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Abstract: Adding to the number of sources of sensory information can be efficacious in enhancing
the object detection capability of robots. In the realm of vision-based object detection, in addition to
improving the general detection performance, observing objects of interest from different points of
view can be central to handling occlusions. In this paper, a robotic vision system is proposed that
constantly uses a 3D camera, while actively switching to make use of a second RGB camera in cases
where it is necessary. The proposed system detects objects in the view seen by the 3D camera, which
is mounted on a humanoid robot’s head, and computes a confidence measure for its recognitions.
In the event of low confidence regarding the correctness of the detection, the secondary camera,
which is installed on the robot’s arm, is moved toward the object to obtain another perspective of
the object. With the objects detected in the scene viewed by the hand camera, they are matched to
the detections of the head camera, and subsequently, their recognition decisions are fused together.
The decision fusion method is a novel approach based on the Dempster–Shafer evidence theory.
Significant improvements in object detection performance are observed after employing the proposed
active vision system.

Keywords: object detection; active vision; Dempster–Shafer fusion; transferable belief model; distance
matching; PR2; robotics

1. Introduction

Traditional static single camera vision configurations are bounded to perceive only one perspective
of a scene. In contrast, there is the field of active vision, in which cameras are dynamically manipulated
to manage input vision data. We are specifically interested in incorporating active vision techniques to
manage cameras mounted on autonomous robots to enable them to better understand and explore
their surroundings, compared to the traditional static camera solutions. In general, such techniques
are well suited for (1) detecting and avoiding occlusion by direct camera manipulation, (2) achieving
a dynamic, wide field of view for tracking, and (3) recognizing objects of interest, human postures,
and gestures at finer levels of camera resolution. Here, by extending our previous work [1], we aim to
improve the detection performance of objects by trying to avoid occlusions and fetching input vision
data from dissimilar viewpoints of objects and in different distances of objects to the cameras.

Modern robotic systems typically comprise numerous sensors, including depth and ordinary
RGB cameras. The availability of more than one camera allows processing various points of view
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for individual objects. Nevertheless, this opportunity is not equal to exhaustively process all the
possible viewpoints, as it is not an efficient method considering the large amount of time, energy,
and computational resources necessary to fulfill that. Even if all the available cameras are fixed to
continuously capture many views of the scene, it is still not a practical strategy, since it would increase
the computational burden on the system, to the point where real-time functionality becomes difficult to
achieve. Sensor management addresses this issue, while utilizing the availability of multiple cameras
in a robotic setup. By dynamically selecting the most appropriate information from the cameras and
deciding on their pose, this kind of sensor management, which we employed in a robotic platform for
the task of object detection, belongs to the family of active vision methods.

An active vision system is presented in [2] that is able to dynamically decide how it can make
the best use of information from a few stationary cameras. An active object recognition system is
proposed in [3], which makes use of saccades, i.e., small camera movements, to provide more useful
information from a dynamic vision sensor (DVS) for the object recognition task. The saccadic motions
are determined by a trained artificial neural network. A leader–follower robotic setting with the ability
of actively tracking the leader is implemented in [4] through dynamically rotating a pan-controlled
camera. In another work [5], a reinforcement learning approach in a vision system is proposed for
selectively focusing on parts of the input image. In that work, the processing speed and learning rate
were improved as a result of the active selective attention mechanism. An attention selection technique
for event recognition is also presented in [6]. An active object detection and pose estimation method
with dynamic camera location planning is presented in [7]. The sensor used was an Asus Xtion RGB-D
camera mounted on the PR2 robot’s wrist. This method tries to balance the amount of energy needed
to move the camera and the added chance of getting a better object detection. In another work [8],
an active vision system is employed on a quadrotor to detect gaps. As the quadrotor moves, optical
flow is computed by considering different captures of the same scene. Subsequently, contours of the
gaps are detected from the resulting optical flow. Some systems to select the next best view are also
proposed for scene modeling [9] and object recognition [10]. The work of [11] performs the selection of
next best view based on the estimation of information gained from different views. For further reading
about the active vision methods and a survey of their literature, refer to [12].

