
computers

Article

The Harvest Coach Architecture: Embedding
Deviation-Tolerance in a Harvest Logistic Solution

Hugo Daniel Macedo 1,* , René Søndergaard Nilsson 1,2 and Peter Gorm Larsen 1

1 DIGIT, Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark; rn@eng.au.dk (R.S.N.);
pgl@eng.au.dk (P.G.L.)

2 AGCO A/S, Dronningborg Allé 2, 8930 Randers NØ, Denmark
* Correspondence: hdm@eng.au.dk

Received: 23 January 2019; Accepted: 15 April 2019; Published: 23 April 2019
����������
�������

Abstract: We introduce a deviation-tolerance software architecture, which is devised for a prototype
of a cloud-based harvest operation optimisation system issuing harvest plans. The deviation-tolerance
architecture adapts the fault tolerance notions originating in the area of systems engineering to
the harvest domain and embeds them into the Vienna developed method (VDM) model at the
core of our harvest logistics system prototype. The fault tolerance supervision/execution level
architecture is framed under the notion of an “harvest coach” which diagnoses deviations to the
planned operations using “harvest deviation monitors” and deploys a novel “plan” (controller)
that mitigates the encountered “deviation” (fault). The architecture enabled the early start of field
experiments of the harvest logistics system prototype, which lead to the validation/refutation of
early design stage assumptions on the diverse system components behaviours and capabilities.
For instance, we casually found discrepancies in the arithmetic precision of open-source libraries used
in the conversion of vehicle positioning coordinates, we assessed the maturity of the frameworks
used to develop the field user interfaces, and we calibrated the level of system-operator interactivity
when deviations occurs. The obtained results indicate that the architecture may have a positive
impact in the context of developing systems featuring intrinsic human-driven deviations which
require mitigation.

Keywords: VDM; harvesting; logistics; system; deviation-tolerance

1. Introduction

The agricultural sector evolved to achieve a massive increase in productivity, for the sector
demands have grown, and inexpensive and high-quality food is a requirement. In the agricultural
domain, harvesting is the process of gathering a ripe crop from the fields, and it has a huge impact on
productivity. The increases in harvest productivity are predicted [1] to emerge from better planning and
optimisation of the interaction between the different resources involved in the harvesting operations.
Current industrial-level harvesting operations involve advanced logistics, which produce a plan in the
form of a choreography to be performed by human-operated vehicles during the harvest process.

The sketch in Figure 1 provides an abstraction of a harvest process. In it, the typical vehicles
involved in a harvest are displayed: combines, service units, and trucks; each indicated by labels
numbered: 1, 2, and 4 respectively. Combines are vehicles reaping the crop from the field while storing
the yield in a local bin. For small fields, a single combine may be used, but in larger fields, the use
of multiple combines is common practice. To optimise the harvest process time and vehicle usage,
the combine may use an auger (an Archimedes’ screw kind of conveyor) to unload the bin content,
while it reaps the field. Unloads are part of the plan, as depicted by number 3 in Figure 1. The plan
designates a service unit and ensures an adequate (side-by-side) and timely route synchronisation

Computers 2019, 8, 31; doi:10.3390/computers8020031 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-8882-4500
https://orcid.org/0000-0002-6247-1057
https://orcid.org/0000-0002-4589-1500
http://dx.doi.org/10.3390/computers8020031
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/8/2/31?type=check_update&version=2

Computers 2019, 8, 31 2 of 20

between the two vehicles. After the unloads, the service units unload the grain to on-road trucks, and
become free to service another combine.

The grand vision, where a farmer stands in front of a field supervising the result of an automated
harvest process, is not far from what current technology allows [2]. Nevertheless, practice shows there
are still several technological and social challenges to overcome. On the social side, one is faced with
rooted practices and novelty aversion from the practitioners. On the technological side, the modern
tools and concepts take a long time to get ready to perform efficiently in the field.

This paper reports on part of the results of a three-year project named “off-line and on-line
logistics planning of harvesting processes” where Aarhus University and the company AGCO A/S
worked together to address the practical technological challenges faced by the next generation harvest
logistic systems. The project produced prototypes for the systems involved in harvest logistics
optimisation including both an off-line simulation tool, where a harvest operation can be setup and
several parameters explored and optimized by means of simulation (indicated by 6 in Figure 1), and
a real-time guidance system that provides guidance in the form of routes that the operators should
follow during the actual harvest process (indicated by 5 in Figure 1).

1

6

3

2

4

5

Figure 1. An artist’s impression of the envisioned logistics system. The off-line simulation tool is
indicated by arrow 6, and depicts a farmer using the tool to setup the harvest. The harvest setup is then
used by the real-time guidance system (pointed by arrow 5) to orchestrate the vehicles (pointed by 1, 2,
and 4). The orchestration involves the issuing routes to be followed by the drivers and the prescription
of the unload points (pointed by 3).

The prototypes served as mock-up realisations of a harvest logistics solution and enabled us to
produce field experiments. The experiments involved vehicles uploading controller area network
(CAN) bus data to our prototype which in turn issued route plans in the form of GPS coordinate
waypoints to be followed. From the experiments, valuable feedback was collected to improve the
robustness of the prototypes and add operator driven usability features to the prototypes.

During the course of the harvest process, deviations are likely to occur due to a biologically
varying environment. For instance, yield may be different than expected and vary across the field,
causing the bin of the combine to be filled faster or slower than expected. This type of deviation might

Computers 2019, 8, 31 3 of 20

make the planned route invalid because the bin could become full faster than anticipated, potentially
leaving the combine in a position where unloading is not feasible. Therefore it is crucial to be able to
cope with this type of deviation.

Besides the environmental factors, the guidance system is also challenged by the human driver,
for the human control of harvesting machinery is naturally coarse, and vehicle manoeuvring in the
field has hard limitations. Small positional deviations compared to the planned route will occur
because of this manoeuvring. Such small deviations should be tolerated and should not trigger a
replanning. However, a driver may follow a route that is different from the planned one, and in this
case the logistics system should trigger a replanning. Therefore, a deviation addressing mechanism is
an essential usability and user-acceptance feature of a guidance solution, as human operators expect
flexibility and tolerance from such a system.

To cope with deviations we devised a novel software architecture, the harvest coach architecture
(HCA), adapting the fault tolerance architecture from the domain of fault tolerance control [3]. In that
domain a system controller operates at two different execution levels. Without faulty conditions,
the control is performed at the base level, which is labelled as the execution level. In case a fault is
diagnosed, the system enters into a supervisory execution level which has the logic to diagnose the
situation and adapts the controller system which operates under the degraded conditions.

In our software architecture there is also the notion of two execution levels. At the execution
level there is the “harvest logistics system” (HLS) (In previous publications it was termed both as a
“centralised control algorithm” or as a “master algorithm”. In this paper we unify these in the HLS
keyword, avoiding the duplication and also highlighting the disconnection with the “master algorithm”
concept as defined in the machine learning field.) which deploys an initial harvest plan tuned for a
best case scenario in terms of the field conditions. The execution level was previously developed as
reported in [4–7], and, before our additions, implemented a stepwise loop reading the values for the
several vehicle parameters (e.g., GPS position, bin level) in the field and issuing the routes to be shown
to the operators in thin clients to be carried in cabins of the vehicles.

At the supervision level there is what we term the “harvest coach” (HC) which diagnoses
differences from the planned operations (for instance, low-yield in a patch of land assumed to be highly
productive at the offline setup stage) using “harvest deviation monitors” (HDMs) and deploys a novel
“plan” (system) that mitigates the encountered “deviation” (fault). The proposed deviation-tolerant
architecture finds the optimal continuation plan given the deviation. Our solution abstracts the
computation of the new plan as there are vast works regarding optimality, and the computation of an
optimal continuation plan after a deviation is a rich and complex research field in itself [8,9].

To exercise our HCA software solution, we chose to focus into position deviations and yield
deviations, as both are expected to happen when using the HLS, although only the position deviations
were experimentally tested in the field. In this paper, a definition for the two kinds of deviations is
given in the forms of Equations (1) and (4), which we described in Sections 4 and 5 respectively.

In addition, we developed artefacts to avoid redundant replanning actions, and to cover the cases
where the particular deviation instance is known to be tolerable. For instance, the introduction of a
position validity measure (defined by (2) in (4)), a division of the harvest process plan into phases,
and an automaton to infer the current plan phase from the data collected in the field allowed us to
discard redundant deviations.

The HLS prototype was extended with the HCA, and was put to the test in several infield
experiments where the system was used to guide a test driver operating a combine vehicle retrofitted
with the prototype. The results of such experiments provide a positive review to the application of the
HCA and we summarise the main outcomes in this paper. We expect our architecture and results to be
useful to a broader audience, and in particular we believe they may be useful in the development of
systems where deviations play a role.

