
computers

Article

Natural Language Processing in OTF Computing:
Challenges and the Need for Interactive Approaches

Frederik S. Bäumer * , Joschka Kersting and Michaela Geierhos

Semantic Information Processing Group, Paderborn University, 33100 Paderborn, Germany;
jkers@mail.upb.de (J.K.); Geierhos@mail.upb.de (M.G.)
* Correspondence: fbaeumer@mail.upb.de; Tel.: +49-5251-60-5666

Received: 22 January 2019; Accepted: 3 March 2019; Published: 6 March 2019
����������
�������

Abstract: The vision of On-the-Fly (OTF) Computing is to compose and provide software services
ad hoc, based on requirement descriptions in natural language. Since non-technical users write
their software requirements themselves and in unrestricted natural language, deficits occur such
as inaccuracy and incompleteness. These deficits are usually met by natural language processing
methods, which have to face special challenges in OTF Computing because maximum automation is
the goal. In this paper, we present current automatic approaches for solving inaccuracies and
incompletenesses in natural language requirement descriptions and elaborate open challenges.
In particular, we will discuss the necessity of domain-specific resources and show why, despite
far-reaching automation, an intelligent and guided integration of end users into the compensation
process is required. In this context, we present our idea of a chat bot that integrates users into the
compensation process depending on the given circumstances.

Keywords: inaccuracy detection; natural language software requirements; chat bot

1. Introduction

Software requirements are challenging from a user perspective because they often allow a high
degree of freedom in project implementation due to inaccuracies [1]. The idea of On-The-Fly (OTF)
Computing (Additional information about OTF Computing; https://sfb901.upb.de).

employs individual software requirements in natural language (NL) provided by users for an
automatic composition of individual software services. Here, it is challenging that the requirements are
provided in NL and are thus partially incomplete, inconsistent or ambiguous. Though there are various
applications designed to deal with NL issues of this kind, these are imperfect and have weaknesses.
A concrete example therefore is the compensation of missing non-common information with default or
heuristic values [2]. Since this procedure obviously is not accurate and individual enough, especially
in the context of OTF Computing solutions, users may be dissatisfied with this manner. Since the
bidirectional dialog between software developers and end users is omitted in the OTF Computing
vision, new ways are needed to obtain missing information from end users regarding the desired
software, which currently cannot be found in any existing linguistic resources [2]. Research as well as
practical tools for NL requirement refinement are often dedicated to special domains or designed with
different guidelines that do not require a fast computation or other OTF-typical standards. However,
most approaches are developed for experts rather than for end users or an application in everyday
life. Consequently, we want to draw attention to challenges of service description processing in the
context of OTF Computing, where a very high degree of automation is required, but communication
with end users is sometimes necessary, for example when information is missing. We show the
resulting implications for Natural Language Processing (NLP) and further research in this context in
Section 2. The current state-of-the-art is presented in Section 3, while discussion takes place in Section 4.

Computers 2019, 8, 22; doi:10.3390/computers8010022 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-0826-0144
https://orcid.org/0000-0002-8180-5606
https://sfb901.upb.de
http://dx.doi.org/10.3390/computers8010022
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/8/1/22?type=check_update&version=2


Computers 2019, 8, 22 2 of 14

On the basis of this, we present our current approach for domain-specific knowledge representation in
Section 5.1, before we describe our work on dialog-driven compensation systems (Section 5.2). Finally,
we provide a conclusion and plans on our future work in Section 6.

2. Service Descriptions for OTF Computing: Open Challenges

OTF Computing aims at providing tailored software services to individuals. Here, NLP is crucial
for the functionality of the OTF vision. Thus, being the only possible form for service descriptions,
we have to tackle NL shortcomings while finding and making use of as much information as possible
from given NL input. More formally described, service descriptions are a less formal subtype of
requirement specifications because they describe a service in NL. Nevertheless, the individual factors
such as the user’s knowledge or some expert level know-how can shape a requirement and its accuracy
as input for other processes. This leads to service descriptions being characterized as user-generated,
informal documents [3]. However, when it comes to OTF Computing, formal or semi-formal
description languages are a method of choice for tackling NL shortcomings. Here, the Software
Specification Language is an example for a language that aims at a comprehensive specification
of services while being applicable to non-functional and functional software requirements [4].
Nevertheless, formal specification languages, even in a weaker form, are not applicable for end
users [5] because they are neither experts nor have the corresponding knowledge [6]. After all, formal
and semi-formal approaches bring invincible issues with them, which force system operators to tolerate
freely formulated NL requirement descriptions by end users. They have to face typical NL challenges,
among which are a lack of structure and correctness, some grammar and spelling errors as well as
occasional ambiguity issues. This is still a tremendous difference compared to the usefulness of formal
specification methods already available. We want to focus on the following three issues in this paper
(Sections 2.1–2.3).

2.1. Extraction of Canonical Core Functionalities

It is a challenging task to find important and useful information in NL service descriptions [7],
as they are unstructured and contain off-topic information [5]. Apart from that, canonical core
functionalities are neither provided in an order, nor easy to extract. Thus, functional requirements
can be described as semantic categories such as roles, objects, etc. [7]. For further steps, relations
among requirements are important in order to figure out which requirements determine others. These
steps specify which function an application might have or which services are booked. This requires
extracting all specified functionalities and ordering them functionally. Our example “I want to send
e-mails to my friends: First, I need to write them and then I want to attach my files” can be found in
Figure 1. The state-of-the-art puts the functions in a temporal or causal order, a way the user might
have intended.

send
FA #1

write
FA #2

attach
FA #3

write
FA #2

attach
FA #3

send
FA #1

1->2 2->3(A) (B) 2->3 3->1

Figure 1. Comparison of generated functional sequences [8] (A: Given seq.; B: Temporal seq.).

