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Abstract: The generation of high dynamic range (HDR) images in the presence of moving objects
results in the appearance of blurred objects. These blurred objects are called ghosts. Over the past
decade, numerous deghosting techniques have been proposed for removing blurred objects from
HDR images. These methods may try to identify moving objects and maximize dynamic range locally
or may focus on removing moving objects and displaying static objects while enhancing the dynamic
range. The resultant image may suffer from broken/incomplete objects or noise, depending upon
the type of methodology selected. Generally, deghosting methods are computationally intensive;
however, a simple deghosting method may provide sufficiently acceptable results while being
computationally inexpensive. Inspired by this idea, a simple deghosting method based on the
spectral angle mapper (SAM) measure is proposed. The advantage of using SAM is that it is
intensity independent and focuses only on identifying the spectral—i.e., color—similarity between
two images. The proposed method focuses on removing moving objects while enhancing the
dynamic range of static objects. The subjective and objective results demonstrate the effectiveness of
the proposed method.
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1. Introduction

Conventional sensors are unable to match the range of luminance that is captured by the human
eye. Hence, the images obtained by conventional capturing devices suffer from a lower dynamic range
compared to what is perceived by the human visual system. A natural scene may comprise of both
bright and dark regions. The light captured by the sensor will depend on the exposure time and shall
result in the capture of bright, dark or medium range features. If the exposure time is small, then only
bright objects will be clearly visible in the captured image, while darker objects will appear black.
If the exposure time is increased, dark objects start becoming visible; however, bright objects will
become over-exposed or washed out in the image. This means that if you take a photograph standing
in a room with the intention of capturing both the objects inside the room and outside the window,
the camera will only be able to capture either what is inside the room or what is outside the window.
Mimicking the human visual system, which is capable of seeing both inside the room and outside
at the same time, researchers have proposed the generation of high dynamic range (HDR) images
using multiple low dynamic range (LDR) images. The LDR images are captured at different exposure
settings and therefore are capable of capturing objects with different intensity. Fusing them together
results in an image with visible bright and dark objects.

Generally, a sequence of successive LDR images is captured—i.e., captured sequentially in time
and with varying exposure—to generate an HDR image. The slight delay in changing the exposure
setting and capturing the images may result in movement of objects in the scene. This movement of
objects results in the issue of ghosting in generated HDR images. Ghosting may also be caused because
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of camera movement. However, in the course of this work, we shall not consider the case of camera
movement and assume that ghosting has been caused because of the movement of objects. Numerous
deghosting methods have been proposed over the past decade and will be discussed in detail in the
next section. One of the most popular among them is based on identifying ghost pixels—i.e., pixels
which have moved between images—and excluding them from the process of HDR image generation.
If these pixels are not replaced appropriately, their absence would result in a hole in the generated
HDR image. One solution is to replace these pixels by corresponding pixels from a reference image.
This paper proposes the use of a spectral angle mapper (SAM) to identify ghost pixels and replace
these pixels using a reference image with average exposure settings. The advantage of SAM is that it
is illumination invariant and, hence, can be used to match the spectral signature of two pixels across
images with varying exposures. This property makes SAM an ideal candidate for deghosting, even in
the absence of image exposure values.

The rest of the paper is organized as follows. Section 2 presents a brief overview of the
state-of-the-art in the area of deghosting for the generation of HDR images. Section 3 presents
the proposed methodology. Section 4 introduces the dataset used and a comparison with existing HDR
deghosting methods. Conclusions are presented in Section 5.

2. Literature Review

Deghosting is a topic that has been researched extensively over the past decade. In a recent survey,
Tursun et al. classified HDR image deghosting methods into global exposure registration, moving
object removal, moving object selection and moving object registration [1]. Following the global
exposure registration approach, Ward proposed a multi-resolution analysis method for removing
the translational mis-alignment between captured images using pixel median values [2]. Cerman et
al. [3] proposed to remove both translation and rotation-based mis-alignment using correlation in the
frequency domain. Gevrekci et al. proposed using the contrast invariant feature transform (CIFT) for
geometric registration of multi-exposure images, as CIFT does not require photometric registration
as a pre-requisite for geometric registration [4]. Tomaszewska et al. [5] proposed extraction of spatial
features using the scale invariant feature transform (SIFT) and the estimation of a planar homography
between two multi-exposure images using random sample consensus (RANSAC). In [6], Im et al.
proposed the estimation of affine transformation between multi-exposure images by minimizing the
sum of square errors. In 2011, Akyuz et al. [7] proposed a method inspired by Ward’s method of testing
pixel order relations. They identified that pixels having smaller intensity as compared to their bottom
neighbor and higher intensity as compared to their right neighbor should have the same relation across
exposures. They observed a correlation between such relations and minimized hamming distance
between correlation maps for alignment.