In a first implementation, the HCA solution was non-interactive and worked in auto mode. Infield
tests showed that the user would not be aware that a deviation is happening and the plan was changed.

Computers 2019, 8, 31 4 of 20

Moreover, at points the user could be interested in keeping the original plan, although deviating for
the route. Therefore, we added interactive elements to the HCA. Deviations were signalled from the
HC to the operator and approval was first obtained before issuing a new plan.

Our goal as the academic partner in the joint research project was to use a model-driven approach
system design to build prototypes of the different components of the envisioned system. Preference
was given to the usage of open source software platforms, except for the combine harvester and
gateway component that were provided by the industrial partner.

Related work

Our architecture is built on top of a prototype reported in previous publications. In [4,5],
the authors reported on how optimisation algorithms for different aspects of the harvest operation can
be combined through the usage of a combination of design patterns and a formal Vienna developed
method (VDM) model. This paper is based on the same model, but we added the deviation mechanism
to allow replanning, and ensure the plan is updated throughout the whole harvest process.

In [6], the technical details of the main component in the harvest logistics prototype are described.
In particular, the paper exposes reasons for the choice of a sequential execution model and the model
evolution throughout project timeline. The paper is suited for an audience with expertise in VDM and
contains no details in terms of the harvest coach architecture which in turn is the focus of out paper
and the proposed architecture.

In [7,10], the reader may find details about the process of unit testing the prototypes developed.
One paper uses the harvest logistics prototype as a case study and test to the improvements of the
VDM testing support, the other uses it as an example of distributed system modeling. Furthermore,
Tran-Jørgensen et al. [10] reports a number of 134 unit tests for the HLS system VDM model and
how they are performed. In contrast to such works, our architecture provides a solution to the
deployment of the prototype in the field, and we focus on providing the details on the construction of
the solution itself.

Fault tolerance and industrial grade system solutions are abundant, yet deviation-tolerance poses
a more challenging research problem to the designer of a guidance solution, and seems to us far from
being solved, in particular in the harvesting domain. In fact, we have not found any other literature
that address this particular problem. Our approach is to port concepts from the domain of fault-tolerant
control systems [3] into the architecture, yet the result is not a traditional fault-tolerant controller,
because a deviation occurs not as a fault of a component (e.g., GPS receiver failure) or human fault,
but as a deviation from the harvest plan. The harvest logistic control system components are assumed
to be up and running both before, during, and after a deviation happens.

Paper organisation

In Section 2, an introduction to the stepwise control loop and the HLS prototypes is framed in
a broad setting. In Section 3, the high-level details of the HCA in terms of a feedback loop control
system are introduced. In Section 4 and Section 5, the different deviation scenarios considered and
how to take the human-in-the-loop aspects into account are described. Then Section 6 presents more
details regarding our particular prototype implementation, especially the changes performed to the
previously existing VDM model. In Section 7, the performance of the HCA in different tests performed
in a real agricultural field facility of Aarhus University is reported. Finally, in Section 8 we provide a
discussion of the infield experiments and the outcomes of the addition of the HCA to our prototype.

2. The Harvester Logistics System Prototype

In this section, we provide a high-level description of the behaviour of the real-time guidance
system prototype. We focus on the essential components of the HLS prototype, i.e., the ones involved
in the actual harvest operations, and on how each plays a role in the final behaviour of the system.
The essential components are:

Computers 2019, 8, 31 5 of 20

• Thin client: a standard tablet/smartphone hosting a GUI, which was developed during the
project, and provides guidance to the combine and service unit operators. The guidance
consists of showing a map view displaying the plan produced by the HLS in the form of
routes/synchronisation points to be followed.

• Combine: standard harvester machine manufactured by AGCO and operated by a licensed driver
with the support of our thin client prototype.

• Combine gateway: AGCO proprietary hardware equipment with navigation and internet
connection, which we used to upload controller area network (CAN) bus data from the combine
to a cloud server which our own HLS prototype had access to.

• Cloud server: a standard desktop computer hosting both:

– the HLS prototype,
– a standard publish-subscriber service for communication over the network,
– and the back end web-services for the thin clients to run in tablets.

As we focus on deviations (user/process specific faults) and not on fault tolerance (missing
messages/faulty sensor) we assume all the components work under normal conditions and will then
treat them as black-boxes, except for the HLS prototype which is the only box that is relevant for
the deviations.

The HLS prototype, given its criticality, was developed following the VDM [11]. The method
prescribes the development of state-based and object-oriented models in the VDM formal modelling
language and has been previously extensively applied in the development of high-level controllers.
The HLS model implements a stepwise loop which, for clarity, in this section, is described in terms of a
feedback loop in the notation of control systems and we refer the reader interested in the VDM details
to [4–6] and in Section 6.

The abstract behaviour of the real-time guidance prototype is depicted in Figure 2. In it, the HLS
and its environment are depicted. The HLS reads the desired state of the field f from the setup and
outputs a route r in the form of the next waypoints that need to be reached by an operator.

HLS Operator Harvest Process
u

Measurements
Visual and Tactile

Measurements
CAN bus data (GPS,. . .)

Field

f fe r re y

−

rm

−

fm

Figure 2. Harvest logistics system (HLS) control overview.

At each instant the HLS measures the available field parameters (e.g., vehicles GPS coordinates,
grain intake, level of bin), computes the remainder of the field as the error fe, and outputs new routes
by discarding the waypoints that were already reached. The diagram assumes there is only one
operator in the field, but by replicating the operator box and its connections one obtains the system
diagram by simple refinement.

The vehicle operator (the human-in-the-loop element) steers the vehicle to follow the route r and
changes the state of the field and its position y through its output u. In the best-case scenario the
operator is attempting to minimise the error re between the operator measurement rm of the current
vehicle trajectory and the expected route r. It was a requirement of our project that the HLS must be able

Computers 2019, 8, 31 6 of 20

to operate without relying on additional sensors to measure the field status y. The measurements rely
on the sensor information already available from the CAN bus, from which we obtain the measured
outcomes fm of the expected process state.

If the plan is not followed, a deviation occurs and this affects the continuation of the plan.
A deviation occurrence at some time instant translates to the measurement of a value for a parameter
in the field fm that does not match the value expected by the plan f . For instance, the measured value
for the position of the combine by the measurements of CAN bus data component (e.g., combine
report a position inferred to be at row X) may differ from the value that was expected by the plan
(e.g., according to the planned route f , the combine is expected be positioned at row Y). In that case
the previously deployed route r is compromised, and the HLS component had no logic to produce
either a continuation route r from that moment on, or a new plan f .

Measuring state: a detour on geolocation.

To illustrate what is meant by measuring the process state, consider the estimation of the
geographical position of a combine in a field (a geolocation), which is essential in the detection
of position deviations. The estimation dataflow is depicted in Figure 3. The combine is equipped with
a gateway providing latitude lat and longitude lon coordinates in the form of geographic coordinates
(lat, lon) in a sphere, which traverse the network to reach the HLS prototype.

To be used in route planning, the spherical geographical coordinates must be projected into
coordinates of a plane, because the problems to be solved while computing routes (e.g. distances,
angles, . . .) are easy to solve using the plane Euclidean geometry. In our work, the coordinate projection
is based on a standard Universal Transverse Mercator projection as the one that can be found in [12],
and is abstracted as a mathematical function χ providing coordinates in terms of an easting em and
northing nm value.

Yet the precision of positioning systems is far too refined in the context of manoeuvring tonne
weighing vehicles in a farming field, thus we convert the coordinates using a snap to grid (stg)
projection. The stg produces an easting eg and a northing ng value, projecting the plane coordinates to
the nearest plane coordinates of a grid/mesh defining the expected routes in the graph.

Given that the routes in the grid structure are defined in terms of traversing an edge in a predefined
direction, we use another projection lr to convert the grid coordinates into a triple recording an edge
(token unique identifier) e, a direction (forward or backward) d, and a progress (percentage of edge
traversed) p. The lr projection coordinates simplify the monitoring of deviations, as the computation
relies on comparing the edge identifiers, direction tokens, and progress numbers.

χ stg lr
(lat, lon) (em, nm) (eg, ng) (e, p, d)

Figure 3. Dataflow involved in the measurement of the geolocation for a vehicle. The vector fm in
Figure 2 can be assumed to contain a triple (e, p, d) to each of the vehicles.