In this work, an active object detection system to utilize two cameras on a PR2 robot is proposed.
Although it is implemented on a PR2 robot, the proposed vision system is applicable to any similar
robotic platforms. The first camera to use the proposed vision system is a 3D Kinect v1 sensor (main
camera) mounted on the robot’s head. The other one is an RGB camera (secondary camera) existing
on the robot’s left arm. The first step in the proposed vision system is to detect the object viewed by
the main camera and compute a confidence measure for it. Considering the confidence value of each
detection, the system decides if they are reliable or not. In the case of an unreliable detection, detection
results from the secondary camera are requested after the pose of the secondary camera is adjusted by
moving the left arm toward the object that corresponds to the unreliable detection. Then, the resultant
detections from the two camera views are matched and later combined through a novel transferable
belief model, which is a variant of the Dempster–Shafer evidence theory. With the final detection
results obtained, the system attains the 3D positions of each object with respect to the robot, and sends
them as well as the labels to other nodes in the robotic arrangement to use them accordingly.

The contributions of the proposed method are (1) a dynamic assignment of a second camera
by switching to process its data to detect objects in an eye-in-hand system implemented on the PR2
robot, (2) a distance-based object matching with the efficient use of available information in the robotic
platform, and (3) fusing the classification decisions with a novel Dempster–Shafer fusion technique.

In contrast to our previous work [1], the functionality to dynamically move the camera on the
robot’s arm toward objects is added to the current approach. In the earlier work, the camera was
stationary, but now it computes the 3D location of objects and moves toward them to get a better
viewpoint of objects. In addition, the detection algorithm is changed in the proposed method. In the
earlier version, it was based on background subtraction, but in its current state, it is a sliding window



Computers 2019, 8, 71 3 of 17

detection system. Moving away from background subtraction was necessary, as it was not compatible
with moving cameras. In order to address the added computational cost of the new detection system,
a tracker is added to the method, compared to that in [1]. The object tracker enhances the running
speed of the proposed method to keep it suitable for real-time applications.

In the rest of this paper, the proposed active vision system is described in Section 2. Experimental
results are presented in Section 3, followed by a discussion and analysis of results in Section 4. Finally,
concluding remarks are provided in Section 5.

2. The Proposed Active Object Detection System

The general steps in the proposed method are depicted in the flowchart of Figure 1, with the left
vertical bar showing the main phases. In the beginning, input frames are processed with a median filter
to eliminate impulsive noise. Next, potential objects of interest in the scene viewed by the main camera
are detected by using a sliding window mechanism. We used the sliding window-based detection as a
simple and yet effective method in our case.

For each of the candidate objects, a feature vector based on a histogram of oriented gradients
(HOG) [13] and a color histogram is extracted. HOG is responsible for capturing the edge-based
appearance, while the color histogram is generated by merging two flattened 2D histograms for the HSV
(i.e., Hue, Saturation, Value) and CIELUV [14] color spaces. The 2D histogram of the HSV color space
is only dependent on the hue and saturation channels, while the 2D histogram of the CIELUV color
space is obtained from the u and v channels. These channels encode the color information of the pixels.
In contrast, the two discarded channels, value (V) and lightness (L), contain the brightness information.

After extracting the features, the number of HOG features is reduced through the principal
component analysis (PCA) method to ensure that the subsequent classifier sees a moderate number
of features, given the number of available training samples. In other words, it prevents the curse
of dimensionality.

A non-linear multi-class support vector machine (SVM) classifier with a radial basis function kernel
and one-versus-rest strategy is used in our method to classify the input features. By adopting a fairly
standard optimization-based method [15] for classification, here, we emphasize more the performance
enhancement of the detection system via the active utilization of the eye-in-hand data rather than the
behavior of an individual classifier. As will be discussed later, the proposed decision fusion method,
based on the Dempster–Shafer theory, is a non-singleton probability-based fusion technique that
transforms the classification problem at hand to a multi-label classification. To realize a multi-label
classifier, the well-known binary relevance [16] method is employed, for which a one-versus-rest
SVM classifier can be a plausible implementation approach. The classifier outputs mass values for
each trained object class in relation to the Dempster–Shafer decision fusion approach mentioned
earlier. It will be explained later that mass values stand as counterparts of probabilities in terms of the
Dempster–Shafer theory, and exhibit belief of the classifier regarding the similarity to object classes.

