0.000004 <0.01% 4030.649
6 135.06 24.41 18.1% 109.43 81.0% 0.000006 <0.01% 7059.019

7. Conclusions and Future Works

In this work, a privacy preserving K-NN search scheme is constructed based on a newly proposed
encryption scheme, which preserves not only comparison but also addition operations in the encrypted
domain. Moreover, some disadvantages of related works are addressed and released by our approach.
The proposed scheme is realized on the bases of several security protocols among a data owner, a
cloud server and a query user, and we manage the dataset with the structure of an R-tree. Security
analysis shows that the proposed encryption scheme not only achieves IND-OCPA security but also
preserves both the data privacy and query privacy. Furthermore, we justify that our approach runs in
sub-linear time by complexity analysis. And finally, experimental results demonstrate its effectiveness
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with respect to different sizes of datasets. Most of all, the impressive lightweight user loads enhance
the applicability of our approach to resource-limited mobile platforms.

As an interesting extension of PPkNN, Wu et al. [32] presented the first solution to the so-called
Group k-nearest neighbor (kGNN) search problem, which allows a group of n mobile users to jointly
retrieve k points from a location-based service provider (LSP) that minimizes the aggregate distance to
them, at the same time. The authors identified four protection objectives in the privacy-preserving
kGNN (PPkGNN) search: (i) every user’s location should be protected from LSP; (ii) the group’s
query and the query answer should be protected from LSP; (iii) LSP’s private database information
should be protected from users, i.e., the users cannot learn more information beyond the answer they
requested; (iv) every user’s location should be protected from the other users in the group. Since
the encryption mechanism of our scheme is based on the Paillier cryptosystem, same as in [32], we
might extend our PPkNN scheme to solve PPkGNN search problem, which is one of our future
research directions. Furthermore, how to improve the overall system performance in regarding to
high-dimensional datasets is another research direction.

One of the anonymized reviewers brings the following important and interesting issue to us:
“How a data owner can be contributed in the process of securing/encrypting cloud dataset?”, which
is an important aspect of the dynamically changing environments, such as in Cloud-based servers.
Although this topic is out of the main scope of our current work, this subject should be included in
our future research directions, as suggested by the reviewer. Specific thanks to the same reviewer for
mentioning the following useful reference [33] to us. As mentioned by the same reviewer: “Using
more than one Cloud servers the processing and computational overheads can be further reduced.”
Of course, this interesting and challenging issue would be included in our future research topics.
Thanks also to the reviewer for bringing the following useful references to us [34,35].

Our scheme would fail if a cloud server did not follow the pre-defined protocols and returned
the wrong results to the query user. In other words, we think how to design a cloud-based privacy
preserving K-NN search scheme which is robust to “Man-in-the-middle attack” is still an open problem.
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