Having defined the dataflow of vehicles data, we can now provide an illustration of how to
produce the measurements of the process status y without relying in extra sensors. Let us consider
the estimation of the amount of yield to be reaped in the field position corresponding to some edge
e. Our experiments show one is able to infer the changes in the state of the harvest process y with
sufficient accuracy by correlating the status of the combine variables related to grain intake (position
of the header, grain intake in kg/L) and the time-series of triples (e, p, d), which is reported while
traversing the edge e, under the assumption that there is a clear monotonic increase of the progress
p, converging to a value of 100%. Nonetheless, the sparse investment in sensors leads to higher
complexity, when one needs to decide whether an operator not following the routes prescribed by the
plan does so due to either better situational awareness or mistake.

Computers 2019, 8, 31 7 of 20

3. The Harvest Coach Architecture

In this section, we present a high-level description of the devised HCA deviation-tolerance
architecture. Because of its generic aspect, the high-level details of the HCA are described in terms
of a feedback loop, since the HCA may be useful to apply in a broader scope. The description also
emphasises the addition we made to the previously stage of development of the system prototype,
corresponding to the HLS as described in Figure 2, where a deviation would lead to a fail state, and
block the system progress.

The modification to the existing HLS prototype is shown in Figure 4, and consists of two new
components: the harvest coach and the HDM. The addition of the new components introduce the
notion of run levels, which are highlighted by the dashed line dividing Figure 4 horizontally. The run
levels are defined in the same way that fault tolerance architectures define them:

• Execution level: the base operational level for the system, where the best case scenario conditions
are met and where the operators in the field follow the routes deployed by the HLS, which in turn
simply updates the plan progress.

• Supervision level: where the HC runs when a deviation occurs and where the HDMs run
periodically. This is a critical run level ensuring the deviations are detected and action is taken
accordingly, when appropriate.

The execution level has a trapping mechanism allowing the execution to be switched into the
supervision level. This switch of level gave rise to the idea of a coach, because beyond an update of the
simulation model state, the operation decisions rely on a centralised component running at another
level with a global view of the field, which is itself responsible for making changes to a plan during
the harvest operation.

HLS Field
r

Measurements
CAN bus data (GPS,. . .)

Harvest
Coach

HDM

f fe y

−

fm

Supervision level

Execution level

Figure 4. Simulation deviation coping mechanism architecture.

At the execution level one finds the HLS and a loop identical to the one in Figure 2, where the
field component in Figure 4 abstracts the inner loop in Figure 2, which in turn corresponds to an
abstraction of the physical harvest elements comprising both the piece of land holding the crop and
also the vehicles and other assets. As in Figure 2 the route variables r are generated to perform the
expected field harvest f , and the route is input to the field elements producing an update to the field
elements variables y.

To be able to detect deviations the HDM receives both the route r to be followed and the field
measured values fm as input. When a violation of the expected values is observed, the HDM relays
such an event to the HC by triggering its execution and trapping the execution to the supervision most
critical level.

The execution of the HC performs the necessary operations to decide whether the deviation
demands a new plan generation or if it is possible to continue to operate. The logic built-in at the

Computers 2019, 8, 31 8 of 20

HC level is designed according to the definitions in a deviations catalogue to be understood as the
deviations the HC is able to manage and what are the actions to be taken when a deviation is detected.

In the case of a critical deviation (e.g., position Y when expecting to be in position X), which
demands a re-optimisation and issuing a different route r the HC deploys a new HLS component as
illustrated by the thick arrow and the execution goes back to the lower level. The new version of the
HLS component is tuned to produce a route r which fits the deviating state fe for the current field
measurement fm containing the deviating parameter (for instance, in our running example, a liaison
route from position Y to X may be issued as a mitigation).

The issuing of a new plan is not immediate, as it could erroneously be inferred from the double
arrow in the diagram in Figure 4. Diagnosed deviations for which a new plan is required are transmitted
to the driver via the thin clients, so the drivers have the last decision on whether a new plan should be
put in place or not.

The next two sections provide a low-level account on two kinds of deviation present in the
deviation catalogue: position and yield deviations, and illustrate the nuts and bolts involved in
addressing the specific deviations. For the implementation details of the high-level HCA in terms of
the operational VDM model please confer Section 6.

4. Position Deviations

In a position deviation, there is a discrepancy between the reported position of a vehicle and the
expected position according to the plan. As described in Section 2, the variables from the field y are
processed to obtain fm, the measured field values, and the geolocation sub-system produces triples
(e, p, d), which define the reported position of a vehicle. Assuming the planned position is given by
the triple (ep, pp, dp), we define a position deviation in (1). The definition states a deviation occurs
when the reported position edge or the direction of the vehicle differ from the planned ones, or the
distance between the progress and the planned progress is greater then the arithmetic precision ε of
the computing platform hosting the HLS:

(e 6= ep) ∨ (d 6= dp) ∨ |p− pp| > ε. (1)

Minor position deviations occur frequently, because it is both unreasonable to expect vehicles can
be steered to follow the route with infinite accuracy and to assume no event leading to a deliberate
decision by the operator to deviate from the planned route happens. From an analysis of field data, the
position deviations can be sorted into one of the following exclusive categories:

1. Negotiation/manoeuvring deviations: occurring when the driving of the machinery demands a
temporary deviation from the plan. The typical example is a need to reverse and back off in order
to align a vehicle with the planned driving direction, or during transition between edges.

2. Situational awareness deviations: these occur when the driver detects conditions in the field that
the HLS system is neither aware of nor able to detect. The typical example is a patch of land
without crop or an obstacle in the path.

3. User error deviations: these occur when (possibly by mistake) the plan is not followed but due
to the operations specificities it is not recommended to reverse/manoeuvre back to the position
expected in the original plan. The typical example is the entrance in a different work row than the
one planned.

To make the system user-friendly and minimise user interactions, the harvest deviation monitors
evaluate if the deviations detected by Evaluating (1) are critical to the plan or if they can be considered
in the Category 1. In that case, a re-plan is not triggered and user interaction is delayed until either a
deviation of Category 2 or 3 occurs.

Due to the project requirements, the evaluation of the severity of the criticality depends on the
inference of the situation in the field rather than on the inspection of the situation via the addition of

Computers 2019, 8, 31 9 of 20

extra sensors. Therefore, in Sections 4.1–4.3 we introduce the software mechanisms devised to classify
deviations, and in Section 4.4 we describe the classification.

4.1. Position Validity

Our first change to the HLS model was the introduction of a validity measure for the position
measurement allowing the inference of off-field manoeuvring. As the existing HLS system uses a
stg to project map coordinates (em, nm) into the internal graph representation’s coordinates (eg, ng),
the manoeuvring outside the field leads to deviation triggering. To filter those cases, we measure the
distance between the GPS coordinates and the coordinates in the grid, and a position is assumed to be
valid if the distance lies within a certain bound. In our case studies, a bound of 4 m has shown to be a
good cut-off value, and when (1) is conjunct with (2) several non-critical deviations are discarded.√

(em − eg)2 + (nm − ng)2 ≤ 4 m. (2)

Although a measure of validity is enough to avoid triggering a deviation when vehicles
manoeuvre outside the field boundaries, there are several other cases where the deviation criticality
depends both on the position in the field and also on the phase of the harvest process.

4.2. Plan Phase Structure

In our abstract setting, a harvest plan consists of a route for each of the vehicles, and each route
is defined as a sequence of waypoints whereto a vehicle should be driven, and is interspersed with
waypoints prescribing the position where vehicles/resources synchronise to perform unloads and
transfer bin contents. We consider a harvest plan is divided into three phases :

1. Open field: occurring between the start of the harvest process and the completion of harvesting
the headlands (boundary/perimeter around an agricultural field).

2. Harvest rows: the harvesting of the parallel rows, which constitute the traditional field crop
arrangement

3. Finalise: all the activities/planned waypoints (unload the bin, drive to depot, . . .) to be completed
after the finishing of the work rows.

To keep track of the execution status of each of the plan phases, we divide each of the first two
phases into a sub-phase Init to be set if the corresponding plan phase was commanded but there is
no evidence the operation is being executed, and a sub-phase Exec set whenever the measurements
indicate that the plan phase is underway, yet the plan phase cannot be measured by adding an extra
piece of technology and demands the inference of its approximate value.

4.3. Harvest Plan Tracking Automaton

To infer the plan phase approximation, we use an automaton which is used to keep track of the
harvest progress based on the reported positions and other measured parameters. The states of the
automaton reflect the different phases of the harvest process domain, whether the phase is already
under execution, or it was just initialised/dispatched. The automaton transitions are performed at the
happening of two types of event:

• a new vehicle position (e, p, d) is measured by the system,
• the planned waypoints for a phase are completed, and this event sets the predicate isFinished(plan)

to true.