By obtaining mass values for each trained object class, a confidence measure is calculated through
dividing the maximum mass value of all object classes by the second-largest mass value. In this way, the
confidence metric looks for large enough peaks in the array of mass values. A low confidence normally
translates to two close competitor object classes, which makes selecting either of them error-prone for
object recognition. Consequently, if the confidence is greater than a threshold value, it is considered
reliable, and the category with the largest mass value is selected as the recognition result. Otherwise,
the active vision system will dynamically request additional evidence from the secondary camera in
order to improve the reliability of the detection process.

To this end, if the detection of an object in the main view is uncertain, the robot’s hand with
the secondary camera mounted on it moves toward the object to get a different viewpoint of the
object. Before the actual movement, the position and orientation of the secondary camera should be
determined to get a clear and close enough view of the object. The pose planner of the secondary
camera in our work considers the relative location of object with respect to the left arm’s shoulder joint



Computers 2019, 8, 71 4 of 17

of the PR2 robot; by assuming that as an edge of a triangle, with the other two edges being the upper
arm and the distance from elbow to the object, it plans the pose accordingly.
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After the hand motion is done, objects in the secondary camera’s sight are detected and matched
with earlier detected objects from the viewpoint of the main camera. Matching is indispensable
for the fusion of the classification decisions, since it is necessary to know which detection results
should be fused together. The Euclidean distance-based matching procedure is discussed in the next
section, followed by a description of the decision fusion technique. The latter is a novel variation of
a transferable belief model, which in turn is a type of Dempster–Shafer fusion method. In the case
where no object in the secondary view can be matched to an unreliable detection in the main view,
there would be no fusion, and the initial detection is considered final. The fusion component of the
proposed method outputs a probability vector after fusing masses from the two classifiers. With the
probabilities of object categories obtained after the fusion, the category with the highest probability is
chosen as the winner class to determine the final object labels.

In the next three subsections, we detail the pose planner and object matching approaches as well
as the decision fusion technique.

2.1. The Pose Planner

Whenever there is an unreliable detection, the secondary camera should be planned to be moved
to a proper pose to have a clear view of the object. Unlike the works [9–11], the proposed pose planning
method is not designed for a mobile robot. Instead, we are assuming that the robot only moves its arm
and the camera mounted on it to get a new viewpoint of an object. On the other hand, to compute
the arm camera pose, our method, in contrast to the analytical methods of [9–11], is solely dependent
on the deterministic computation of robot arm joints through geometric triangulation. Our strategy
to determine the joint angles of the robot arm is to have a side view of objects with the secondary
camera that is almost orthogonal to the primary view. Figure 2 shows a schematic of the PR2 robot,
in which the main parameters for planning the robot’s arm are shown in red. The distance of the
object to the shoulder joint is computed by using the point cloud data from the 3D camera and the
robot’s inner frame transformations. The camera angle, forearm length, and upper arm length are
also known in advance. Through the geometric computations, it is possible to find the shoulder lift
and flex joints to have the secondary camera pointed toward the object. The forearm roll (rotation)
is determined relative to the computed shoulder joint value to keep the forearm camera (secondary
camera) facing the object. The elbow flex angle and the upper arm rotation are set to a fixed value to
simplify calculations by reducing the number of degrees of freedom in the planner.
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2.2. The Object-Matching Module

It was mentioned before that matching is indispensable for the proper functionality of the active
vision system before any decision fusion is performed. Various methods can be considered for matching
objects, such as those based on appearance, keypoint, and shape [17]. However, they would probably
encounter problems in working with two very different viewpoints on objects, as we have in our
case. In our method, the head and the arm camera are desired to present unalike views of objects to
complement each other, which are unfavorable for the aforementioned matching techniques. Instead,
we can precisely compute the transformation of an object position in the pixel coordinate of the main
camera to the pixel coordinate of the secondary camera by utilizing the available 3D information from
the 3D camera, the transformation between the two camera coordinates, and the intrinsic calibration
data of both cameras. This transformation makes it possible to calculate the distance of objects in
the pixel coordinate of the secondary camera and match them accordingly. This approach is possibly
faster than appearance, shape, and keypoint matchings, as there is no feature extraction or correlation
computing involved. Although the proposed object matching method is dependent on transforming
the coordinate of one camera to the other one, it is not equivalent to pixel correspondence, which is
common in stereo vision. Here, our task is to match objects in the two views, instead of matching
two pixels.