However, there are issues with this procedure as well. As described in Figure 1A, it cannot be
executed because an e-mail cannot be sent before it is written and enriched with attachments. Thus,
the temporal sequence is relevant to process words. Figure 1B supports this. Considering Figure 2,
the hierarchy of requirements is also important to subject words. That is, to “send” is primarily
a process word that presupposes some e-mail text and an attachment before the delivery can take



Computers 2019, 8, 22 3 of 14

place. Finding a sequence of process words is not enough. The concepts mentioned have to be
extended consequently in order to find all required steps and thus functions. An example is “attach”,
which requires steps taking place before attaching a file. At first, this file has to be chosen (“choose”).
This term was not explicitly mentioned in the service description in Figure 2. To tackle such cases,
we need some knowledge base that is capable of dealing with this. Such a database has to contain
process words and their hierarchy, i.e., semantic relationships, all dependencies and further relations
such as synonyms and further domain information. However, such a resource does not exist today.
Furthermore, there exists no method to find interrelationships among requirement descriptions in
a detailed manner as it is required in our scenario.

write
FA #2

attach
FA #3

sub_2

sub_1

choose
+FA #4

send
FA #1

Figure 2. Hierarchical arrangement of process words [8].

2.2. Automatic Detection and Compensation of Inaccuracy

Inaccuracies such as vagueness and ambiguity are well investigated topics (cf. e.g., [5,9–11]).
This is an especially important research field to OTF Computing, in which service descriptions are
given in NL. Here, issues such as ambiguity or inaccuracy must be expected due to the lack of expert
knowledge on the end users’ side. However, software oftentimes is designed or composed according
to requirement descriptions but does not meet the intended use cases or general requirements of
stakeholders [12] and the result can lead to serious errors [13]. Of course, as in many other cases,
inaccuracies can be eradicated with a manual detection e.g., by making use of checklists [14] or with the
support of semi-automatic applications [8]. We focus on software that, on the one hand, detects various
types of inaccuracies and, on the other hand, identifies linguistic characteristics leading to inaccuracy.
Software has to be able to solve as many deficits as possible in the NL descriptions independently and
yet in case of doubt be able to automatically communicate with end users to solve the problem. We
here need a kind of knowledge base in the form of linguistic resources as a minimum, which are rare
for the domain of software requirements [15]. There is even less in the OTF Computing domain [16].
The disambiguation service Babelfy is often used as a substitute for a domain-specific disambiguation
but is hosted entirely on external servers [17,18]. Despite good performance [19], server failures,
network errors and response times would be a threat when integrating this service in a live OTF
Computing system [8]. In addition, the integration of third-party software oftentimes does not work,
due to a lack of programming interfaces, but is crucial for an automatic and quick system. All of this
means that resources and domain-specific compensation procedures have to be developed for the OTF
Computing vision.

2.3. Explainable Results

As there are various ways to elaborate software requirements, the question of explainability
comes up when many improvements have been made. That is, reasons for correcting specific spans
in the requirements and reasons for the improvements need to be comprehensive for users. Thus,



Computers 2019, 8, 22 4 of 14

end users have to be informed in order to understand the service composition and be satisfied with
its characteristics. So far, corrections are in part highlighted or compared to the input (e.g., [19]);
however, there is no explanation information for the changes. There are several challenges in the
OTF context: the NL input of end users mainly shapes the software composition even though the
type of composition (the actual software service selection step) has an influence as well. This results
in a transparent elaboration process that covers the methods for detection and compensation of NL
inaccuracies to enhance the end users’ understanding.

3. State-of-the-Art

This section deals with the current state of research in the domain of canonical core functionality
extraction as well as automatic inaccuracy compensation and detection.

3.1. Requirements Extraction

Up to now, there is little research done on extracting software requirements. For example, there
is a tool named REaCT [7,20], which makes use of learning procedures to find phrases belonging to
a certain domain or topic. It works on textual requirement descriptions and tries to transfer the most
important entities for functional requirements found in a template that can be used further. From the
technical side, Ref. [20], this involves dividing description texts into sentences and classifying them
into off- and on-topic components. After this step, from the on-topic sentences containing functional
requirements, there are attribute-value pairs extracted in order to iteratively fill the template, starting
with the most important elements such as subjects, actions, predicates and objects, e.g., indirect objects.
However, even though this approach convinces with good performance values, there are no suitable
resources to be used and it therefore fails [16]. Here, textual software requirements can be helpful
though not or rarely being available [15]. This leads to the idea of extracting requirements without
machine learning but rule-based. At any rate, due to the possibly low quality of descriptions, there is
still enough to be done. Other approaches focus on high-quality requirements or assume receiving
high-quality texts, which makes such tools unsuitable for the OTF Computing domain. Apart from
that, there is a study of unstructured and informal requirement descriptions from the Open Source
domain [21].

3.2. Multiple Inaccuracy Detection and Compensation

In literature, the idea of combining different approaches for inaccuracy detection or compensation
was investigated. Ambiguity and incompleteness together were covered (e.g., [22–24]) as well
as ambiguity only (e.g., [25,26]). Furthermore, there are researchers giving an overview over
disambiguation methods in the domain of NL software requirements [27,28]. The automation degree,
chosen methods (rule-based, ontology-based, etc.) and technologies used (e.g., Stanford Parser) are
categories drawn by Shah and Jinwala [28]. Another researcher provides an overview for empirical
work [29].