To address the issue of object movement, researchers have focused on identifying and removing
moving objects from multiple exposures. In this regard, Khan et al. [8] proposed the removal of moving
objects from HDR images iteratively. This was done by estimating the probability that each pixel is
a background pixel—i.e., a static region—and separating it from non-static pixels. Granados et al. [9]
proposed the minimization of an energy function comprising data, smoothness and hard constraint
terms using graph cuts. Silk et al. [10] proposed the estimation of an initial motion mask using the
absolute difference between two exposures. The motion mask was further refined by over-segmenting
the super-pixels and then categorizing them into static or moving regions and assigning them less or
more weight during HDR generation, respectively. Zhang et al. proposed an HDR generation method
utilizing gradient domain-based quality measures [11]. They proposed using visibility and consistency
scores by assigning higher visibility score to pixels with larger gradient magnitudes and a higher
consistency score if corresponding pixels had the same gradient direction.

Kao et al. [12] estimated moving pixels using block-based matching between two exposures
with +2 EV difference. This meant that the intensities in the image with longer exposure should be
scaled by a factor of 4; i.e., L = 4 L. If this was not true, this would be an indication of potential
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movement, and the pixel would be replaced by a scaled version of the pixel from a shorter-exposure
image. In [13], Jacobs et al. proposed using uncertainty images, which are generated by calculating
a variance map and entropy around object edges and checking if entropy changes for moving objects.
The motion regions were replaced by a corresponding region of input exposure with the least amount
of saturation and longest exposure time. In [14], Pece and Kautz proposed motion-region detection
using bitmap movement detection (BMD) based on median thresholding followed by refinement of the
motion map using morphological operators. In [15], Lee et al. proposed using the histogram of pixel
intensities to detect ghost regions. They identified large differences in the rank of pixels as a ghost
region. In [10], Silk et al. proposed focusing on addressing movement due to fluttering or fluid motion
by maximizing the sum of pixel weights in the region affected by motion. In [16], Khan et al. proposed
a simple deghosting method which assumed that a group of N pixels with intensity I; should have
intensity I, in a second exposure. I, is sampled as the median value for the same group of N pixels in
the second exposure. Assuming that M pixels in the second exposure differ from I, by a threshold,
they are assigned the value I, to remove motion. Shim et al. addressed the issue of avoiding saturated
pixels while generating an HDR image [17]. They proposed a scaling function to estimate the scaling
of static unsaturated pixels between each input image and a reference exposure. In [18], Liu et al.
proposed the use of dense scale invariant feature transform (DSIFT) for motion detection. Unlike
SIFT, DSIFT is neither scale nor rotation invariant; however, it provides a per pixel feature vector and,
hence, each pixel among two images can be checked for similarity. In a patch-based approach [19],
Zhang et al. proposed the calculation of correlation between local patches of reference and input
images. The authors referred to the motion-free images as latent images. They further proposed
the preservation of details by optimizing a contrast-based cost function. Chang et al. proposed the
identification of areas with motion by calculating motion weights using a bidirectional intensity map
and generated latent images using weight optimization in the gradient domain [20]. In [21], Zhang et
al. proposed the estimation of inter-exposure consistency using histogram matching. To further
restrain the outliers from contributing to the generation of HDR, they proposed using intra-consistency,
which is motion detection at the super-pixel level. This helped assign similar weights to structures
with similar intensities and structures.

Raman et al. proposed using the first few horizontal lines along the image border to identify
the intensity map function (IMF) [22]. Next, different rectangular patches were compared between
the input and reference image. If the patches did not adhere to the intensity map function, it was
assumed to have motion. Sen et al. [23], proposed the use of a patch-based minimization of energy
function, comprising a bidirectional similarity measure. Li et al. proposed a simple approach based
on a bidirectional pixel similarity measure in [24]. In [25], Srikantha et al. assumed that input images
have a linear camera response function (CRF). Only non-static pixels will not adhere to the linear CRF
and, hence, will have smaller values when singular value decomposition (5VD) is applied to them.
Sung et al. proposed an approach based on zero-mean normalized cross-correlation to estimate motion
regions [26]. Wang et al. proposed the normalization of each input image with a reference image
(exposure) in Lab color space [27]. The ghost mask was obtained using a threshold on the absolute
difference map between reference and normalized input images in the Lab color space. As ghost masks
contained holes, they proposed the use of morphological operations for refining the masks.