The flowchart of the proposed matching method is displayed in Figure 3. For any object in the
main view to be transferred to the secondary view, we initially compute its centroid. Then, the centroid
position in the pixel coordinate of the main camera is converted to the 3D location in the camera
coordinate of the main camera. Knowing the transformation between the two camera frames, the object
position is transformed to the camera coordinate of the secondary camera. Subsequently, the object
location is converted to the pixel coordinate of the secondary camera using the intrinsic calibration
information of the camera. The transformation of the centroid of the object to the other camera view
assumes that the centroid falls upon the object surface. Nonetheless, it speeds up the matching of
objects by just converting the reference frame of a point in the world, as well as by avoiding feature
extraction and correlation computations.

With all the detections in the main camera transformed to the secondary camera view, there
would be two groups of components to match: namely, the transformed centroids of the main view’s
objects, and the bounding boxes of the detections in the secondary view itself. The larger group (with
more components) is chosen as the one being queried in the distance matching, while the other group
is the searching group. In order to compute the distance of each centroid from each bounding box,
we consider the minimum of distances of the transformed centroids from eight points around the
bounding boxes: four corners and four middle points on each edge of a bounding box. The selected
distance metric is the L2 distance. By getting the least distance to eight points around a bounding box,
we try to prevent problems in matching objects that appear long in the secondary view. For those kinds
of objects, the viewable surface from the point of view of the main camera, and thus its centroid, may be
far from the centroid of the object in the secondary view, causing difficulties for the distance matching
to associate proper components. In contrary, by considering eight points located around the bounding
box, there is a high possibility that there would be at least one association with a close distance.

In the proposed method, any matching is established by associating a searching component with a
queried component with which it has the least distance. However, for a queried component, there can
be multiple associations to several searching components. This issue is remedied by simply keeping
the match with the smallest distance. Following that, matches with Mahalanobis distances of more
than a threshold are discarded to eliminate any matches with irregular distances compared to all the
others. In addition, associations with Euclidean distances of more than a predefined threshold are
canceled to avoid matches with very large absolute distances.
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2.3. The Dempster–Shafer Decision Fusion Module

The Dempster–Shafer evidence theory (DST) [18] is an information fusion method that takes
into account inaccuracy and uncertainty [19]. In contrast to Bayesian fusion, DST does not only
work with singleton probabilities. Instead, it introduces alternative units of belief with non-empty
intersections [20]. Some examples of application of the Dempster–Shafer fusion are airborne object
identification [21], human activity recognition [22], and vehicle location verification [23].

Assume there is a set of singleton probabilities Ω, which is named the ‘frame of discernment’.
By singleton, we mean that the probabilities in Ω are mutually exclusive. In a classification task, the
frame of discernment represents the set of object categories. Dempster–Shafer fusion makes allowances
for the power set of Ω, instead of merely relying upon singleton probabilities. The power set of Ω
includes all combinations of singleton probabilities from the set universe of Ω to an empty set. In the
framework of Dempster–Shafer fusion, any element of the power set is assigned a value in the range of
[0, 1], which is termed mass. Any element of the power set of Ω with a mass value greater than zero is
called a ‘focal element’. Based on the above definition, we may think of masses in DST fusion as a
counterpart of probabilities in Bayesian fusion. Similar to probabilities, the sum of all masses must be
equal to 1, as shown in Equation (1). In the equation, Ψ represents a member of the power set (i.e., a
subset) of Ω, while m(.) is a mass value for it:∑

Ψ⊆Ω

m(Ψ) = 1 (1)

In our method, frame of discernment stands for the probability vector coming from each classifier.
Hence, there are two frames of discernment for the two classifiers. Given n object classes, each
probability vector—or in other words, every frame of discernment—will contain those n elements.
In addition to the n elements of the frame of discernment, each classifier output also has an additional
focal element: that, is the “universal” element. The universal element is the universe of the object
categories. By defining the mass values for the members of the power set this way, there would
be a mass value for every object class. Moreover, the mass of the extra universal element indicates
the similarity of the object of interest to the entire training set. Therefore, the mass of the universal
element is equivalent to the probability of a “universal” object, because it does not distinguish any
specific category.