Here, we focus on combined approaches for the detection and compensation of ambiguity and
incompleteness. QuARS [30] and QuARSexpress [31] can deal with a broad range of inaccuracies while
NL2OCL and SR-Elicitor are tools that reach a low coverage. Moreover, the approaches have different
aims. QuARS is supposed to detect a high number of issues in requirement descriptions, while
NL2OCL [26] and SR-Elicitor [10] should detect and compensate issues fully automatically. Another
tool, RESI (Requirements Engineering Specification Improver), is based on a high degree of user
interaction when compensating inaccuracies. We here want to draw attention to three solutions as we
describe them in more detail for a better understanding. These tools are NLARE (Natural Language
Automatic Requirement Evaluator) [23,32], RESI [33] and CORDULA (Compensation of Requirements
Descriptions Using Linguistic Analysis) [19]. Furthermore, we highlight the discrepancies here.

NLARE is a hybrid approach with focuses on functional requirements and the detection of
ambiguity, incompleteness and atomicity [23]. Among other things, the software employs an atomicity



Computers 2019, 8, 22 5 of 14

criterion that basically sets the rule that a single sentence must contain a single requirement. Apart
from that, incompleteness is seen as to complement information dealing with “W-questions”: “Who”,
“What”, “Where”, “When”. The authors regard ambiguity as given when adverbs and adjectives
occur that can be de- or increased. NLARE makes use of regular expressions in order to process NL
data. NLARE further applies spelling correction, detects sentence boundaries and tokenizes words.
The users of this tool get simple hints such as “The requirement is ambiguous because it contains
the word ‘earlier’ and ‘later”’ as a result [23]. There is no assistance or compensation of inaccuracies.
However, there are other tools: RESI [33] has a different aim because it enables (and encourages) user
interaction while being flexible and also dealing with linguistic defects.

RESI understands requirement specifications as a graph where it automatically identifies
inaccuracies. Each inaccuracy is solved within a dialog between the user and the system [33]. Here,
RESI goes beyond indicating inaccuracies by providing assistance for solving them in various cases
(e.g., incomplete process words). Thus, when integrating large resources, deficits can be found and
solved using the additional knowledge. This additional information might covered by different
ontologies or comparable information sources. Especially with the further development of the
Semantic Web [34] and Linked (Open) Data approaches [35,36], additional possibilities arise to
integrate increasingly structured knowledge from different domains. Much knowledge in the field of
requirements engineering and NLP is already available online but cannot be used automatically [16].

Moreover, there is a tool called CORDULA, which is in some cases similar to RESI [19].
CORDULA is able to find and compensate “language deficiencies” such as ambiguity, vagueness
and incompleteness in written requirement texts produced by end users. Thus, CORDULA is well
suited for the OTF Computing domain, for which it was also designed and developed. CORDULA
further enables users to find suitable software and services that can be used to generate canonical core
functionalities from service and requirement description texts. Predefined linguistic features, used as
indicators, enable the system to improve text quality individually. This approach is data-driven and
aims at current needs as it is driven by a typical text analysis pipeline. A core feature that distinguishes
CORDULA from other systems is the ad hoc configuration of the compensation modules in the pipeline.
This is also determined by deficiencies that were identified in the service specifications written by
users. However, CORDULA has a considerable disadvantage for the OTF Computing domain: its slow
execution time [8]. This leads to drawbacks: i.e., no compensation can be undertaken when there is
contradictory information from several compensation methods. Furthermore, when information is just
missing, there cannot be any compensation performed [19]. There exist various tools that can detect
different types of inaccuracies in NL service and requirement descriptions. Some of them can even
compensate issues. Nevertheless, none of these tools meet all premises for NL service descriptions in
the domain of OTF Computing.

4. Open Challenges: A Discussion

In requirements engineering, NLP and corresponding pipelines were of great interest in the
research community for a long time. Usually, NLP is used to analyze the textual service descriptions
produced by end users in order to enhance them while maintaining the original intention of the
corresponding text. Still, inaccuracies should not lead to ordinary users being bothered with
technological or linguistic details. This is a crucial as well as challenging task. There is a prototype
trying exactly this—the NL pipeline creates structured compositional templates from unstructured
service descriptions [8,19]. Still, there are many unsolved questions, especially as several smaller
objectives such as a high performance have not been accomplished. Most existing tools were developed
for specific linguistic phenomenons serving only for special cases. Nevertheless, approaches that
follow a meta-strategy are required while keeping track of individual issues in each of the requirement
specification texts. It is important to find out whether solving vagueness affects ambiguity. Moreover,
it has neither been questioned nor answered whether it is necessary to compensate a requirement in
order to fully grasp the requirement’s meaning—e.g., does the ambiguity concern essential elements



Computers 2019, 8, 22 6 of 14

of a requirement, or can the compensation be skipped in terms of performance? Apart from that,
the synergy between various compensation components is not investigated. Here, new insights might
help building an almost optimal system by making the optimal use of every component. As an
example, information from the semantic disambiguation might help improving the processing time of
another step. Thus, the single components of a NLP pipeline should flexibly interact with each other for
interchanging information as much as possible. This dissolves the common procedure of a pipeline as
being a sequential technology. Since end users will not regard every requirement necessary for a fully
working service composition, it is not sufficient to extract requirements from textual descriptions and
present them in a structured way. Furthermore, users write their descriptions on different abstraction
levels. Of course, on the non-expert level, they know from software usage when they “want to send
e-mails”, for example. The backend level of the components is non-existent to most ordinary users.
Clearly, the parts for extracting and compensating information must work well with each other in
order to detect hierarchical dependencies between process words and find links among them.

Nevertheless, domain-specific resources that cover specific properties are missing, as mentioned.
However, there indeed exist resources such as BabelNet (Visit https://www.babelnet.org for more
information.) (cf. Section 5.1). However, apart from linguistic information, domain-specific information
needs to also be added, in order to cover the domain in wording and knowledge. The hierarchical
information between process words can serve as an example. Figure 3 presents an exemplary
knowledge base the way we would construct it from a rather theoretical point of view. Besides
linguistic modeling (such as BabelNet), we include processing relationships such as “action” and
“object”, which represent semantic information about the dependencies between information from the
perspective of requirements engineering. At any rate, apart from a rather theoretical starting point,
it is basically the same approach to start data-driven and model such relationships for existing data in
order to have not only theoretical but real-life samples that, enriched with linguistic and requirements
information, can be used for semi-automatic and automatic requirement engineering.