The transitions of the automaton are depicted in Figure 5, and, for each state, a transition depends
on the type of the edge e in the position and the value of the isFinished(plan) predicate. The set of
edges e is partitioned into a disjoint union of the sets: headland and workrow, and such partition
is used to decide whether a position inferred edge e belongs to a headland e ∈ headland, or a work
row e ∈ workrow, or is a connecting edge (Connecting edges are not relevant for the automaton state

Computers 2019, 8, 31 10 of 20

transition, but are important to have in mind for Section 4.4). At the harvest process start the automaton
is set in the initial state OpenField/Init and the state progresses until the finalise state where the plan
is expected to be fully/completely executed.

OpenField
Init

start

OpenField
Exec

HarvestRows
Exec

HarvestRows
Init

Finalize

e ∈ headland

e ∈ workrow

isF inished(plan)

e ∈ workrow

isF inished(plan)

e ∈ workrow

Figure 5. Depiction of the plan phase tracking automaton. The initial state OpenField/Init corresponds
to the moment were the HLS issues plan, but the position measurement issued edge e do not show
the process is being performed. As soon as a headland movement according to the plan is detected
e ∈ headland the automaton transits to the OpenField/Exec state.

The dashed transitions of the automaton reflect the need to cope with deviations. For instance,
the transition from the OpenField/Exec state to the HarvestRows/Exec if the position inferred edge
e ∈ workrow is measured is one such example. Such a transition reflects the case where the open field
phase of the plan is considered as finished by the driver, for instance, in case the driver becomes aware
that the remainder waypoints of the plan for the open field phase do not result in yield, for instance
due to the absence of crop in the corresponding patch of the field. In such situations, the driver
may directly start harvesting the work rows and the automaton must skip the HarvestRows/Init
state. The described abnormal transition configures a Category 2 deviation, thus causing the HC
to be triggered and the deviation to be treated by among other actions discarding all non-achieved
waypoints for the Open Field phase.

4.4. Position Deviation Classification

To classify the different position deviations we analyse if the position is valid, which kind of
edge the vehicle is located at, and consult the harvest plan track automaton state. From the different
possibilities, a decision tree is built to explore the possible deviation scenarios and to record the design
choices prescribing whether to trigger or discard the issue of a new plan for each of the situations.

In Figure 6 the decision tree that we use in our prototype to classify position deviations is
shown. At each node there is a yes/no answer to a predicate on the decision parameters. At the
root level, a decision is made on the validity of the deviating position. At the subsequent levels,
the plan/execution phase and edge types are taken into account. Finally, at the leaf level, the deviation
category is shown between parentheses, and the decision whether either to issue a new plan or not is
given by either adding a unique id for the deviation (e.g., DID1125), or adding discard, respectively.

By following the graphical depiction in Figure 6 the answer sequence: triple yes, no leads to the
discard node on the left bottom corner of the figure. Such path encodes our design decision regarding
manoeuvring outside of the field at the harvest process start. The number in parentheses in the tree
node records that our decision was that such configuration constitutes a Category 1 deviation, so the
decision to be issued is to discard it. The choices shown are heuristically driven and for the purpose
of testing the HCA. It must be mentioned that a thorough analysis of the different scenarios is yet to
be made.

Computers 2019, 8, 31 11 of 20

As an example for the basis of the decision mentioned in the previous paragraph, consider a
scenario where the harvesting operation has just started, and the vehicles have not yet reported any
valid position neither a position in a headland or work row edge. For instance, the vehicle reports
positions in a connecting edge. The position reported may be different from the plan because of
the need to manoeuvre around other machinery blocking the driver way to the entrance of the field.
We considered this a Category 1 deviation that is safe to ignore, for the route to follow is the same and
the new plan would be the identical.

Is position valid ?yes no

planPhase = OpenField ?yes no

execPhase =< Init > ?
yes no

e ∈ headland ?
yes no

(3) DID1125 (1) discard

e ∈ workrows ?
yes no

(2) DID1126 (1) discard

execPhase =< Init > ?
yes no

(1) discard planPhase = HarvestRows?yes no

e ∈ workrows ?
yes no

(3) DID1117 (1) discard

(1) discard

(1) discard

Figure 6. Decision tree used in classifying the deviation category (between parentheses), and whether
to trigger a replanning or discard a deviation. The first decision is on the validity of the coordinates
according to (2). The other decisions involve inspection of the state of the automaton and the type of
the current edge.

Although our work is abstract and serves as a mock-up of the desired solution, the future
refinements of the exposed concepts are simple, and extensions to the transitions of the automaton and
decision tree are the reasonable next steps. For instance, the accommodation of already existing sensor
data (e.g., combine cutting header position/grain intake) which was not available during our project
may increase the robustness of the deviation triage system, therefore minimising user interaction and
false positives.

5. Yield Deviations

Another source of deviations is the discrepancy between the expected/planned level of grain
inside the combine bins and the actual value as read by the bin sensor technology. These deviations
occur due to the natural variance in the distribution of grain in the field (different field areas
produce different amounts of grain due to various reasons) and are compounded with field’s yield
forecast accuracy.

Our approach assumes one has statistical know-how on the yield map distribution for a field, and
we assume a mapping yield : Edge → “Litres of yield” which can be used to compute the expected
addition of grain to the bin level after harvesting an edge in the field. Therefore, in case yield(e) = 980 L,
if a harvester reports a position (e, 100%, d), then the HLS assumes the bin count is the value at the
entry of edge e plus 980 L. At each control loop, the HLS incrementally updates the estimated bin
load level loadp and compares it to the level reported loadm using a sensor in the vehicles. Yet again,
the sensor technology precision is inaccurate, thus we need a richer criterion beyond the difference of
those values |loadp − loadl | > ε.

The decision when to trigger a deviation between the expected bin level and the actual bin load
demands the computation of tolerated discrepancies between such numbers. Such tolerance must be
defined taking into account two opposite criteria: the need to minimise replanning events and the
need to make sure a re-plan is triggered in a timely fashion and the harvest process performance is not
penalised by the deviation.

For that, we compute a dynamic threshold value for each load level. The threshold formula is
displayed in (3). The threshold depends on the capacity of the combine in litres (L) and the value of
the sensor measured load l. The fractional coefficients are tuneable, and we decided to use 90% of

Computers 2019, 8, 31 12 of 20

the bin capacity, for we assume that is the maximum value for the sensor, and we choose 50% of the
remaining capacity as a practical tolerance value.

threshold(l) =
1
2
×
((

9
10
× capacity

)
− l
)

. (3)

Given that the combine we used in this project has a bin capable of holding 9000 L, an amount of
1

10 of the capacity ensures 900 L as a safety buffer. (Note that in the case of a typical bin filling of 18 L/s
that would allow the operator to be circa one minute late before overloading.) Also for our case study
we assumed the bin sensor maximal reading value was 90%. As shown in the Figure 7a, allowing a
tolerance of half the remaining capacity translates into a wide tolerance while the bin is empty and a
narrower tolerance as the bin becomes full.

The graphs express the dependency of the different threshold values in litres in terms of the load
level expected to be present in the bin. We used a combine model with 9000 L bin capacity as an
example, and as the bin sensor reports a level of 2000 L for all the values below 2000 L we observed
the constant 3000 L threshold value. As the bin load increases, the allowed tolerance decreases.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
h
re

sh
o
ld

 (
L)

Bin Load (L)

Threshold values for a 9000L bin

Legend
threshold(l)

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
h
re

sh
o
ld

 (
L)

Bin load (L)

Threshold boundaries

Legend
minT(l)
expected(l)
maxT(l)

(b)
Figure 7. Threshold plots for different bin filling scenarios. (a) The maximal threshold for each of
the possible load levels of a combine with 9000 L capacity. (b) The expected, minimal, and maximal
threshold values for a bin filling scenario.

Having a value for the threshold at each instant, the harvest deviation monitor needs only to
check whether the difference between the expected load at that time and the effective load in the bin as
read by the sensor is above or equal to the threshold:

|loadp − loadm| ≥ threshold(loadm) (4)

To make sense of the Boolean predicate defined in (4), one may observe the boundary lines plotted
in Figure 7b providing both the lower and upper thresholds for each load level. The graph plots a
possible scenario of expected bin filling and the corresponding minimal and maximal thresholds for
deviation for our combine model with 9000 L bin capacity. For the first 2000 L a deviation is triggered
only if the plan expects a load above 5000 L. As the bin load reading increases, the tolerated deviations
diminish according to our formula. For a 6000 L reading, the deviation is triggered in case the bin was
expected to be below about 4500 L, or by the plan it was expected to be above about 7000 L.

Although not the scope of this work, one should emphasise how the planning of unloads can take
into account the deviations threshold. For our case study, as depicted in Figure 7b is worthless to plan

Computers 2019, 8, 31 13 of 20

unloads when the bin level is expected to be above 8100 L as the precision needed between expected
load and real load cannot be achieved.