In the case of the proposed Dempster–Shafer fusion, we need to have n + 1 output classes in
each classifier to get n + 1 masses. Out of them, n object categories are trained similar to standard
training routines. However, the “universal” class is trained with a training set made of half of the
training images of each object category combined. The reason to use only half of the training set is that
it decreases the training time substantially. To counter the effect of a class with larger training samples
than others during the training, the optimization formulae of the SVM classifier is weighted relative to
the training set size of each object category.

By adding a universal class, each sample during the training time will have two correct labels: the
original object category and the added universal class. This means that the proposed classification task
falls under the category of multi-label classification methods. Since a one-versus-rest strategy is used
for the support vector machine, during the training, we will have a training strategy similar to the
binary relevance method [16], which is an established method in the multi-label classification domain.

To fuse the output mass values of the two classifiers, the unnormalized rule of combination is
utilized, which makes the proposed fusion method an instance of the transferable belief model [24]: a
variant of the Dempster–Shafer fusion. The unnormalized rule of combination for our dual-classifier
fusion case is presented in Equation (2):

m(Ψ) =
∑

α∩ β=Ψ

mA(α) ∗mB(β), ∀ Ψ ⊆ Ω, α ∈ A, β ∈ B, (2)
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where sets A and B are the set of mass values resulted from the classifiers for the main view and the
secondary view, respectively. The term m(Ψ) represents the mass of category Ψ. Elements α and β are
each an object category in the set of mass values of the main view and the secondary view classifiers,
respectively. Considering the above descriptions, a category α in the mass vector of the main view (A),
except for the class “universal”, has intersection with two βs in the mass vector B. The first one is the
same category as α in B, and the second one is the “universal” category. The same is true for an output
element of the second classifier (β).

In order to convert the mass values back to the probability domain, we use the pignistic
transformation explained in [25], as shown in Equation (3):

P(ω) =
∑

Ψ ∈ Φ

m(Ψ)

|Ψ|
,∀ ω ∈ Ω, Φ = {Ψ|Ψ ⊆ Ω, ω ∈ Ψ}, (3)

where Ψ is any focal element of the power set of object categories that has the object class ω as an
element, and |Ψ| designates the number of object classes in Ψ. Furthermore, P(ω) is the probability of
an object category ω, excluding the “universal” class. Equation (3) conveys that the belief in any focal
element is dispersed among its constituting class probabilities. Finally, after performing the conversion
of Equation (3) and obtaining the probability values, they are normalized to sum to one.

As stated earlier, besides the actual object categories present in the training, the two classifiers
supply a mass value for a “universal” class. The “universal” category is a tool for a classifier to indicate
its uncertainty in detecting an object. From Equation (1), we know that the sum of all masses in an
output mass vector is equal to 1; thus, an increase in the mass of the universal category causes the
other classes in the same mass vector to take a lower share of mass values. In addition, from Equation
(2), we observe that a rise in the mass of the universal category of a classifier not only reduces the rest
of the masses of that classifier, but also it weighs more toward the masses of the other classifier, with
which it has a non-empty intersection, through multiplying. In the contrary, when the mass of the
universal category of a classifier is low, it designates a resolute classifier that contributes more to the
final decision fusion result [26].

3. Experimental Results

The results obtained in 15 real-world benchmarks are presented in this section. The proposed
active vision system was realized on a PR2 robot and was verified in different lighting conditions and
object placement settings. In all the experiments, objects were placed on a table in front of the robot in
various locations. An example of the robot gesture in one of the trials is shown in Figure 4.

Figure 4 also shows the six objects used in our experiments. The objects were selected to have
at least one other similar object in the tests. The classifier was trained with a dataset comprised of
augmented data obtained from around 30 original training images per object category. The number of
features extracted from each image is 50 color features and 60 HOG features after reduction via PCA.
During the training of the classifier, we employed a four-fold cross-validation technique and a grid
search to find the optimal SVM parameters.