In [28], Hossain et al. proposed the estimation of dense motion fields using optical flow to
minimize forward and backward residuals. They believed that an effective intensity mapping function
could be estimated if each pixel in each exposure was assigned occlusion weights using histograms.
This method falls in the category of methods focusing on moving object registration. Jinno et al.
proposed modelling displacement, occlusion and saturation regions using Markov random fields
and minimized an energy function comprising the three defined terms [29]. The resulting motion
estimation, along with the detection of regions affected by occlusion or saturation, resulted in the
development of an effective deghosting technique during HDR image generation. In [30], Hafner et al.
proposed the minimization of an energy function that simultaneously estimated HDR irradiance along
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with displacement fields. The energy function comprised the spatial smoothness term of displacement
and spatial smoothness term of irradiance and displacement fields, which were used to calculate the
difference between the predicted and actual pixel values at a given location.

The literature review presented above is not exhaustive, and the sheer volume of available material
highlights the interest of the community in this problem. Most of the techniques presented above are
computationally intensive. This was observed by Tursun et al. in [1]. Therefore, they proposed a imple
deghosting method and demonstrated that it performed at par as compared to more computationally
intensive methods. In the same context, a simple deghosting method is proposed in the next section
which is neither computationally demanding nor requires exposure information for deghosting.

3. Proposed Methodology

The proposed methodology generates HDR images in three steps. In the first step, regions with
movement are identified using the spectral angle mapper (SAM) [31,32]. SAM was preferred over other
difference measures because it compares the spectral signature—i.e., the color of two pixels—while
being intensity independent. Thus, it can compare the color of two pixels at different exposures. In the
context of HDR image generation, if there is no movement between two exposures, then the magnitude
of RGB vectors may change; however, the corresponding angle between them should remain the same.
The second step revolves around the refinement of the movement mask. The mask generated after
SAM may have holes and noise in it. This noise is removed by using the denoising algorithm proposed
by Zhang et al. in [33]. Finally, the HDR image may be generated using any method proposed by
Reinhard et al. in [34]. A detailed description of the proposed methodology is presented below.

3.1. Spectral Angle Mapper for Identifying Static Pixels

In the first step, low dynamic range (LDR) input images are used for estimating the pixels which
have movement. The set of input images may also be referred to as the input image cube or LDR image
set. Since pixels which have moved between different exposures result in ghost artifacts, they have to
be removed from LDR images prior to generating of HDR image. To achieve this, a reference image
needs to be selected from the given input image cube. Each input image shall be compared to the
reference image for identification of motion. It is proposed that the reference image may be selected in
two different ways. If the exposure settings of LDR images are not known, we calculate the average
intensity value of each channel—i.e., red, green, blue—and then average the three channels to get
a single intensity value. The image with the median intensity value shall be selected as the reference
image. If the exposure settings of the LDR images are known, then the median exposure value LDR
image should be selected as reference. Once the reference image has been selected, we calculate the
SAM map for each pixel. The SAM value between two pixels, each belonging to a separate image,
can be calculated using Equation (1).

@

SAM(I{x,y}, J{x,y}) :arccos( ({x,y}, J{x,y}) )

I, 3T {x v ]