6. VDM Model and Code Generated Implementation

In this section, the details of the implementation of the HCA are described. The description
focuses on the additions to pre-existing object oriented VDM++ model. First, a small introduction is
given to the structure of the VDM++ model class structure, including the Harvester and Harvi class.
Afterwards, the changes made to those two classes are shown, highlighting the implementation of the
HDM and HC components of the HCA depicted in Figure 4. The listings in this section are abstractions
of the real VDM++ model, and we also renamed operations, for it facilitates to simplify the explanation
while preserving its semantics.

6.1. Existing VDM++ Model

The VDM++ model supports both off-line simulation and real-time guidance of harvest operations,
so it is rather complex, but in here we report on the core functionality needed to understand the
deviation listings only. For a thorough description of the model, the many previous publications should
suffice [4–7]. The model is object oriented, and its class diagram is shown in Figure 8. Of particular
interest are the Harvi and Harvester classes. Harvi is the top-level class of the control algorithm where
the stepwise/feedback control loop shown in Figure 2 is implemented by calling an operation named
step, which a partial listing of its definition in found in Section 6.3.

«ExternalComponent»
FieldGraph

Graph

VertexEdge

GrainCart

ContinuousFlow
Headland

OnTheGo

SinglePoint

TrackSeqStrategyUnloadStrategy

bridge_FieldGraph

Field

Harvi

Storage

LogUnloadCoordinator

Harvester

Vehicle

Resource 2

1 1

0..n0..n

0..n 112..n

Figure 8. Simplified class diagram of VDM++ model (from [7]).

Following the object orientation paradigm, any instance of a harvest process creates a new object
of the Harvi class, which itself contains the instances of the resources associated with the current
process. Of relevance to our description, there is an object instance of the Harvester class for each of
the combine vehicles. The instance variables for the data related to the physical vehicle is stored and
the operations regarding its logic are defined inside the class. In addition, the Harvester class contains
the definition of a step operation, which is called from its Harvi class counterpart. We provide a
partial listing of its definition in Section 6.2.

The listings in this section are part of a model that was transformed to the VDM-SL dialect,
as reported in [6], yet the semantics is assumed to be same, and no difference between the VDM-SL
and VDM++ versions of the model should be found regarding the behaviour of the HCA.

6.2. Implementing the HDM Component in the Harvester Class

At each iteration of the control loop, the Harvester defined operation step is called, and the
HDM logic defined inside it performs the monitoring of the relevant instance variables, which are set
by the measurement component. In the fourth line of the definition, one finds a call to the operations
implementing both (2) and (1). If a deviation is detected, then the control is passed to the operation
switch2HDM encapsulating the operations that classify the position deviations according to the decision
tree of Figure 6. The yield monitoring is also performed at this step by directly implementing the

Computers 2019, 8, 31 14 of 20

formula in (4). We do not show the definition of the operation that results in the periodic update of the
threshold variable according to (3).

Version April 18, 2019 submitted to Computers 13 of 19

defined inside the class. In addition, the Harvester class contains the definition of a step operation, which is410

called from its Harvi class counterpart. We provide a partial listing of its definition in subsection 6.2.411

The listings in this section are part of a model that was transformed to the VDM-SL dialect, as reported in412

[6], yet the semantics is assumed to be same, and no difference between the VDM-SL and VDM++ versions of413

the model should be found regarding the behaviour of the HCA.414

6.2. Implementing the HDM Component in the Harvester Class415

At each iteration of the control loop, the Harvester defined operation step is called, and the HDM logic416

defined inside it performs the monitoring of the relevant instance variables, which are set by the measurement417

component. In the fourth line of the definition, one finds a call to the operations implementing both Equation 2418

and Equation 1. If a deviation is detected, then the control is passed to the operation switch2HDM encapsulating419

the operations that classify the position deviations according to the decision tree of Figure 6. The yield monitoring420

is also performed at this step by directly implementing the formula in Equation 4. We do not show the definition421

of the operation that results in the periodic update of the threshold variable according to Equation 3.422 �
423

step : () ==> ()424

step () ==425

let p = getPosition()426

in (if p.isValid() and positionIsOnRoute(p, route)427

then ...428

else switch2HDMPosition()429

...430

if abs(Vehicle‘getEstimatedLoad() - Vehicle‘getLoadLevel()) > threshold then431

switch2HDMYield();432

);433
� �434

Inside the switch2HDMPosition, the deviation is classified according to the decision tree of Figure 6.435

In case a new plan should be issued, the harvest coach is triggered by calling the operation triggerHCoach436

and a deviation id (e.g., <DID1125>) is passed to it according to the definition in Figure 6. Discarding deviations437

leads to no operations, and the further reasoning of the consequences of that action shall be made in the future438

approaches.439 �
440

switch2HDMPosition : () ==> ()441

switch2HDMPosition() ==442

...443

if (planPhase = <OpenField> and rowType = <Headland> and execPhase = <Init>)444

then triggerHCoach(<DID1125>);445

...446

if (planPhase = <OpenField> and rowtype = <WorkRow>)447

then triggerHCoach(<DID1126>);448

...449

if (planPhase = <HarvestWorkRows> and execPhase = <Exec> and rowtype = <WorkRow> and ...)450

then triggerHCoach(<DID1117>);451

...452
� �453

The triggering of the Harvest Coach operation is defined as the relaying of the identified deviation event to454

the main control loop of the HCA by adding the deviation id (did) and the object corresponding to the vehicle455

where a deviation was detected (self) to the set of occurred deviations Harvi‘deviations. Note how the456

expressive power of VDM in terms of sets is used to avoid establishing any hierarchical data structure to the457

occurred deviations at this early stage of design. Using such an approach, we are able to abstract the potential458

concurrent deviations that may occur at this development stage, yet knowing that a less arbitrary solution should459

be studied at a later stage.460 �
461

triggerHCoach : Harvi‘DeviationId ==> ()462

Inside the switch2HDMPosition, the deviation is classified according to the decision tree of
Figure 6. In case a new plan should be issued, the harvest coach is triggered by calling the operation
triggerHCoach and a deviation id (e.g., <DID1125>) is passed to it according to the definition in
Figure 6. Discarding deviations leads to no operations, and the further reasoning of the consequences
of that action shall be made in the future approaches.

Version April 18, 2019 submitted to Computers 13 of 19

defined inside the class. In addition, the Harvester class contains the definition of a step operation, which is410

called from its Harvi class counterpart. We provide a partial listing of its definition in subsection 6.2.411

The listings in this section are part of a model that was transformed to the VDM-SL dialect, as reported in412

[6], yet the semantics is assumed to be same, and no difference between the VDM-SL and VDM++ versions of413

the model should be found regarding the behaviour of the HCA.414

6.2. Implementing the HDM Component in the Harvester Class415

At each iteration of the control loop, the Harvester defined operation step is called, and the HDM logic416

defined inside it performs the monitoring of the relevant instance variables, which are set by the measurement417

component. In the fourth line of the definition, one finds a call to the operations implementing both Equation 2418

and Equation 1. If a deviation is detected, then the control is passed to the operation switch2HDM encapsulating419

the operations that classify the position deviations according to the decision tree of Figure 6. The yield monitoring420

is also performed at this step by directly implementing the formula in Equation 4. We do not show the definition421

of the operation that results in the periodic update of the threshold variable according to Equation 3.422 �
423

step : () ==> ()424

step () ==425

let p = getPosition()426

in (if p.isValid() and positionIsOnRoute(p, route)427

then ...428

else switch2HDMPosition()429

...430

if abs(Vehicle‘getEstimatedLoad() - Vehicle‘getLoadLevel()) > threshold then431

switch2HDMYield();432

);433
� �434

Inside the switch2HDMPosition, the deviation is classified according to the decision tree of Figure 6.435

In case a new plan should be issued, the harvest coach is triggered by calling the operation triggerHCoach436

and a deviation id (e.g., <DID1125>) is passed to it according to the definition in Figure 6. Discarding deviations437

leads to no operations, and the further reasoning of the consequences of that action shall be made in the future438

approaches.439 �
440

switch2HDMPosition : () ==> ()441

switch2HDMPosition() ==442

...443

if (planPhase = <OpenField> and rowType = <Headland> and execPhase = <Init>)444

then triggerHCoach(<DID1125>);445

...446

if (planPhase = <OpenField> and rowtype = <WorkRow>)447

then triggerHCoach(<DID1126>);448

...449

if (planPhase = <HarvestWorkRows> and execPhase = <Exec> and rowtype = <WorkRow> and ...)450

then triggerHCoach(<DID1117>);451

...452
� �453

The triggering of the Harvest Coach operation is defined as the relaying of the identified deviation event to454

the main control loop of the HCA by adding the deviation id (did) and the object corresponding to the vehicle455

where a deviation was detected (self) to the set of occurred deviations Harvi‘deviations. Note how the456

expressive power of VDM in terms of sets is used to avoid establishing any hierarchical data structure to the457

occurred deviations at this early stage of design. Using such an approach, we are able to abstract the potential458

concurrent deviations that may occur at this development stage, yet knowing that a less arbitrary solution should459

be studied at a later stage.460 �
461

triggerHCoach : Harvi‘DeviationId ==> ()462

The triggering of the Harvest Coach operation is defined as the relaying of the identified
deviation event to the main control loop of the HCA by adding the deviation id (did) and the
object corresponding to the vehicle where a deviation was detected (self) to the set of occurred
deviations Harvi‘deviations. Note how the expressive power of VDM in terms of sets is used to
avoid establishing any hierarchical data structure to the occurred deviations at this early stage of
design. Using such an approach, we are able to abstract the potential concurrent deviations that may
occur at this development stage, yet knowing that a less arbitrary solution should be studied at a
later stage.