Figure 3. Theoretical concept of a NL requirement knowledge base.

However, there are no linguistic resources that cover characteristics of requirement specification
texts collected in the OTF Computing domain [15,16]. That is, there are neither resources for
compensation, nor for providing examples with real service descriptions. Indeed, this is challenging as
we can expect only plain textual NL descriptions from users. However, and this is a vicious circle, the
system works only if we have such texts for training and testing. However, there is an approach using

https://www.babelnet.org


Computers 2019, 8, 22 7 of 14

texts that are at least related to our scenario [7], although service descriptions are still a bit different.
Still, several features are not covered or different [16].

Next to the discussion of adequate resources, there is the discussion of whether and how users
might be involved in the compensation process. This is a constant point and especially important
according to the requirements an OTF Computing system has. In most cases, the strategy was that the
more automation is achieved, the better. However, users here are excluded from the compensation
process even if they might be qualified and willing to assist. This might also happen due to the fact that
user collaboration is time consuming. Since users know their own needs and desires (i.e., requirements)
best, interaction seems reasonable. Of course, no one but the users themselves can say what they as
individuals actually expect. Users can quickly dissolve ambiguity or make other useful decisions if the
system supports them [37]. A chat bot could support users in a dialog. Here, users can be integrated in
the process of requirements analysis and refinement. For example, the chat bot can provide examples
(“Did you mean X like in this sentence: “...” ?”), or any other help that fits to a certain situation [37].
Furthermore, inaccuracies can be highlighted by the chat bot. The users can confirm suggestions made
by the bot or reject it. In short, users can use two channels in the chat: first, they can describe their
requirements in short texts or sentences. They receive a response for this immediately. Second, they
are urged to react to proposals provided by the chat bot. This includes missing information, among
other things, and the bot can adapt to the situation. However, it quickly becomes apparent in this
context that dialog-controlled compensation processes cannot be implemented with existing chat bot
frameworks for everyday communication, because domain-specific resources are also necessary here.
Thus, it is not a question of asking for the weather or starting a certain action on a smart phone, but of
answering complex questions in requirements engineering together with end users and supporting
them in the best possible way with examples and hints. We therefore present our work in Section 5.2.

5. Domain-Specific Approaches

In the following, we present two research directions that we follow to solve the open challenges
mentioned above. On the one hand, we present our work on a knowledge base, which can be used for
domain-specific NLP components as well as for end user interaction. On the other hand, we present
our chat bot concept, which allows end users to easily interact with the NL compensation system.

5.1. Knowledge Base

As previously stated, there are no adequate linguistic resources that can be used for providing
knowledge in the OTF Computing context. A chat bot without any background knowledge cannot
interact accordingly. Hence, we need to built our own knowledge base. The current work on it will be
presented in this section.

5.1.1. Motivation: A Domain-Specific Knowledge Base for the OTF Computing Scenario

At first, to establish an understanding for the need for such a data base in a practical sense,
we provide a simple example case: a user wants to send e-mails and consequently provides the
following input to the chat bot: “I want to write mails to my friend John.” In the end, the system
needs to (1) know (i.e., find out) that the user wants to write a mail; (2) send it, which is not explicitly
mentioned in the text; (3) know that John is a person and what his mail address is; (4) process possible
further requirements such as that the system needs access to a contact database or previous mails as
the user could later mention to not initially write a mail but to answer a previously received mail to the
friend. As can be seen, a multitude of information is covered here. However, when using a knowledge
base, the system can deal with this by providing examples such as: Do you want something similar as
in the sentence “Users are able to write mails, attach files and send them to their friends stored right in
the app’s own contact data base”? Of course, several other use cases are possible. However, there are
also dozens of challenges on the way to create a knowledge base that “minimizes entry barriers and
fosters a softer adoption” [35], such as those discussed in the research area of Linked Data [38].



Computers 2019, 8, 22 8 of 14

5.1.2. Development of a Linked Knowledge Base

In order to build a knowledge base, we chose the practical, data-driven way: that is, we acquired
a data set of requirement description-related texts and further processed them to have semantic and
syntactic knowledge as well as domain-dependent information. The result can be imagined as a
database full of examples that went through numerous processing steps. In the following, we describe
the process of building the knowledge base and present statistics.

Our database was filled with software description texts collected from Download.com (See
https://download.com, for further information.), which represents a type of app store. The texts
used there come close to software requirements. There are oftentimes descriptions of what the
corresponding application is capable of. This data has been used before [8] and is comparable to open
source descriptions that were used as well in the same domain [7]. All collected texts were preprocessed:
those being too short, in the wrong language or typeset, etc. were excluded from further processing,
so roughly 217,000 texts remain. These were split into 1,050,359 sentences, of which several were
excluded because of being too short or long and thus not helpful for any potential application. Here,
on the sentence level, we started with the in-depth analysis. However, most importantly, we analyzed
the sentence structure and the relations among tokens as well as characteristics of the tokens. There
are 19,167,224 tokens in all sentences that are based on 281,002 lemmas. Here, tokens are unique,
because their properties and relations to other tokens depend on the corresponding sentence and other
tokens in it. In general, texts are connected with sentences appearing in them; these are connected with
their tokens which have connections to other tokens, lemmas and, most importantly, to their senses.
The senses are derived from the previously mentioned BabelNet, which offers a disambiguation service
called Babelfy. Even if our solution depends on an external resource where further information about
a sense can be found, this was a sufficient way of dealing with ambiguity. There are 143,918 senses
and about 92 million relationships between all nodes (i.e., texts, sentences, tokens, . . .). Above all,
there are 20,859,748 nodes. The vast number of nodes and relations indicates a high complexity of
the knowledge base. An example can be found in Figure 4. Here, one text (yellow) is connected to
its sentence (green), the relations are typically named “hasSentence”, “hasSense”, etc. The tokens
(blue) of one sentence are displayed as well. As can be seen, they are all connected to a sentence
(“hasToken”) and to each other. Furthermore, we display the lemma and sense of the token “send”.
The lemma (purple) is also “send”. The lemma “send” is connected to any other token that is a form
of send, regardless of its meaning, in every other sentence in the knowledge base. The sense here
(red) includes a “babelID”, a unique resource identifier from BabelNet which we keep to enable the
allocation of our resource in the Linked Data area. In this field, we will introduce and adopt further
vocabulary to enable maximum compatibility in the Semantic Web. Nodes of type tokens are enriched
with various information. However, Figure 4 is a view that does not include every relation of the
nodes. Furthermore, for simplification, properties are not shown here.