where {x,y} represent the pixel location in the image, | is the reference LDR image, while I is the image
in which we are trying to find the pixels; i.e., the input LDR image. <.,.> represents the scalar or inner
product between I and J. I and | are both three-dimensional vectors comprising RGB channels. The dot
product between two aligned vectors—i.e., with a zero angle between them—is equal to the product of
their magnitudes. This means that for perfectly aligned vectors I and J, their dot product will be ||I|
l7]|, where the symbol ||.||, represents the L2-norm. If the two vectors I and J are aligned, the above
given ratio between <I, J>/||/I|| ||J|| will become 1. The cosine inverse of 1 will result in the ideal value
of SAM = 0. Thus, two identical pixels will result in a SAM value equal to zero. This implies that the
lower the value of SAM, the more closely matched the pixels. Since we have to classify the pixels as
static or moving, we experimented and identified a suitable threshold. This was done by normalizing
the SAM map between 0 and 1. SAM map normalization was achieved by dividing each pixel in the
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map with the maximum SAM value in that map. The normalized map can be scaled in the range 0-255
by multiplying it by 255. Next, the map is subtracted from 255 to make static regions close to 255 and
regions with motion equal to zero. This is done so that when the map is multiplied with the input
LDR image (exposure image), the regions with motion are removed from the it. To get a binary map,
all values less than 240 are considered to have motion and are made zero while the rest of the values
are made 1. This thresholding results in a binary map per pixel. For visualization, the reference image
is shown in Figure 1a, with the input LDR image (exposure image)—i.e., the image in which motion
pixels need to be identified— shown in Figure 1b, and the SAM map between them, scaled to the range
0-255, shown in Figure 1c.

(a)

© @

(8 (h)

Figure 1. Images at different stages of deghosting. (a) Reference low dynamic range (LDR) image;
(b) input LDR image; (c) spectral angle mapper (SAM) map after inversion; (d) SAM map after
denoising; (e) binary map obtained after thresholding the denoised SAM map; (f) inverted denoised
binary SAM map; (g) input image after multiplication with the denoised binary SAM map; (h) reference
image after multiplication with the inverted denoised binary SAM map.
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3.2. Deep Convolutional Neural Network Based Denoising

SAM successfully identifies the pixels which have moved between two images. This is evident
from the fact that the girl can be seen at the center of the image in Figure 1a and in the right corner in
Figure 1b. In the SAM map of Figure 1c, both regions appear dark, indicating movement. However,
looking closely at these regions, it is observable that these regions contain noise; i.e., some pixels
appear dark while other bright. This noise can be removed from the map using denoising. The deep
convolutional neural network (DnCNN)-based denoiser proposed by Zhang et al. [33] is an ideal
choice for this purpose. This is because of the ability of residual neural networks to effectively estimate
a clean image from a noisy observation and achieve better performance as compared to state-of-the-art
denoising algorithms. The MATLAB implementation used for this work was made available by the
authors of the paper. The SAM map after denoising is shown in Figure 1d. Looking at the dark regions,
it is clear that noise in those regions has been reduced. If this noise was not removed, the resultant
HDR image will have a large number of small holes in it.

3.3. Reconstruction of Input LDR Images

Once the SAM map has been denoised, the last step in the process of identification of ghost pixels
is setting a threshold to binarize the image. We tested multiple threshold values and evaluated the
results both subjectively and objectively. Our experiments suggested that a threshold value of 240
resulted in HDR images with both high subjective quality and objective scores. The binary SAM
map obtained after thresholding is shown in Figure le. This binary map shall be used to obtain
the pixels of the input LDR image which do not exhibit motion. The resultant image is shown in
Figure 1g. The pixels that exhibit motion appear dark in this image and, if passed to the HDR
generation algorithm, this will result in an image with unnatural intensity variations or black regions.
To fix this issue, these pixels are replaced by the pixels from the reference image. This can be done by
taking the inverse of the binary SAM map and multiplying the inverted binary SAM map with the
reference image. The resultant image is shown in Figure 1h. The complementary information obtained
from the input and reference image is combined into a single image. This image is a processed form of
input LDR image with no moving pixels with respect to the reference image and hence can be used for
generation of an HDR image.

3.4. Generation of HDR Image

Images obtained after deghosting can be used for the generation of HDR images. Any HDR
image generation method may be used; however, we have used the ‘makehdr’ method available
in Matlab [35]. An advantage of the proposed method is its focus on deghosting rather than HDR
image generation. Since the output of the proposed algorithm is a set of processed LDR images,
they may be used as inputs to any HDR image generation method. Different HDR image generation
methods result in images with different dynamic ranges and, hence, deghosting may be utilized with
the existing method.

The summary of the proposed deghosting algorithm in correspondence with Figure 2 is presented
below while the pseudo code of the algorithm is presented in Figure 3.

