
Article

Run-Time Mitigation of Power Budget Variations and
Hardware Faults by Structural Adaptation of
FPGA-Based Multi-Modal SoPC

Dimple Sharma 1,*, Lev Kirischian 1 and Valeri Kirischian 2

1 Electrical and Computer Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada;
lkirisch@ee.ryerson.ca

2 MDA Corporation, Brampton, ON L6S 0B6, Canada; valeri.kirischian@mdacorporation.com
* Correspondence: dsharma@ee.ryerson.ca; Tel.: +1-647-401-1444

Received: 13 July 2018; Accepted: 7 October 2018; Published: 11 October 2018
����������
�������

Abstract: Systems for application domains like robotics, aerospace, defense, autonomous vehicles, etc.
are usually developed on System-on-Programmable Chip (SoPC) platforms, capable of supporting
several multi-modal computation-intensive tasks on their FPGAs. Since such systems are mostly
autonomous and mobile, they have rechargeable power sources and therefore, varying power budgets.
They may also develop hardware faults due to radiation, thermal cycling, aging, etc. Systems must
be able to sustain the performance requirements of their multi-task multi-modal workload in the
presence of variations in available power or occurrence of hardware faults. This paper presents an
approach for mitigating power budget variations and hardware faults (transient and permanent) by
run-time structural adaptation of the SoPC. The proposed method is based on dynamically allocating,
relocating and re-integrating task-specific processing circuits inside the partially reconfigurable FPGA
to accommodate the available power budget, satisfy tasks’ performances and hardware resource
constraints, and/or to restore task functionality affected by hardware faults. The proposed method
has been experimentally implemented on the ARM Cortex-A9 processor of Xilinx Zynq XC7Z020
FPGA. Results have shown that structural adaptation can be done in units of milliseconds since the
worst-case decision-making process does not exceed the reconfiguration time of a partial bit-stream.

Keywords: run-time structural adaptation; run-time design space exploration; multi-task multi-modal
FPGA-based systems

1. Introduction

Modern autonomous embedded systems are expected to be capable of high performance
computing and also executing several such high performance tasks on a single platform. They are,
therefore, mostly implemented using SoPC platforms due to the advantages they offer [1–4].
While processing of the algorithmically intensive tasks of the supported applications can be carried
out on the sequential processors of the SoPC (hard-core processors), the computation-intensive tasks
can execute as hardware tasks on FPGAs to provide the requisite high performance. This trend of high
performance computing can be observed in several domains, from commercial applications like Global
Positioning Systems (GPS), driver assistance, robotic systems etc. to critical military and aerospace
applications. However, the increasing complexity and requirements of applications has resulted in
the applications having multiple modes of operation, where a mode can be referred to as a set of
tasks and their specifications that remain unchanged for a certain period of time. Changes in the
functionality, number, priorities and/or performance specifications of the tasks imply a mode change
for the application. Consequently, systems supporting multi-task workloads are now also expected to
be able to support dynamic changes in their workload.

Computers 2018, 7, 52; doi:10.3390/computers7040052 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://www.mdpi.com/2073-431X/7/4/52?type=check_update&version=1
http://dx.doi.org/10.3390/computers7040052
http://www.mdpi.com/journal/computers

Computers 2018, 7, 52 2 of 34

Considering autonomous and mobile systems deployed for critical applications; they also
face dynamic variations in the environmental conditions like available system power budget or
hardware resources. Available power budget can vary as the power consumption of tasks in
different modes varies. Power budget can also vary depending on the factors that affect the power
sources like rechargeable batteries. Some of these factors are: the charging sources like wind or
solar energy, operating temperature, number of charge/discharge cycles, etc. Available hardware
resources can vary due to occurrence of transient or permanent hardware faults which may arise
due to radiations, thermal cycling, vibration/acceleration intensity, hidden manufacturing defects,
operation in hazardous environments or aging. Such dynamic environmental changes can impact
the performance of the executing workload. Systems must be able to maintain the performance of
their critical multi-modal tasks even in presence of dynamically varying environmental constraints.
Since, in general, variations in both, workload and environmental conditions are unpredictable,
complex autonomous and mobile systems must be able to adapt to the changing constraints at run-time!

Consider a space-borne system, say a satellite in an orbit. It operates on rechargeable batteries,
which depend on solar energy. The set of tasks it will execute will depend on events like its position in
orbit, intensity of solar storm, external requests (e.g., communication with mission center), etc. In such
a case, it cannot be considered that power budget will change very slowly. For example, suppose the
system is in a certain mode, performing a certain set of tasks. It encounters an unexpected event or
receives a request for system mode change such that it is now required to run a new set of tasks which
may have a significantly different power consumption as compared to the previously executing set of
tasks. In this case, the corresponding power budget change will occur in very short time (e.g., in range
of milliseconds). Moreover, charging of the batteries, which depends on the available solar energy and
the type of back-up power system used, could lead to changes in the power budget. The switching
period to switch to the back-up power system and oscillations of the power transfer switch could also
influence the power budget.