As we plan to use our knowledge base within a chat bot where user input is rather short, the main
analysis was undertaken on a sentence basis, emphasizing on the tokens. This is implied by Figure 4,
as most relationships exist between tokens. However, the main processing steps were dependency
parsing and semantic role labelling (SRL) [39,40]. These two steps help analyze the sentence structure.
For example, using SRL, arguments in a sentence can be found. If the chat bot receives a requirement
specification that misses the second argument in a sentence, we can provide an example sentence to
make the user complete his/her initial specification. Thus, the example sentence can inherit the same
verb with the same meaning and all required arguments: “You want to write a mail. Do you want to
do something like this sentence (?): I want to write and send mails to my contacts.”. Furthermore,
we included named entity recognition, token shapes (shape of “House” is e.g., “Xxxxx”), detailed
part-of-speech (POS) tags, position in the sentence and a unique ID that links the token to its sentence.
Furthermore, all nodes and relationships have a binary property that states whether its information
was checked manually.

https://download.com


Computers 2019, 8, 22 9 of 14

hasSentence
hasS

entence

ha
sS

en
te

nc
ehasSentence

hasSentence

hasSentence

hasSentence

hasSentence

ha
sT

ok
en

hasTokenhasToken

hasToken

hasToken

hasTo
ken

hasToken

hasToken ha
sT

ok
en

hasHead

hasH
eadI-A0

hasHead

I-A0

ha
sH

ea
d

I-A0

ha
sH

ea
d

hasHead

hasHead

B-A
1

hasHead

I-A1

hasHead

hasLem
m

ahasSense

Spam
Sleuth

Enterp…

Spam
Sleuth

Enterp…

Spam
Sleuth

Enterp…

Includes
a PC/Web
client f…

Users
will

receive
e-mail

e-mail
stamps:
Charge
sen…

When
Spam
Sleuth
dee…Turing

test:
Similar

The
turning

test
sends

mail

stamps

senders

a

fee

to

send

e
mail

send

bn:0009…

Figure 4. Graph sample of an NL requirement knowledge base.

In general, our knowledge base is a large resource that provides us millions of software
descriptions that were linguistically and semantically analyzed. Moreover, several analyses such
as tagging and shapes were added. In the following, this resource can be used to quickly present
examples to a user in a chat bot dialog or to compare the input to example sentences. Additional
enrichments such as relations like “IsPartOfService” are not yet included but are possible to add later
(“send” and “mail” are part of “e-mail service”). In principle, the next step of our work shall be to
strive for an alignment with existing vocabulary on the Semantic Web in order to achieve a high level
of reusability and extensibility and to make the concepts used applicable beyond the OTF domain [38].

5.2. Inaccuracy Compensation by Using Domain-Specific Chat Bots

For the implementation of domain-specific chat bots, it is essential to carry out interactive
composition processes in a direct dialog. This is essential for specifying and completing existing
requirement descriptions, especially for iterative clarification processes. Ultimately, these are dialogs
between people and computers. Unless a strict question-answer-scheme is used, we generally speak
of NL dialogs. Their computational interpretation requires a robust and flexible dialog control,
in particular due to a highly individual chat flow.

5.2.1. Concept of a Chat Bot with Dialog Control

To eliminate requirement deficits that cannot be compensated by existing methods together
with end users, dialogs are necessary that contribute to the specification and completion of derived
requirement specifications. Existing extraction and compensation methods create preliminary service
templates on the basis of which software services can be selected and composed. The goal of
dialog control is to iteratively revise deficient templates in a guided dialog in order to be able
to provide the necessary information on the service composition as far as possible. To achieve
this, we subdivide the dialog control into a requirement interpretation and a chat interpretation
(cf. Figure 5). While the latter is responsible for the dialog guidance and interpretation of all user
inputs, the requirement interpretation is responsible for the classification, interpretation and validation
of recognized requirements. This separation makes it possible to integrate existing chat bot techniques
(established dialog guidance), while the processing of software requirements can fall back to the
extraction and compensation components developed in earlier work (CORDULA, cf. Section 3) [19].



Computers 2019, 8, 22 10 of 14

Figure 5. Current conceptual flow of dialog-controlled compensation.

Dialog design aims at the efficient, context-related, comprehensible and target group-oriented
dialog connection between humans and computers. This is also the case since a dialog can lead to
queries, uncertainties and the need for explanation on the part of the end user. Especially for end users
with little prior technical knowledge, it is necessary to lead the iterative clarification processes not only
in dialog but also with the help of explanations and examples. This situation-oriented dialog design
and user-oriented interaction requires examples and explanations in a knowledge base for retrieval
purposes (Section 5.1). For instance, in the compensation of incompleteness, this can mean not only
pointing out the lack of information and asking for its compensation, but also providing a similar
example that fits into the context and highlighting the concrete information in this example.