Initially, we evaluated the proposed matching algorithm in 180 object association test instances.
Figure 5 shows a few object matchings between the main and the secondary views. In the figure,
detections with the same color are matched together. As it can be seen, the matchings of objects are
all correct in Figure 5. In the real-world experiments, 95% of the matchings were correct. Since the
matching happens in the pixel coordinate of the secondary view, object mismatches happen for
objects—mostly close ones—in that view.

Figure 6 displays a sample output of the system. In the figure, there are three mistakes in the
detections of the bottom left window (main view): Tape Measure and Tea Pot are wrongly classified as
Burger, and Sugar is incorrectly labeled as Tea Can. Those three objects besides two other detections
have their bounding boxes in red, which signal unreliable classifications. The bottom right window
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of the figure (secondary view) illustrates the detected objects in the secondary camera’s input frame,
for which there is a match found with the unreliable detections in the main view. After fusing the
classifications, the final detection results in the top left window of Figure 6 are all accurate.

The confusion matrix resulted from our tests with six nonoccluded objects, for the main view only
detections is shown in Figure 7. The confusion matrices with the proposed active vision system for the
same tests are displayed in Figures 8 and 9. The results shown in Figure 8 are for the proposed system
without any arm movements toward the objects. Instead, the secondary camera was fixed in different
prespecified poses during the tests. Despite the setting of the secondary camera not moving, the test
objects were still observable to the secondary camera (i.e., in the field of view of the camera) in all the
experiments to keep comparisons with the proposed system with dynamic camera movement fair.
On the other hand, Figure 9 demonstrates the confusion matrix obtained with the full functionality
of the proposed vision system, including dynamic arm planning toward the object. In the confusion
matrices, the Background column indicates target objects not detected at all, and the Background
row counts any undefined entity being falsely detected as a target object. The intersection of the
Background row and column is also intuitively void.

Four performance metrics for object detection were calculated using the confusion matrices:
namely, accuracy, recall, precision, and F1 score. Precision is the number of true positives over the total
number of positives. It measures how well the classifier distinguishes true objects of interest from false
positives. Recall is defined as the ratio of true positives over ground truth positives, and is used to
assess the capability of the classifier in finding objects of interest. To balance these two metrics, the
F1 score takes the harmonic mean of precision and recall. On the other hand, accuracy is obtained
by dividing the number of true detections to the total number of the observed detections in the test.
It evaluates the ability of the classifier to correctly perform the recognition task. Table 1 illustrates the
computed performance metrics for the three test cases: single camera, active vision without camera
movement, and active vision with camera movement. The macro-averaging in Table 1 implies that the
measure is computed separately for each object class, and later is averaged over them. In contrast, in
micro-averaging, the measures are calculated for all the object classes collectively. Micro-averaging
results are not included in Table 1, since micro-averaging recall and precision are equivalent to accuracy
in a multi-class classifier.
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Table 1 shows large improvements in all four measures compared to the traditional single camera
setup. The proposed active vision system achieved 12.9%, 12.2%, 13.1%, and 12.5% increases in
precision, recall, accuracy, and F1 score, respectively. This enhancement in performance brings up
the accuracy of the experiments to 97.7%. Other metrics are also over 97%. By comparing the
performance metrics of the proposed method with its variation with non-moving cameras, we realize
that dynamically moving the secondary camera toward the objects with uncertain detections improves
the measures by at least 4.4%. This proves that not only using cameras in different viewpoints
contributes to a better detection performance, but also planning and moving the extra views help
further improvements.

Table 1. Performance measures of the proposed vision system.