Thus, for autonomous and mobile systems, there are many cases when their power budget
changes quite rapidly. There can also be simultaneous requirements for changes in system mode or
occurrence of hardware faults. Systems need to be ready to adapt to all such dynamic changes at
run-time to sustain the performance of their multi-task workloads and to avoid emergency shut-down.

A potential solution to this challenging requirement is the use of Run-time Structural Adaptation
(RT-SA); a method with which a system can dynamically modify its SoPC architecture to mitigate
changes in workload, environmental constraints and possible occurrence of faults. In other words,
run-time structural adaptation in SoPC means changing the set of components and/or links between
the on-chip components during the execution of tasks to optimize system performance to the dynamic
environment (e.g., variations in power budget, temperature fluctuations, occurrence of faults, etc.)
RT-SA enables: (a) dynamic selection of a suitable system architecture according to the existing set of
constraints and (b) reconfiguration of the selected architecture in run-time. For a given hardware task’s
algorithm and its range of permitted performance specifications, several implementation variants can
be obtained for that task, which exhibit different resource usage, operating frequency, performance,
and hence power consumption [5]. They are referred as Application Specific Processing (ASP) circuit
variants of that task. The ASP circuit variants of all system tasks can be stored in system memory as
partial configuration bit-streams (or bit-files), which can reconfigured in the Partially Reconfigurable
Regions (PRRs) of the FPGA using Dynamic Partial Reconfiguration (DPR). As conditions change,
a suitable task variant which meets these conditions can be dynamically reconfigured to adapt to the
situation. For example, in a low power budget scenario, a task variant occupying more hardware
resources and operating at a reduced frequency can be reconfigured such that its performance is
maintained and Dynamic Power Consumption (DPC) is reduced. Consider a system executing four
tasks, each of which has ten ASP circuit variants. This results in a design space of 104 possible
combinations of SoPC architectures. The system now has the flexibility to select one suitable system
configuration, i.e., a combination of ASP circuit variants of the four tasks, depending on factors like

Computers 2018, 7, 52 3 of 34

current workload (mode) of the system, available power budget, available hardware resources etc.
RT-SA can thus enable systems to dynamically sustain the performance of their tasks within the
permitted range in presence of changing workload, environmental conditions, and faults. Its practical
application, however, has the following challenges:

1. In multi-task multi-modal systems, when the number of modes, tasks, and their ASP circuit
variants increase, a large design space of system configurations is formed. For example, a system
with a total of 16 tasks, 16 ASP circuit variants per task, 20 modes, and 5 tasks per mode will have
a design space of 165 = 1,048,576 system configurations per mode. Since a solution must be found
at run-time, within the permitted adaptation time, it may not possible to exhaustively evaluate
each configuration at run-time. As a result, there must be a Run-time Design Space Exploration
(RT-DSE) method with a small execution-time overhead to select a suitable configuration that
satisfies the tasks’ performance specifications, DPC and hardware resource constraints.

2. The RT-DSE method will need the DPC of candidate system configurations to decide the most
suitable solution. It is practically not feasible to measure and store the DPC of all the possible
system configurations in a Look-Up-Table (LUT). In the above example, this would mean
measuring the DPC of 20 modes ×165 configurations per mode during system design phase
and feeding these values in a large LUT. Furthermore, any addition or modification of system
modes, tasks, or their variants will imply re-doing the entire offline process all over again!
Thus, it is necessary to have a run-time analytical model which can estimate the DPC of system
configurations under evaluation during the run-time DSE process itself.

3. Once a solution is provided by the run-time DSE method, the system needs to be dynamically
reconfigured with the new chosen ASP circuit variants of the active tasks within the permitted
adaptation time. It is to be noted that the permitted adaptation time is application specific.
For a commercial video processing application, a loss of a couple frames can be permitted,
but for a critical military application, loss of only one frame may be permitted for adaptation.
A system must therefore have the infrastructure that allows a quick transformation to the new
selected configuration. ‘Multi-mode Adaptive Collaborative Reconfigurable self-Organized
System’ (MACROS) framework has been developed for this purpose [6]. It permits reconfiguration
and automatic integration of ASP circuit variants with a very small time overhead in the order of
only a couple clock cycles [7,8]. A brief description of MACROS is provided in Section 3.