5.2.2. CORDULA2: Current Prototype

The revised version of CORDULA aims to overcome the named weaknesses of the existing system
(cf. Section 3). This begins with the design of the web interface, which has to be changed so that a dialog
between end users and the system is in the center of attention (cf. Figure 6) and also affects fundamental
system components such as the knowledge base or the internal communication between the system
components. The idea of using a chat bot has a strong effect on the underlying system architecture
of the current version of CORDULA. Until now, the entire processing pipeline was concentrated on
a static input text. Figure 6 shows the main chat window of our current prototype, which is divided
into two parts: a chat window on the left and the “specification box” on the right. The chat window
expects input from end users which provide requirements and additional information. The user
input will be forwarded to the server and processed (cf. Figure 5). The server’s response will be
articulated via the chat bot. Inaccuracies are pointed out and a selection of tailored action proposals
is offered. While chatting, the end users can confirm the system’s suggestion or reject it. In addition,
the requirement can be edited or deleted. As a result, users communicate with the system in two ways.
On the one hand, users transfer the requirements via chat interface and receive an immediate response.
On the other hand, they will be asked to react to certain circumstances (e.g., missing information) and
will receive a chat that adapts to the situation.

As shown on the right-hand side of Figure 6, end users are informed what happens with their
initial input text and are able to edit the resulting software requirements [37]. Chat bots can thus
help within the compensation process and make the results transparent for end users. Of course,
the question still remains whether this approach is too complicated for end users who are not technically
trained. This will also have to be investigated in further research. In our current prototype of the
chat bot, we have also included much information in the front-end, which may need to be reduced
in order to not overwhelm the users. This also affects the possibility of modifying domain-oriented
information such as POS tags or syntactic structures on the web interface (inline-window below



Computers 2019, 8, 22 11 of 14

right). Here, we offer linguistically trained end users the possibility to easily correct errors have
occurred in the compensation process of CORDULA before further processing is started in the OTF
Computing pipeline. This possibility is difficult to transfer to a chat dialog, since it would be much
more complicated to communicate changes of individual tokens or syntactic structures via dialog than
to directly apply them with a computer mouse.

Figure 6. NL software requirement compensation via chat bot [37].

The current prototype can already process software requirements from end users provided via
the chat, classify and analyze them for inaccuracies (using the CORDULA back-end [19]) and present
them in a structured way. CORDULA2 can also address deficiencies identified in the chat and suggest
choices in the event of incompleteness, provided these are defined in the Knowledge Base in a similar
context to the identical process word. However, there is still a lot of work to be done in building the
Knowledge Base. If it is determined that a certain constellation of detected software requirements
refers to an existing software service in the Knowledge Base, CORULDA2 can recommend this service
as composition to the end users.

6. Conclusions

The challenges mentioned in this paper can be also found in traditional requirements engineering.
Because of the specific nature of OTF Computing, NLP approaches developed so far do not achieve
the required execution times. Therefore, there is a lot to be done: attention still needs to be paid to the
development of methods for extracting requirements as well as to the detection and compensation of
inaccuracies. This raises other issues such as the lack of resources but also the lack of interoperability of
individual compensation components, ways of efficiently involving end users without overburdening
them, and much more. Currently existing as well as future techniques from the research area of
the Semantic Web can be used in the future, in particular the Linked (Open) Data area. The clear
referencing of knowledge and the endless expandability of independent knowledge resources is in
absolute harmony with the OTF Computing idea—however, improvements can be achieved not only
in the integration of external knowledge but also in the modeling of internal OTF processes. Through
the discussion (Section 4), we presented the open questions and current challenges for the NLP in
the context of OTF Computing and hope to have given some structure to the following research in
this area. At the same time, we regard these shortcomings and challenges as a road map for our own



Computers 2019, 8, 22 12 of 14

research in the field of NLP pipeline configuration and execution. In particular, we will continue to
work on modern chat technology to conduct targeted communication with end users as part of the
compensation steps. Through this procedure, missing information can be requested, and the user is
supported in answering the questions with examples, etc. Furthermore, the results generated during
the compensation process can be explained during the offered chat, which increases the usability
for end users. We designed and built a knowledge base that contains over one million example
sentences and millions of tokens and relationships among them. This comprehensive resource enables
us to provide a vast number of examples to a user in the chat dialog. However, the knowledge base
could be further useful if an additional component makes use of the semantics of tokens and builds
example services. That is, in a knowledge base, there could be services composed of the requirement
descriptions in order to further better assist users in chat bot dialogs. Our future work is dedicated to
further utilizing this resource and building new resources that undertake more analyses. As a result,
though there are many open challenges, we are well on the way to solving them. Previous research
encourages us to walk further on our journey towards making OTF Computing work for everyone.

Author Contributions: Conceptualization, F.S.B.; methodology, F.S.B.; software, F.S.B.; resources, F.S.B. and J.K.;
writing—original draft preparation, F.S.B., J.K. and M.G.; writing—review and editing, F.S.B., J.K. and M.G.;
visualization, F.S.B. and J.K.; supervision, M.G.; project administration, F.S.B. and M.G.; funding acquisition, M.G.

Funding: This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901) under the project number 160364472-SFB901.

Acknowledgments: We thank our student assistant Edwin Friesen for his contribution.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CORDULA Compensation of Requirements Descriptions Using Linguistic Analysis
DFG Deutsche Forschungsgemeinschaft (German Research Foundation)
I/O Input/Output
NL Natural Language
NLP Natural Language Processing
OTF On-The-Fly
POS Part-Of-Speech
SFB Sonderforschungsbereich (Collaborative Research Center)
SRL Semantic Role Labeling

References

1. Bäumer, F.S.; Geierhos, M. NLP in OTF Computing: Current Approaches and Open Challenges.
In Communications in Computer and Information Science; Damaševičius, R., Vasiljevienė, G., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 920, pp. 559–570.