1. Load LDR images for processing;

2. From a given set of LDR images (LDRI) identify the reference image (refLDRI). The reference
image may be selected by calculating the mean intensity of each channel and then for the image
and selecting the image with the median average intensity value. An example of a reference
image is shown in Figure 1a;

3. Next, calculate the SAM map between each LDR image and the reference image. This results in
a SAM map per image;

4.  Scale each SAM map by normalizing it with the maximum SAM value in the map. Next, scale it
between 0 and 255 by multiplying the normalized map with 255;
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In the scaled SAM map, static pixels have a lower value while pixels with movement have higher
intensities. To invert them, subtract the scaled SAM map from 255. Now, the dark regions
represent pixels with motion. The inverted scaled SAM map is shown in Figure 1c;

The inverted scaled SAM map has noise that can be reduced by using the denoising algorithm
proposed by Zhang et al. [33]. This results in a denoised-inverted-scaled SAM map as shown in
Figure 1d;

To obtain a binary representation of denoised-inverted-scaled SAM map (bin_map), we set
a threshold of 240. All pixels below 240 are considered to represent motion. The resultant
binary SAM map for an input LDR image is shown in Figure le;

Multiply the input LDR image with the binary SAM map to obtain the portion of the input LDR
image without motion. The resultant image is shown in Figure 1g;

For the missing parts of the input image, we invert the binary SAM map as shown in Figure 1f;
Next, multiply the reference LDR image with the inverted binary SAM map to get the missing
parts of Figure 1g;

Scale the image obtained in the previous step by multiplying it by the ratio in the average intensity
values of the input and reference images. If the exposure settings are known, then scale it by the
ratio of the exposure values. The resultant image is shown in Figure 1h;

Finally, add the two images shown in Figure 1g,h to obtain the image that shall be passed to the
HDR image generation algorithm.

Steps 8 to 12 can be represented mathematically as:

exp osure(LDRI)
exp osure(refLDRI)

LDRIge-ghosted = LDRI * bin_map + [(1 — bin_map) x ref LDRI] x ()

Repeat the above given steps from step 3 to step 12 for all images of the LDR cube.

g T
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Figure 2. Block diagram of the proposed deghosting methodology.
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for all input LDR images
calculate mean for each image

select image with median mean value as reference_LDR_image

for all input LDR images
calculate SAM map between reference LDR image and input LDR image using Equation (1)
scale SAM map by normalizing it with max value in map and multiplying it with 255
obtain inverted scaled SAM map by subtracting scaled SAM map from 255
denoise the inverted scaled SAM map
for all pixels
if denoised_inverted_scaled_sam_map(pixel) > 240
binary_map(pixel) =0
else
binary_map(pixel) =1
generate ghost free LDR image using Equation (2)

makehdr image using ghost free input LDR images as input
Figure 3. Pseudocode for the proposed algorithm.

4. Experimentation and Results

To assess the performance of the proposed deghosting method, we used the dataset provided
by Tursun et al. [1]. The dataset comprises of 10 LDR image sets, with each set containing 9 images
captured using an increasing exposure time setting. The data set images are globally registered; i.e.,
the camera stays still for the set of images, although the objects are not static. The ten images are
titled “Cafe, Candles, Fastcars, Flag, Gallery1l, Gallery2, Libraryside, Shop1, Shop2, PeopleWalking”.
The results for four of the ten images are presented in Figures 4-7 for subjective comparison and
quality assessment, while the objective quality assessment results for all ten images are presented in
Table 2.

For objective quality assessment, we employed Tursun et al.’s [36] deghosting quality assessment
measures. These indices were selected because they provide separate assessments for the dynamic
range of HDR images and errors in magnitude and direction of gradients. These indices can be
combined and presented as a unified score; however, keeping them separate helps relate them to
subjective evaluation. To compare the results of the proposed algorithm (P), it has been compared with
five existing methods. The methods have been selected based upon their performance, as determined
in [1,37], and their readily available implementations. The proposed method has been compared to
no deghosting (N), deghosting methods proposed by Tursun et al. [1] (T), Pece and Kautz (K) [14],
Sen et al. (S) [23] and with the deghosting option available in Picturenaut software version 3.2 [38]
(C). The implementation of [23] was obtained from the authors’ website, while the implementation
of [14] was made available by the authors of [39]. All experimentation was done using MATLAB
R2018a. With the exception of the results of Pece and Kautz (K) and Picturenaut (C), all HDR images
were generated using the ‘makehdr’ function of MATLAB. For these results, deghosting was done as
proposed by their respective algorithms in MATLAB, and then the “‘makehdr” function was used to
construct the HDR image. To visualize the results, all HDR images were tone mapped using the tone
mapping function provided in MATLAB. Quality assessment was done using the input LDR images
and the HDR results. Alongside quality, we also compared the time for generation of HDR images by
these methods and observed that, on average, (N) required 2.9 s, (C) required 8.7 s, (T) required 10.2 s,
(K) required 17.1 s, (P) required 25.3 s and (S) required more than 4 min.