Performance Measure Single Camera Actively Fused
(without Camera Movement)

Actively Fused
(with Camera Movement)

Macro-Averaging Precision 0.860 0.944 0.989

Macro-Averaging Recall 0.855 0.933 0.977

Accuracy 0.846 0.933 0.977

F1 Score 0.857 0.938 0.982

We also evaluated the proposed system’s ability to cope with partial occlusions by testing it against
benchmarks with objects being intentionally occluded. In the experiments, objects were partially
occluded by placing a barrier in front of the objects to partly block their visibility from the viewpoint
of the main camera. However, in spite of aiming to have occlusions in the main view, there could
be test situations in which the objects in the secondary viewpoint are also occluded partly by the
barriers or the other objects on the table. Although there was a mixture of occluded and non-occluded
objects in the table-top settings in our tests, the results for occlusion tests are only obtained from the
occluded objects in the test scene. A sample test situation with three partially occluded objects in
the scene is demonstrated in Figure 10. It is observed in Figure 10 that one of the partially occluded
objects is classified incorrectly in the main view (as a Sandwich), but after checking the confidence,
detecting objects in the secondary view, matching the uncertain detection with its corresponding one
in the secondary view, and finally by fusing the classification decisions, the final result in the top left
sub-image is correct (i.e., detected as an Orange). Figure 11 shows the confusion matrix of the single
camera setup, whereas Figures 12 and 13 illustrate the confusion matrices resulted from utilizing
the proposed system in cases of stationary and moving cameras, respectively. Table 2 illustrates the
computed metrics for this test benchmark, showing the advantage of the proposed method in dealing
with partial occlusions from the viewpoint of the main camera. It is observed that the proposed
method alleviates the adverse effect of partial occlusions. Compared to the single-camera configuration,
precision, recall, F1 score, and accuracy are respectively 18.3%, 15.5%, 16.9%, and 17.1% more with
the active vision system. From Table 2, it is evident that with an active secondary camera movement
scheme, there would be at least a 2.2% improvement in metrics in contrast to the same method with
stationary cameras.
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Table 2. Performance measures of the proposed vision system in benchmarks with partial occlusions.

Performance Measure Single Camera Actively Fused
(without Camera Movement)

Actively Fused
(with Camera Movement)

Macro-Averaging Precision 0.745 0.903 0.928

Macro-Averaging Recall 0.700 0.833 0.855

Accuracy 0.684 0.833 0.855

F1 Score 0.721 0.866 0.890

4. Discussion

By analyzing the results of Tables 1 and 2, we observe that the differences between the active vision
and the conventional single-camera detection systems increase with the introduction of occlusion
in the scene between the objects and the main camera on the robot’s head. This happens because
the proposed system is mostly resilient to the performance drop caused by the availability of less
informative features in the case of occluded objects. In the tests, the results of using the system with



Computers 2019, 8, 71 16 of 17

disabled arm motion (in other words, no secondary camera motion) are also reported. They are
comparatively robust too, although not as strong as the system with a moving secondary camera, but
close to that. Notwithstanding, it should be noted that since the object placement in our table-top
benchmarks were known (i.e., on the table) we set the secondary camera’s pose toward the table to
have at least another view of any uncertain detection.

As stated before, the proposed method is capable of correcting the uncertain detections. However,
by looking at the confusion matrices presented in the results section, it is clear that the proposed
method, in its current implementation, does not attempt to address an absent detection (false negative)
in the main view. That is why the number of false negatives in the “Background” column in the
single-camera cases are identical to those of the proposed system. The functionality to overcome these
types of false negatives could potentially be gained by lowering the detection threshold to decrease the
number of false negatives. However, this can lead to an increase in the false positives. Nevertheless,
the effects of adopting such a strategy should be analyzed later.

5. Conclusions

In this paper, an active object detection system for robotic environments was presented. It is
implemented on a PR2 robot, by which it has access to an RGB camera mounted on the robot’s hand
and an RGB-D (RGB-depth) camera on the robot’s head. The contributions of the presented work are
the design of a dynamic camera management approach in a robotic platform with the ability to assess
the confidence of detection, a quick object-matching algorithm based on the frame transformation of
cameras and computing distances of pixels, and a novel decision fusion technique on the basis of the
Dempster–Shafer evidence theory.

Test results in our real-world experiments exhibit the robustness of the presented method with an
average accuracy of 97.7% and F1 score of 98.2%, accompanied with significant enhancements over the
static camera case.

A future direction of work can be extending the application of the presented active vision method
to event and intent recognition. Another possible research focus to improve upon this work is adding
the ability to handle complete occlusions in the initial viewpoint seen by the main camera.
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