Computers 2019, xx, 5 14 of 19

�
triggerHCoach : Harvi‘DeviationId ==> ()

triggerHCoach (did) ==

Harvi‘deviations := {mk_(did,self)} union Harvi‘deviations;
� �
6.3. Implementing the HC component in the Harvi class

The HC component Figure 4 is implemented inside the Harvi class. Each iteration of the control loop
shown in Figure 4 corresponds to calling the Harvi defined operation step, and in line 8 of its listing, we show
how the control trips to the HC by calling the switch2HC operation. We also show the invocation of the step
operation on each of the object instances vec of the harvester vehicles, for argument completeness.�
step : () ==> ()

step () ==

while not isFinished()

do(
for all vec in set harvesters do

if not vec.isFinished() then
vec.step();

if (isDeviating()) then switch2HC();

);
� �
The switch2HC operation arbitrarily (our early stage design assumes all deviations happening are equally

important) selects one of the deviations from the set of deviations triggered and calls the operation encapsulating
the actions to be taken when such deviation is detected. In the following listing, it is possible to confirm the
nondeterministic selection by appealing to the VDM semantics of the let statement (essentially just an arbitrary
choice). In addition, a cases choice on the deviation type is made and illustrated using deviation 1125. A
precondition prevents the call to switch2HC operation when no deviation exists in the set where deviations are
stored.�
switch2HC : () ==> ()

switch2HC () ==

(

let deviation in set deviations

in
(cases deviation:

mk_(<DID1125>,-) -> harvester_hdm1125(deviation),

...

others -> error
end;
deviations := deviations \ {deviation}

);

)

pre deviations <> {};
� �
The operation harvester_hdm1125 illustrates the issuing of a mitigation plan for a deviation, in this

case a deviation where the vehicle enters the field in a position different from the plan. A new plan for the Open
Field plan phase is computed ensuring it starts at the current vehicle position, and is set to the vehicle by calling
the operation setRoute on the vec object instance, realising the semantics of the double arrow in Figure 4.�
harvester_hdm1125 : HarvestDeviation ==> ()

harvester_hdm1125(mk_(-,vec)) ==

let mk_(lap1,rest) = getOpeningRoute(vec.getPosition()),

mk_(route,...) = loadS.modifyHeadland(lap1,rest,vec)

6.3. Implementing the HC Component in the Harvi Class

The HC component Figure 4 is implemented inside the Harvi class. Each iteration of the control
loop shown in Figure 4 corresponds to calling the Harvi defined operation step, and in line 8 of its
listing, we show how the control trips to the HC by calling the switch2HC operation. We also show
the invocation of the step operation on each of the object instances vec of the harvester vehicles, for
argument completeness.

Computers 2019, 8, 31 15 of 20

Version April 18, 2019 submitted to Computers 14 of 19

triggerHCoach (did) ==463

Harvi‘deviations := {mk_(did,self)} union Harvi‘deviations;464
� �465

6.3. Implementing the HC component in the Harvi class466

The HC component Figure 4 is implemented inside the Harvi class. Each iteration of the control loop467

shown in Figure 4 corresponds to calling the Harvi defined operation step, and in line 8 of its listing, we show468

how the control trips to the HC by calling the switch2HC operation. We also show the invocation of the step469

operation on each of the object instances vec of the harvester vehicles, for argument completeness.470 �
471

step : () ==> ()472

step () ==473

while not isFinished()474

do(475

for all vec in set harvesters do476

if not vec.isFinished() then477

vec.step();478

479

if (isDeviating()) then switch2HC();480

);481
� �482

The switch2HC operation arbitrarily (our early stage design assumes all deviations happening are equally483

important) selects one of the deviations from the set of deviations triggered and calls the operation encapsulating484

the actions to be taken when such deviation is detected. In the following listing, it is possible to confirm the485

nondeterministic selection by appealing to the VDM semantics of the let statement (essentially just an arbitrary486

choice). In addition, a cases choice on the deviation type is made and illustrated using deviation 1125. A487

precondition prevents the call to switch2HC operation when no deviation exists in the set where deviations are488

stored.489 �
490

switch2HC : () ==> ()491

switch2HC () ==492

(493

let deviation in set deviations494

in495

(cases deviation:496

mk_(<DID1125>,-) -> harvester_hdm1125(deviation),497

...498

others -> error499

end;500

deviations := deviations \ {deviation}501

);502

)503

pre deviations <> {};504
� �505

The operation harvester_hdm1125 illustrates the issuing of a mitigation plan for a deviation, in this506

case a deviation where the vehicle enters the field in a position different from the plan. A new plan for the Open507

Field plan phase is computed ensuring it starts at the current vehicle position, and is set to the vehicle by calling508

the operation setRoute on the vec object instance, realising the semantics of the double arrow in Figure 4.509 �
510

harvester_hdm1125 : HarvestDeviation ==> ()511

harvester_hdm1125(mk_(-,vec)) ==512

let mk_(lap1,rest) = getOpeningRoute(vec.getPosition()),513

mk_(route,...) = loadS.modifyHeadland(lap1,rest,vec)514

in ...515

vec.setRoute(route);516

The switch2HC operation arbitrarily (our early stage design assumes all deviations happening
are equally important) selects one of the deviations from the set of deviations triggered and calls the
operation encapsulating the actions to be taken when such deviation is detected. In the following
listing, it is possible to confirm the nondeterministic selection by appealing to the VDM semantics of
the let statement (essentially just an arbitrary choice). In addition, a cases choice on the deviation
type is made and illustrated using deviation 1125. A precondition prevents the call to switch2HC
operation when no deviation exists in the set where deviations are stored.

Version April 18, 2019 submitted to Computers 14 of 19

triggerHCoach (did) ==463

Harvi‘deviations := {mk_(did,self)} union Harvi‘deviations;464
� �465

6.3. Implementing the HC component in the Harvi class466

The HC component Figure 4 is implemented inside the Harvi class. Each iteration of the control loop467

shown in Figure 4 corresponds to calling the Harvi defined operation step, and in line 8 of its listing, we show468

how the control trips to the HC by calling the switch2HC operation. We also show the invocation of the step469

operation on each of the object instances vec of the harvester vehicles, for argument completeness.470 �
471

step : () ==> ()472

step () ==473

while not isFinished()474

do(475

for all vec in set harvesters do476

if not vec.isFinished() then477

vec.step();478

479

if (isDeviating()) then switch2HC();480

);481
� �482

The switch2HC operation arbitrarily (our early stage design assumes all deviations happening are equally483

important) selects one of the deviations from the set of deviations triggered and calls the operation encapsulating484

the actions to be taken when such deviation is detected. In the following listing, it is possible to confirm the485

nondeterministic selection by appealing to the VDM semantics of the let statement (essentially just an arbitrary486

choice). In addition, a cases choice on the deviation type is made and illustrated using deviation 1125. A487

precondition prevents the call to switch2HC operation when no deviation exists in the set where deviations are488

stored.489 �
490

switch2HC : () ==> ()491

switch2HC () ==492

(493

let deviation in set deviations494

in495

(cases deviation:496

mk_(<DID1125>,-) -> harvester_hdm1125(deviation),497

...498

others -> error499

end;500

deviations := deviations \ {deviation}501

);502

)503

pre deviations <> {};504
� �505

The operation harvester_hdm1125 illustrates the issuing of a mitigation plan for a deviation, in this506

case a deviation where the vehicle enters the field in a position different from the plan. A new plan for the Open507

Field plan phase is computed ensuring it starts at the current vehicle position, and is set to the vehicle by calling508

the operation setRoute on the vec object instance, realising the semantics of the double arrow in Figure 4.509 �
510

harvester_hdm1125 : HarvestDeviation ==> ()511

harvester_hdm1125(mk_(-,vec)) ==512

let mk_(lap1,rest) = getOpeningRoute(vec.getPosition()),513

mk_(route,...) = loadS.modifyHeadland(lap1,rest,vec)514

in ...515

vec.setRoute(route);516

The operation harvester_hdm1125 illustrates the issuing of a mitigation plan for a deviation,
in this case a deviation where the vehicle enters the field in a position different from the plan. A new
plan for the Open Field plan phase is computed ensuring it starts at the current vehicle position, and is
set to the vehicle by calling the operation setRoute on the vec object instance, realising the semantics
of the double arrow in Figure 4.