4.1. Subjective Assessment

To perform a subjective comparison of the proposed deghosting algorithm, we visually inspected
the output of HDR images (N, T, K, S, C and P) using tone mapping provided in MATLAB. The same
tone mapping method is used to remove any inconsistencies that may be caused by using different
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tone mapping operators. The results for the ‘Cafe’ image are presented in Figure 4. Looking at
the no-deghosting (N) result in Figure 4a, it appears as if the image does not suffer from ghost
artifacts. However, a zoom of the image clearly shows that the heads of people in the image appear
blurred. The result produced by Tursun et al.’s [1] algorithm has ghost artifacts in it. This is shown as
Figure 4b and is further highlighted in the zoomed images. The results obtained by the Pece and Kautz
method (K) perform better at deghosting but suffer from incomplete objects, evident from the objects
in Figure 4c. The result obtained using Sen et al.’s method appears to produce better deghosting,
and objects do not have holes in them. However, the pixels demonstrating motion are not sharp,
compared to the proposed method. Usage of Picturenaut software with the deghosting option results
in an HDR image in which heads of both the ladies are clearly visible, but the image still contains
noise and suffers from incomplete objects, as shown in Figure 4e. Figure 4f presents the results of the
proposed deghosting method, and the two ladies can be clearly seen in the figure. Similarly, the couple
standing next to the bar is visible in the image without deghosting. Thus, the best result is obtained
using the proposed method.

The image set titled ‘Candles’ is challenging as input LDR images not only have movement but
also have illumination variation. A red box is used to highlight the difference between the compared
algorithms. Except for the result shown in Figure 5d.{, all the other images suffer from ghosting as the
texture of the candle stand is not visible. A green box is used to demonstrate both deghosting and the
dynamic range of the resultant images. Comparing Figure 5d, obtained using Sen et al.’s deghosting,
and Figure 5f, obtained using proposed deghosting, it can be observed that the image presented in
Figure 5f is slightly clearer and sharper compared to the image in Figure 5d. Looking at the yellow
rectangles it can be observed that the shadow of the glass is hardly visible in images obtained by no
deghosting, Tursun et al.’s method, Pece and Kautz’s method and Picturenaut software. The shadow
of the glass can be clearly seen in Figure 5d,f, thus indicating that they may have a higher dynamic
range compared to the other images. However, looking at the overall quality of these two images,
Figure 5f seems to have slightly higher noise in dark regions. Also, the flame and candle wick are more
visible in the result obtained by Sen et al.’s method.

Observing the results presented in Figures 6 and 7 it is clear that the best deghosting results
are produced by the proposed method. It may appear that there are no ghost artifacts in Figure 6a;
however, a closer inspection of the image reveals a marginally visible silhouette in various parts of the
image. These ghost artifacts are clearer in Figure 7a. Ghost artifacts are clearly visible in Figures 6b
and 7b, obtained using Tursun et al.’s method [1]. The result obtained by using Picturenaut software,
in Figures 6e and 7e, contain both ghost artifacts and holes. The ghost artifact seen in Figure 6e seems
to have reduced color information, whereas the ghost artifacts in Figure 7e are clearly visible against
a bright background. Methods (K) and (S) seem to present similar issues with deghosting for the
person in the ‘Shop2’ image. The person does not appear complete and the colors do not appear
natural. In this regard, the proposed method presents the best result among the compared methods,
as shown in Figure 7f. Similarly, for the image in which people are walking, the proposed method
seems to perform appropriately, removing ghosting, and making the person in the center of the image
appear clearly. Sen et al.’s method produces a nearly similar result for the rest of the image; however,
the person in the center of the image is not clear and appears blurred.