2. Geierhos, M.; Bäumer, F.S. How to Complete Customer Requirements: Using Concept Expansion for
Requirement Refinement. In Proceedings of the 21st NLDB; Métais, E., Meziane, F., Saraee, M., Sugumaran, V.,
Vadera, S., Eds.; Springer: Manchester, UK, 2016.

3. Moens, M.F.; Li, J.; Chua, T.S. (Eds.) Mining User Generated Content; CRC Press: Leuven, Belgium; Beijing,
China; Singapore, 2014.

4. Platenius, M.C.; Josifovska, K.; van Rooijen, L.; Arifulina, S.; Becker, M.; Engels, G.; Schäfer, W. An Overview
of Service Specification Language and Matching in On-The-Fly Computing (v0.3); Technical Report Tr-ri-16-349;
Software Engineering Group, Heinz Nixdorf Institut, Paderborn University: Paderborn, Germany, 2016.



Computers 2019, 8, 22 13 of 14

5. Geierhos, M.; Schulze, S.; Bäumer, F.S. What did you mean? Facing the Challenges of User-generated
Software Requirements. In Proceedings of the 7th ICAART; Special Session on PUaNLP 2015; Loiseau, S.,
Filipe, J., Duval, B., van den Herik, J., Eds.; SCITEPRESS—Science and Technology Publications: Lisbon,
Portugal, 2015; pp. 277–283.

6. Ferrari, A.; dell’ Orletta, F.; Spagnolo, G.O.; Gnesi, S. Measuring and Improving the Completeness of
Natural Language Requirements. In Requirements Engineering: Foundation for Software Quality; Salinesi, C.,
van de Weerd, I., Eds.; Springer: Essen, Germany, 2014; Volume 8396, pp. 23–38.

7. Dollmann, M.; Geierhos, M. On- and Off-Topic Classification and Semantic Annotation of User-Generated
Software Requirements. In Proceedings of the Conference on EMNLP; ACL: Austin, TX, USA, 2016.

8. Bäumer, F.S. Indikatorbasierte Erkennung und Kompensation von Ungenauen und Unvollständig
Beschriebenen Softwareanforderungen. Ph.D. Thesis, Paderborn University, Paderborn, Germany, 2017.

9. Pekar, V.; Felderer, M.; Breu, R. Improvement Methods for Software Requirement Specifications: A Mapping
Study. In Proceedings of the 9th QUATIC, Guimaraes, Portugal, 23–26 September 2014; pp. 242–245.

10. Umber, A.; Bajwa, I.S. Minimizing Ambiguity in Natural Language Software Requirements Specification.
In Proceedings of the 6th ICDIM, Melbourn, VIC, Australia, 26–28 September 2011; pp. 102–107.

11. Kamsties, E. Understanding Ambiguity in Requirements Engineering. In Engineering and Managing Software
Requirements; Aurum, A., Wohlin, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 245–266.

12. Kamsties, E.; Paech, B. Taming Ambiguity in Natural Language Requirements. In Proceedings of the 13th
International Conference on System and Software Engineering and Their Applications (ICSSEA’00), Paris,
France, 5–8 December 2000; pp. 1–8.

13. Firesmith, D. Common Requirements Problems, Their Negative Consequences, and the Industry Best
Practices to Help Solve Them. J. Object Technol. 2007, 6, 17–33. [CrossRef]

14. Kamsties, E.; Berry, D.M.; Paech, B. Detecting Ambiguities in Requirements Documents Using Inspections.
In Proceedings of the 1st Workshop on Inspection in Software Engineering (WISE’01), Paris, France, 23 July
2001; pp. 68–80.

15. Tichy, W.F.; Landhäußer, M.; Körner, S.J. nlrpBENCH: A Benchmark for Natural Language Requirements
Processing; Technical Report for RECAA—Requirements Engineering Complete Automation Approach;
Karlsruhe Institute of Technology (KIT): Karlsruhe, Germany, 2015.

16. Bäumer, F.S.; Dollmann, M.; Geierhos, M. Studying Software Descriptions in SourceForge and App
Stores for a better Understanding of real-life Requirements. In Proceedings of the 2nd ACM SIGSOFT
International Workshop on App Market Analytics, Paderborn, Germany, 5 September 2017; Sarro, F.,
Shihab, E., Nagappan, M., Platenius, M.C., Kaimann, D., Eds.; ACM: New York, NY, USA, 2017; pp. 19–25.

17. Navigli, R.; Ponzetto, S.P. Joining Forces Pays Off: Multilingual Joint Word Sense Disambiguation.
In Proceedings of the 2012 Joint Conference on EMNLP and CONLL, Jeju Island, Korea, 12–14 July 2012;
pp. 1399–1410.

18. Navigli, R.; Ponzetto, S.P. BabelNet: The automatic construction, evaluation and application of
a wide-coverage multilingual semantic network. In Artificial Intelligence; Elsevier: Essex, UK, 2012;
Volume 193, pp. 217–250.

19. Bäumer, F.S.; Geierhos, M. Flexible Ambiguity Resolution and Incompleteness Detection in Requirements
Descriptions via an Indicator-based Configuration of Text Analysis Pipelines. In Proceedings of the
51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018;
pp. 5746–5755.

20. Dollmann, M. Frag die Anwender: Extraktion und Klassifikation von funktionalen Anforderungen aus
User-Generated-Content. Master’s Thesis, Paderborn University, Paderborn, Germany, 2016.