Computers 2019, xx, 5 15 of 19

�
harvester_hdm1125 : HarvestDeviation ==> ()

harvester_hdm1125(mk_(-,vec)) ==

let mk_(lap1,rest) = getOpeningRoute(vec.getPosition()),

mk_(route,...) = loadS.modifyHeadland(lap1,rest,vec)

in ...

vec.setRoute(route);
� �
Beyond deviations, our work contributed to the extension of the VDM model with functionality enabling

the synchronization of the several prototypes described in section 2. For instance, the distributed components
initialization on wake up, and a damage/reconcile protocol allowing the thin clients to synchronize the need to
update the map and route information with the VDM model. All the additions rely on standard theoretical/practice
solutions, thus we opted to leave it outside of this discussion.

7. Results

The harvest coach architecture addition to the HLS prototype was tested in several experiments in the field.
The usage of real world conditions involves many resources (e.g., combine, consumables, licensed operator,
. . .), so during the project several experiments were performed beyond the guidance system operation tests.
For instance, network checking, data-gathering checks, equipment manoeuvring,. . . The guidance system tests
consisted in performing the expected harvest process with a combine machine in a farming field.

The field (in Foulum, Denmark) is a research farming testing field, and the tests were performed with the
absence of farming crop both because our prototypes maturity was not ready to deal with the full conditions of
a typical harvesting process, and that was not relevant for the project purposes. The absence of yield was the
only difference to the real conditions, and that prevented testing the yield deviations developed and reported
in section 5 in the field tests. Therefore, the HCA architecture was tested in the field with position deviations
case-studies arising from the work in section 4 and section 6.

Regarding the joint operation of the HLS, HDM, and HC, we report on the results of three tests as shown
in Table 1. All the components prototype realizations of the system described in section 2 were in place and
working under standard conditions. The HLS system provided guidance to the operator in the field and position
deviations were monitored and triggered during the process. As no crop was present we decided to not perform
tests in regards to yield deviations.

• In a first test, which we term “initial” in Table 1, we performed the first system integration test where the
in lab matured prototypes are tested in real scenarios for the first time. During the execution we found
several issues with both the HLS and the HC prototypes and the test was aborted due to severe faults.

• In a second test, which we call “intermediate” in Table 1, the correction to the issues found in the initial
test were put to test. A big change to the HC was the introduction of a dialog interaction in the thin clients
component described in section 2. The dialog informs the operator in case a deviation is triggered and the
operator is asked whether he accepts the decision or not.

• In a last test, which we term “final” test in Table 1, all system components prototypes were working in
standard conditions and served as an in field demonstration of the research project results. In a first go, the
system was used and no category 2 and 3 position deviations were introduced. The driver followed the
plan as expected and positioning deviations of category 1 appeared (as shown in the bottom right corner
of Figure 9 where a curve negotiation involved back and forward manoeuvring) and lead to no deviation
being triggered. After completing the harvest process successfully, we introduced restarted our prototypes
and the process, and forced a category 2 position deviation, a wrong transition from the headland to the
work rows with id DID1126 in Figure 6, and the HCA triggered it as depicted in Figure 10.

We measured the number of deviations triggered by the HC in the late stage tests in the end of the project as
reported in Table 1. From that data we obtain an average of circa 1 deviation per hour triggered which points to)
an acceptable performance of such an interactive system.

Beyond deviations, our work contributed to the extension of the VDM model with functionality
enabling the synchronisation of the several prototypes described in Section 2. For instance,
the distributed components initialisation on wake up, and a damage/reconcile protocol allowing the
thin clients to synchronise the need to update the map and route information with the VDM model.
All the additions rely on standard theoretical/practice solutions, thus we opted to leave it outside of
this discussion.

Computers 2019, 8, 31 16 of 20

7. Results

The harvest coach architecture addition to the HLS prototype was tested in several experiments
in the field. The usage of real world conditions involves many resources (e.g., combine, consumables,
licensed operator, . . .), so during the project several experiments were performed beyond the
guidance system operation tests. For instance, network checking, data-gathering checks, equipment
manoeuvring, . . . The guidance system tests consisted in performing the expected harvest process with
a combine machine in a farming field.

The field (in Foulum, Denmark) is a research farming testing field, and the tests were performed
with the absence of farming crop both because our prototypes maturity was not ready to deal with
the full conditions of a typical harvesting process, and that was not relevant for the project purposes.
The absence of yield was the only difference to the real conditions, and that prevented testing the yield
deviations developed and reported in Section 5 in the field tests. Therefore, the HCA architecture
was tested in the field with position deviations case-studies arising from the work in Section 4 and
Section 6.

Regarding the joint operation of the HLS, HDM, and HC, we report on the results of three tests as
shown in Table 1. All the components prototype realisations of the system described in Section 2 were
in place and working under standard conditions. The HLS system provided guidance to the operator
in the field and position deviations were monitored and triggered during the process. As no crop was
present we decided to not perform tests in regards to yield deviations.

• In a first test, which we term “initial” in Table 1, we performed the first system integration test
where the in lab matured prototypes are tested in real scenarios for the first time. During the
execution we found several issues with both the HLS and the HC prototypes and the test was
aborted due to severe faults.

• In a second test, which we call “intermediate” in Table 1, the correction to the issues found in the
initial test were put to test. A big change to the HC was the introduction of a dialog interaction
in the thin clients component described in Section 2. The dialog informs the operator in case a
deviation is triggered and the operator is asked whether he accepts the decision or not.

• In a last test, which we term “final” test in Table 1, all system components prototypes were
working in standard conditions and served as an in field demonstration of the research project
results. In a first go, the system was used and no Category 2 and 3 position deviations were
introduced. The driver followed the plan as expected and positioning deviations of Category 1
appeared (as shown in the bottom right corner of Figure 9 where a curve negotiation involved
back and forward manoeuvring) and lead to no deviation being triggered. After completing the
harvest process successfully, we introduced restarted our prototypes and the process, and forced
a Category 2 position deviation, a wrong transition from the headland to the work rows with id
DID1126 in Figure 6, and the HCA triggered it as depicted in Figure 10.

We measured the number of deviations triggered by the HC in the late stage tests in the end of
the project as reported in Table 1. From that data we obtain an average of circa 1 deviation per hour
triggered which points to) an acceptable performance of such an interactive system.

Table 1. The results for the different test stages. In the Initial test the process was aborted, so no
numbers are shown. In the # Trig. Devs column we show the number of Category 2 and 3 deviations
detected and transmitted to the operator. From those the number of accepted deviations is also shown
in the Acc. Devs. column.

Stage Field Area Work Rows Duration # Trig. Devs Acc. Devs

Initial Foulum 1 3.8 Ha 32 – – –
Intermediate Foulum 1 3.8 Ha 32 03 h 20 m 4 1

Final Foulum 2 2.5 Ha 12 01 h 02 m 0 0

Computers 2019, 8, 31 17 of 20

During the preparation of the field tests we observed slight discrepancies between the routes
display in the maps of the different components, which later was confirmed to be due to an arithmetic
precision problem in one of the geolocation libraries used, and the problem was solved by using
another library providing higher accuracy.

	9.5655

	9.566

	9.5665

	9.567

	9.5675

	9.568

	9.5685

	9.569

	9.5695

	9.57

	56.4862 	56.4864 	56.4866 	56.4868 	56.487 	56.4872 	56.4874 	56.4876 	56.4878 	56.488
	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	4000

Figure 9. A plot depicting the route executed by the combine in the form of position coordinates, and
the colouring depicts the time dimension from the cold blue positions (at the beginning of the route)
to the red hot positions (in the final part of the route). The graph represents the final test where no
position deviations were triggered related to the signal discontinuities and light irregularities as shown
in the plot.

	9.5655

	9.566

	9.5665

	9.567

	9.5675

	9.568

	9.5685

	9.569

	9.5695

	9.57

	9.5705

	56.4862 	56.4864 	56.4866 	56.4868 	56.487 	56.4872 	56.4874 	56.4876 	56.4878 	56.488
	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

Figure 10. A plot depicting a test where after a first lap in the field the combine is detected in a work
row. The location where the deviation was triggered is highlighted by a circle. The plot depicts the
route executed by the combine in the form of position coordinates, and the colouring depicts the time
dimension from the cold blue positions (at the beginning of the route) to the red hot positions (in the
final part of the route).