A subjective assessment of the results clearly suggests that our proposed method outperforms the
prior state-of-the-art it is being compared with. However, subjective assessment is user dependent and,
therefore, it is better to assess the quality objectively. In this regard, we have compared the quality of
the proposed method using the quantitative measures: dynamic range, difference in magnitude of
gradient and difference in direction of gradient, as proposed by Tursun et al. in [36].
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(e) Picturenaut (C) | (f) Proposed (P)

Figure 4. Tone mapped results of ‘Cafe’ high dynamic range (HDR) images obtained by (a) no
deghosting, (b) Tursun et al., [1] (c) Pece and Kautz, [14] (d) Sen et al., [23], (e) Picturenaut software,

and (f) the proposed method. Zoomed regions of results are also shown to demonstrate the deghosting
capability of each method.
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(e) Picturenaut © (f) Proposed (P)
Figure 5. Tone mapped results of ‘Candles’ HDR images obtained by (a) no deghosting, (b) Tursun et
al., [1] (c) Pece and Kautz, [14] (d) Sen et al., [23], (e) Picturenaut software, and (f) the proposed method.

4.2. Objective Assessment

In [36], the authors proposed the calculation of dynamic range of non-static pixels. This was
proposed to avoid the influence of static regions, as dynamic range from them could make the dynamic
range contribution from non-static regions insignificant. The authors proposed estimation of dynamic
regions DR(p) by observing if DR’(p) is greater than a tolerance threshold ‘t = 0.3’. The authors
estimated the threshold value by experimentation and defined DR’(p) as

!/ — c ,EC W
DR(p)= _  max  B(EG(p) B (1) Wi () ©

where ‘p’ represents the pixel location, ‘c’ the RGB channel, ‘E,;” the input LDR image (exposure image),
‘I is a function returning the Euclidean distance between E,; and E,,7, and W), ;.41 attenuates the pixels
which are under- or over-exposed.
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Figure 6. Tone mapped results of ‘Shop2” HDR images obtained by (a) no deghosting, (b) Tursun et
al., [1] (c) Pece and Kautz, [14] (d) Sen et al., [23], (e) Picturenaut software, and (f) the proposed method.

The quality of dynamic range is finally calculated using

Qp = log I(p99e,) —logy I(p19) 4)

where ‘Qp’ represents the dynamic range quality measure, ‘I’ represents the HDR image and where
1% of pixels are dropped from the calculations to obtain a stable result [1]. The results of dynamic
range are presented in Table 1. The higher the dynamic range, the better the quality of the HDR image.
For clarity, the best values for each image are presented in green. From the table, it is clear that the
dynamic range of HDR image obtained by using proposed deghosting is better than the dynamic
range of HDR image generated without deghosting, thus highlighting that the proposed deghosting
algorithm does not affect the dynamic range of HDR image. It is important to note the dynamic range
of the HDR image after deghosting, because if only the reference image is selected and all other images
are discarded, then there will be no ghost artifacts in the HDR image. However, the dynamic range
of the HDR image would be severely reduced. This is not the case with the proposed method, as is
evident from the results presented in Table 1.
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(e Picturenaut (C) (f) Proposed (P)

Figure 7. Tone mapped results of ‘WalkingPeople HDR images obtained by (a) no deghosting,
(b) Tursun et al., [1] (c¢) Pece and Kautz, [14] (d) Sen et al., [23], (e) Picturenaut software, and (f)
the proposed method.

Comparing the dynamic range of HDR images obtained using the method proposed by Sen
et al. [23], it can be observed from Table 1 that the dynamic range of HDR image of the ‘Flag’ and
‘Galleryl’ data sets is slightly higher for Sen as compared to the proposed method. One possible reason
for this could be that these test images are relatively bright as compared to other images in the dataset
and Sens’ method works better on brighter images as compared to the proposed method.

Table 1. Comparison of the dynamic range of the HDR images obtained using the proposed deghosting
method and no deghosting.

Library People
Cafe Candles FastCars Flag  Galleryl Gallery2 Side Shopl  Shop2 Walking
No deghosting (N) 242 2.87 0.90 1.62 1.60 1.99 2.05 215 2.02 1.12
Proposed 1
deghosting (P) 2.50 291 1.34 1.62 1.70 2.08 2.68 2.41 2.46 1.53
Sen deghosting (S) 2.46 2.85 1.19 2.54 1.76 2.05 2.12 2.23 2.16 1.49

! Values in green indicate the best result.