21. Vlas, R.; Robinson, W.N. A Rule-Based Natural Language Technique for Requirements Discovery and
Classification in Open-Source Software Development Projects. In Proceedings of the 2011 44th Hawaii
International Conference on System Sciences (HICSS), Kauai, HI, USA, 4–7 January 2011; pp. 1–10.

22. Körner, S.J. RECAA—Werkzeugunterstützung in der Anforderungserhebung. Ph.D. Thesis, Karlsruher
Institut für Technologie, Karlsruhe, Germany, 2014.

23. Huertas, C.; Juárez-Ramírez, R. NLARE, a Natural Language Processing Tool for Automatic Requirements
Evaluation. In Proceedings of the CUBE International Information Technology Conference (CUBE’12), Pune,
India, 3–5 September 2012; ACM: New York, NY, USA, 2012; pp. 371–378.

http://dx.doi.org/10.5381/jot.2007.6.1.c2


Computers 2019, 8, 22 14 of 14

24. Fabbrini, F.; Fusani, M.; Gnesi, S.; Lami, G. The Linguistic Approach to the Natural Language Requirements
Quality: Benefit of the use of an Automatic Tool. In Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, MD, USA, 27–29 November 2001; pp. 97–105.

25. Tjong, S.F.; Berry, D.M. The Design of SREE—A Prototype Potential Ambiguity Finder for Requirements
Specifications and Lessons Learned. In Requirements Engineering: Foundation for Software Quality; Doerr, J.,
Opdahl, A.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7830, pp. 80–95.

26. Bajwa, I.S.; Lee, M.; Bordbar, B. Resolving Syntactic Ambiguities in Natural Language Specification
of Constraints. In Computational Linguistics and Intelligent Text Processing; Gelbukh, A., Ed.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7181, pp. 178–187.

27. Husain, S.; Beg, R. Advances in Ambiguity less NL SRS: A review. In Proceedings of the 2015 IEEE
International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 20 March 2015;
pp. 221–225.

28. Shah, U.S.; Jinwala, D.C. Resolving Ambiguities in Natural Language Software Requirements:
A Comprehensive Survey. SIGSOFT Softw. Eng. Notes 2015, 40, 1–7. [CrossRef]

29. Bano, M. Addressing the Challenges of Requirements Ambiguity: A Review of Empirical Literature.
In Proceedings of the 5th International Workshop on EmpiRE, Ottawa, ON, Canada, 24 August 2015;
pp. 21–24.

30. Lami, G. QuARS: A Tool for Analyzing Requirements; Technischer Bericht ESC-TR-2005-014; Carnegie Mellon
University: Pittsburgh, PA, USA, 2005.

31. Bucchiarone, A.; Gnesi, S.; Fantechi, A.; Trentanni, G. An Experience in Using a Tool for Evaluating a Large
Set of Natural Language Requirements. In Proceedings of the 2010 ACM Symposium on Applied Computing
(SAC’10), Sierre, Switzerland, 22–26 March 2010; ACM: New York, NY, USA, 2010; pp. 281–286.

32. Huertas, C.; Juárez-Ramírez, R. Towards Assessing The Quality Of Functional Requirements Using
English/spanish Controlled Languages and Context Free Grammar. In Proceedings of the 3rd International
Conference on DICTAP, Ostrava, Czech Republic, 20–22 November 2013; pp. 234–241.

33. Körner, S.J.; Brumm, T. Natural Language Specification Improvement with Ontologies. Int. J. Semant. Comput.
2010, 3, 445–470. [CrossRef]

34. Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 28–37. [CrossRef]
35. Piedra, N.; Chicaiza, J.; Lopez-Vargas, J.; Caro, E.T. Guidelines to producing structured interoperable data

from Open Access Repositories. In Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE),
Erie, PA, USA, 12–15 October 2016; pp. 1–9.

36. Heath, T.; Bizer, C. Linked data: Evolving the web into a global data space. In Synthesis Lectures on the
Semantic Web: Theory and Technology; Morgan & Claypool Publishers: San Rafael, CA, USA, 2011; Volume 1,
pp. 1–136.

37. Friesen, E.; Bäumer, F.S.; Geierhos, M. CORDULA: Software Requirements Extraction Utilizing Chatbot as
Communication Interface. In Joint Proceedings of REFSQ-2018 Workshops, Doctoral Symposium, Live Studies
Track, and Poster Track Co-Located with the 23rd International Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2018); Schmid, K., Spoletini, P., Ben Charrada, E., Chisik, Y., Dalpiaz, F., Ferrari, A.,
Forbrig, P., Franch, X., Kirikova, M., Madhavji, N., et al., Eds.; CEUR Workshop Proceedings (CEUR-WS.org):
Essen, Germany, 2018; Volume 2075.

38. Piedra, N.; Tovar, E.; Colomo-Palacios, R.; Lopez-Vargas, J.; Alexandra Chicaiza, J. Consuming and producing
linked open data: the case of Opencourseware. Program 2014, 48, 16–40. [CrossRef]

39. Collobert, R. Deep learning for efficient discriminative parsing. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 11–13 April 2011;
Volume 15, pp. 224–232.

40. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2815021.2815032
http://dx.doi.org/10.1142/S1793351X09000872
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1108/PROG-07-2012-0045
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Service Descriptions for OTF Computing: Open Challenges
	Extraction of Canonical Core Functionalities 
	Automatic Detection and Compensation of Inaccuracy
	Explainable Results

	State-of-the-Art
	Requirements Extraction
	Multiple Inaccuracy Detection and Compensation

	Open Challenges: A Discussion
	Domain-Specific Approaches
	Knowledge Base
	Motivation: A Domain-Specific Knowledge Base for the OTF Computing Scenario
	Development of a Linked Knowledge Base

	Inaccuracy Compensation by Using Domain-Specific Chat Bots
	Concept of a Chat Bot with Dialog Control
	CORDULA2: Current Prototype


	Conclusions
	References