Computers 2019, 8, 31 18 of 20

During the “initial” and previous prototype component standalone tests, the driving operators
provided valuable feedback in terms of GUI presentation and in the need of implementing a dialog
ensuring the last decision on replanning belongs to the field operators. The solutions were readily
deployed and are easy to solve in our test scenario with only one vehicle, yet in a scenario with
multiple operators the problem may be more difficult to tackle.

Another curious finding was the observation of discontinuities of the reported positions (evident
in the blanks in Figure 9), the losses in messages, and out-of order message received at some points.
Such high-critical subjects need thorough investigation in the future. Although critical, at the time of
writing, it is still unclear what were the causes/reasons for such observations.

8. Concluding Remarks

The introduction of the HCA to the previous prototype of the HLS has shown to add a major
contribution to our research and development process. Before the introduction, the HLS prototypes
demanded an unattainable level of accuracy while following the plan, which deemed the solution
unusable in the field, and the process would stall at the first deviation. With the new addition, research
could advance, and we were able to put the lab assumptions to the test in the field, and valuable
insight and data was collected. On the other hand our results and discussion levels are still shallow
and superficial, in the context of a fully fledged HLS system.

8.1. Key Takeaways

The harvest coach architecture as a test enabler

Early field testing allowed the testing of lab hypothesis about the real conditions to be endured
and overcome by the system. Early tests allowed the elicitation of nice-to-have and needed features
in terms of user interface design. For instance, the adjustment of colour and high-contrast waypoint
display, which would not be necessary, if the tools were used in the brightness conditions inside a real
research lab. The HCA was a vital component to maintain the thin-clients information updated even
in case of plan deviations. The HCA also lead to the improvement of the interaction with the vehicle
operator, for a deviation could be detected and a new plan issued without informing the operator.

Early in field tests lead to improved software component choices

The early choices of publicly shared libraries had impacts on later development phases. Although
the libraries had enough arithmetic precision to ensure excellent lab results, the deploy/field test
shown the need to change to components with higher precision. Going beyond this project, we observe
a trend where early stage designers use publicly available code first and assume its correctness later,
and should be informed about the dangers of doing so early on. The lack of precision was detected
early due to the introduction of the HCA and the infield testing of the several components.

Insights on replanning and the underlying travelling salesman problem

During the development of the HCA, we re-used the works developed during the project to
compute optimal harvesting routes, which are based on [8,9]. From the authors’ collaboration with
the operations research colleagues resulted an “arrangement” of the bee colony algorithm used by
our prototype to compute routes. The “arrangement” allows the computation of routes that depart
from the actual positions of the vehicles and not from a central depot. The result of the “arrangement”
solves our replanning needs, and the routes were deemed optimal by the experts, yet further research
is needed to study the implications of the “arrangement” at an algorithmic level.

Computers 2019, 8, 31 19 of 20

Simulation runtime vs in field testing

As shown in Table 1, the execution time of the final test was approximately one hour. In comparison,
the runtime of the simulation for the same field was less than 60 s (For more details about the runtime
of simulations see [4–6]), but this simulation did not include any deviations or triggering of such and
did therefore not test the HCA. Injection of deviations in the simulation tool could improve testing of
the HCA while reducing testing time and cost significantly, as initial tests could be carried out in a
virtual setting rather than in the field with licensed operators and real machinery.

8.2. Future Work

Although we provide and deliver solutions to address position and yield deviations, and we
deliver the full realization of the HCA, which is a general and usable solution in itself, the HCA
needs to be developed further and deeply. For instance, regarding the yield deviations from Section 5,
one needs to overcome our failure in terms of depth of analysis, in field testing, and incorporate
feedback from field evaluation into the solution. Regarding position deviations, there are also massive
obstacles to be dealt with before a combination of the HLS and the HCA are developed to satisfy
the challenges in the field. We expect the further improvements required to appear as results of new
research projects and from the industrial advances.

Author Contributions: Conceptualisation of the HCA, writing—original draft preparation, and HCA related
software, H.D.M.; software, validation, and data acquisition, R.S.N.; methodology, project administration, funding
acquisition, and supervision, P.G.L.

Funding: This research was funded by the Danish Innovation Foundation and AGCO A/S grant for the “off-line
and on-line logistics planning of harvesting processes” project.

Acknowledgments: Figure 1 courtesy of Bertelsen Design and AGCO A/S. The authors would like to thank Nick
Battle for his diligent open review. In addition, the authors thank all the participants in the project, in particular
to the ones contributed to other aspects of the project enabling our results, namely: K. Zhou for his work on
replanning and in special for feedback regarding the paragraph on replanning in Section 8, P. W. V. Tran–Jørgensen
for work on the underlying tools and replanning, Nicolas Bernard for his contributions in the initial developments
of the thin client prototypes software, Reza Pourmoayed for his initial discussion of ideas on dynamic replanning,
M. Hasanagic for help in setting up the server and communication technology, and M. Nørremark and K. Lausdahl
for their critical contribution during the infield testing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ali, O.; Verlinden, B.; Van Oudheusden, D. Infield logistics planning for crop-harvesting operations.
Eng. Optim. 2009, 41, 183–197. [CrossRef]

2. Spencer, J. Harvesting the ‘Hands-free Hectare’. Farmer’s Wkly. 2018, 2018, 52–53.
3. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.; Schröder, J. Diagnosis and Fault-Tolerant Control;

Springer: Berlin, Germany, 2006; Volume 2.
4. Couto, L.D.; Tran-Jørgensen, P.W.V.; Edwards, G.T.C. Model-Based Development of a Multi-algorithm

Harvest Planning System. In Simulation and Modeling Methodologies, Technologies and Applications, Proceedings
of the International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Lisbon,
Portugal, 29–31 July 2016; Springer International Publishing: Berlin, Germany, 2018. [CrossRef]

5. Couto, L.D.; Tran-Jørgensen, P.W.V.; Edwards, G.T.C. Combining Harvesting Operations Optimisation using
Strategy-based Simulation. In Proceedings of the 6th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH), Lisbon, Portugal, 29–31 July 2016.

6. Nilsson, R.; Lausdahl, K.; Macedo, H.D.; Larsen, P.G. Transforming an industrial case study from VDM++
to VDM-SL. In The 16th Overture Workshop; Pierce, K., Verhoef, M., Eds.; School of Computing, Newcastle
University: Tyne, UK, 2018; pp. 107–122.

7. Hasanagić, M.; Tran-Jørgensen, P.W.V.; Nilsson, R.S.; Larsen, P.G. Realization of Distributed System Models
using Code Generation Extensions. Softw. Pract. Exp. 2018, 49, 478–497. [CrossRef]

http://dx.doi.org/10.1080/03052150802406540
http://dx.doi.org/10.1007/978-3-319-69832-8_2
http://dx.doi.org/10.1002/spe.2671

Computers 2019, 8, 31 20 of 20

8. Zhou, K.; Jensen, A.L.; Sørensen, C.G.; Busato, P.; Bothtis, D. Agricultural operations planning in fields with
multiple obstacle areas. Comput. Electron. Agric. 2014, 109, 12–22. [CrossRef]

9. Zhou, K.; Leck Jensen, A.; Sørensen, C.G.; Busato, P.; Bochtis, D.D. Corrigendum to Agricultural operations
planning in fields with multiple obstacle areas. Comput. Electron. Agric. 2015, 116, 234. [CrossRef]

10. Tran-Jørgensen, P.W.V.; Nilsson, R.; Lausdahl, K. Enhancing Testing of VDM-SL Models. In The 16th Overture
Workshop; Pierce, K., Verhoef, M., Eds.; School of Computing, Newcastle University: Tyne, UK, 2018; pp. 7–22.

11. Fitzgerald, J.S.; Larsen, P.G.; Verhoef, M. Vienna Development Method. In Wiley Encyclopedia of Computer
Science and Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.

12. Karney, C.F. Transverse Mercator with an accuracy of a few nanometers. J. Geod. 2011, 85, 475–485. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2014.08.013
http://dx.doi.org/10.1016/j.compag.2015.07.013
http://dx.doi.org/10.1007/s00190-011-0445-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Harvester Logistics System Prototype
	The Harvest Coach Architecture
	Position Deviations
	Position Validity
	Plan Phase Structure
	Harvest Plan Tracking Automaton
	Position Deviation Classification

	Yield Deviations
	VDM Model and Code Generated Implementation
	Existing VDM++ Model
	Implementing the HDM Component in the Harvester Class
	Implementing the HC Component in the Harvi Class

	Results
	Concluding Remarks
	Key Takeaways
	Future Work

	References