Computers 2019, 8, 15 14 of 17

In [36], the authors also hypothesize that neither should an HDR image have gradients that are
not present in the LDR input images, nor should it be missing gradients that are present in the LDR
images. To assess this, the authors propose to calculate the change in magnitude of gradients as:

IVExl, _
RV~ IVE (P

QGmag(p) = min YE, ©)
T max{ L 1)1, IVE )}

where, ‘VE’ represents the sobel operator-based gradient map of input LDR (exposure) image while
‘VI' represents the gradient map for the HDR image. The ‘" symbol indicates a mean value.
The denominator term ensures that the result is normalized to the range [0,1]. Similar to gradient
magnitude quality assessment, the authors propose the calculation of the gradient orientation quality
using the following equation:

Qcdir (p) = min|[(61(p) — 0u(p) + m)mod27] — 7|/ 70 ©)

where they propose the measurement of the minimum angle between the directions of gradient vectors
and divide the result by ‘7, normalizing the result to the range [0,1]. The authors proposed to use
5-level multi-resolution pyramid for gradient magnitude and orientation calculations.

The quantitative analysis of gradient magnitude and direction indicates that the proposed method
(P) generates the best results. The results are presented in Table 2, where each column represents
the quality index for each of the tested methods. It is clear that results for the proposed scheme are
always the best and hence appear in green color. The only exception to this is for the ‘Fastcars’ image,
where the method proposed by Sen et al. [23] outperforms the proposed method. For all other images,
the proposed method (P) has a lower gradient magnitude and direction difference as compared to
the rest of the methods. This is in accordance with the subjective assessment of results, where the
proposed method removes ghost artifacts better than other methods. The quality assessment measures
QGmag and Qggir require that no artifacts appear in the HDR image and also that the gradients of input
exposure images should be represented in the HDR image. The quantitative results indicate that this
is best performed by the proposed method. This can be described by visually looking at the results
presented in Figure 7. From Figure 7b, it can be seen that there are approximately seven single people
or couples walking, as their tracks are visible. The gradient magnitude difference of (K) is the highest,
and correspondingly the most artifacts appear in the image presented as Figure 7c. Both (C) and (S)
have holes or blurred individuals, and hence they have a higher gradient magnitude difference value
compared to the reference result (P). Although the no deghosting (N) gradient magnitude difference
results are closer to the proposed method, it suffers from visual artifacts. It may have a lower value
since it adheres to the condition of having the gradients of input LDR (exposure) images present in the
HDR image.

Table 2. The results of the objective quality assessments measures for the images of the dataset.

Gradient Magnitude Difference Gradient Direction Difference
Image Set
N T K S C P N T K S C P
Cafe 0.007 0208 0.036 0.025 0554 0.005 0.007 0.026 0.026 0.017 0.026 0.007
Candles 0.063 0238 0.027 0.122 0752 0.009 0.048 0.050 0.014 0.046 0.051 0.007
FastCars 0.027 0.177 0.005 0.005 0.054 0011 0.020 0.043 0.007 0.004 0.023 0.013
Flag 0.007 0.016 0347 0.253 0.118 0.002 0.009 0.014 0105 0.019 0.015 0.007
Galleryl 0.002 0.004 0115 0.005 0281 0.001 0.005 0.008 0.068 0.004 0.014 0.004
Gallery2 0.034 0474 0044 0.049 0725 0002 0.009 0.016 0.025 0.010 0.014 0.004
LibrarySide 0.010 0.018 0.002 0.012 0594 0001 0.013 0.019 0.002 0.012 0.031 0.002
Shopl 0.007 0.036 0.067 0.028 0440 0008 0.008 0.026 0.025 0.016 0.030 0.009
Shop2 0.007 0.048 0.053 0.043 0456 0005 0.007 0.032 0034 0.021 0.024 0.006

PeopleWalking  0.003 0.012 0.049 0.015 0.012 0.002 0.004 0.012 0.026 0.017 0.016 0.004
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Authors of [1] demonstrated high correlation between their proposed measures and existing
state-of-the-art deghosting quality assessment methods. Hence, it may be inferred that testing the
methods presented in this work will lead to similar results with other quality assessment methods.

5. Conclusions

In this paper, a deghosting method based on the use of SAM is proposed for the generation
of HDR images. The proposed method is computationally efficient and may be used even if the
exposure values of the LDR image set are not known. The proposed method was compared to the
existing deghosting methods, both subjectively and objectively, using an existing image database
and quality assessment indices. The proposed method outperformed the tested methods for most
indices and produced visually pleasing and artifact-free results, as compared to the other methods.
A multi-resolution analysis-based approach may be adopted to further improve the quality of the
proposed method.

Conflicts of Interest: The authors declare no conflict of interest.
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