This paper is our effort in making progress towards practical deployment of RT-SA in autonomous
and mobile FPGA-based systems. It has the following novel contributions:

1. It proposes a method for FPGA-based multi-task multi-modal systems for their run-time structural
adaptation to an extensive set of possible situations of: (a) changing system modes, (b) changing
power budgets, and (c) occurrence of hardware faults. It incorporates an RT-DSE mechanism
which finds the most suitable system configuration depending on the existing set of constraints,
thus enabling RT-SA.

2. It proposes a method to derive the complete Dynamic Power Consumption Estimation Model
(DPCEM) of an FPGA in terms of all its reconfigurable resources; clock frequency, Logic slices,
Block RAM (BRAM) slices, and DSP slices. The DPCEM is used by the RT-DSE method to evaluate
DPC of potential configurations.

The paper is divided as follows: Section 2 discusses the current research in the field of run-time
adaptation and brings out the importance of run-time structural adaptation. Section 3 is a brief
description of the MACROS framework’s architecture. Section 4 discusses the decision-making
functionality of the run-time structural adaptation method. Section 5 presents the experimental setup
for the DPCEM derivation method and outlines the derivation procedure using the example of Xilinx
Zynq XC7Z020 and Kintex-7 XC7K325T FPGA devices. Section 6 shows how the run-time structural
adaptation method uses the DPCEM to evaluate potential solutions during the adaptation process.

Computers 2018, 7, 52 4 of 34

Section 7 considers a wide variety of changing constraints and explains how a system can dynamically
take decisions and adapt to each scenario using the run-time structural adaptation method. Section 8
analyzes the LUT-storage and time overhead of the method based on its implementation on the ARM
Cortex-A9 processor of the Zynq XC7Z020 FPGA. Section 9 concludes the paper.

2. Literature Review

Most systems based on SoPC platforms incorporate a real-time operating system (RTOS) or
a management system on the lines of an RTOS to adapt to dynamic workloads, power budget,
performance, temperature and/or fault constraints. Research efforts have resulted in a generalized
concept for RTOSs and their basic functions, which are time and resource management for optimized
multi-tasking. These functions mainly include task scheduling, task mapping and allocation, inter-task
communication, task to RTOS communication, task configuration etc. [9,10]. Several RTOSs have been
developed based on these concepts. They differ from each other based on the number and complexity
of their functions, the mechanisms to carry out the functions, their implementation, all of which
depend on the system structure that they are developed upon and the applications they are being
used for. Refs [11–15] are some examples that support multi-tasking and workload management
for hardware tasks, i.e., tasks executing on FPGAs. R3TOS [16,17], BORPH [18], CAP-OS [19],
ReConOS [20] are RTOSs that serve systems with both hardware and software tasks (tasks executing
on soft or hardcore processors). Some management systems [20–22] also support tasks that can
have software and hardware versions of implementation. Such tasks can be dynamically relocated
between software and hardware versions to ensure optimal resource management while maximum
tasks are served and their deadlines are met. Several techniques have also been adopted for real-time
power consumption and/or temperature management. A commonly used method for dynamic
power management is power gating [23,24]; where portions of the configured circuits are turned off
when they are not operating. Methods like Dynamic Voltage and Frequency Scaling (DVFS) and
DFS are used to control power consumption [25,26] and temperature [27] and also to sustain task
performances in presence of temperature variations [28]. Dynamic scheduling techniques [27,29–32]
and dynamic mapping (or resource management) techniques [27,33–35] are other methods used to
achieve power and/or thermal aware workload management. Dynamic scheduling and mapping
techniques are also employed for fault mitigation [15,36,37]. To ensure reliability in mission-critical
systems like space-borne systems, the emphasis is on protection against and recovery from transient or
permanent faults due to radiation effects. Triple Modular Redundancy (TMR) and scrubbing [38–40]
are the most common methods deployed for mitigating transient faults. Built-In Self-Test (BIST)
procedures [41] or methods like device reprogramming to avoid damaged regions [42] are used to
cater to permanent faults. Refs [7,8] propose a run-time relocation based mechanism with a very small
time overhead to mitigate transient and permanent faults in FPGA-based systems deployed with
the MACROS framework. The authors of [43] present a method for mitigating permanent faults in
FPGA-based heterogeneous systems; several variants of the same task are stored such that they occupy
different reconfigurable regions. The appropriate variant is configured when a fault is detected in a
reconfigurable region. A method of relocating faulty computation or interconnection tiles to spare tiles
to increase fault-tolerance is proposed in [44]. Ref [45] discusses a switching mechanism, where tasks
are switched between their hardware/software versions in case of faults. Ref [46] presents a method
using DPR to increase reliability in presence of faults in micro-processor based systems.

Although significant progress is seen in the development of run-time adaptive systems,
the proposed solutions are not complete to support adaptation in dynamically varying environmental
conditions like varying system power budget, temperature or occurrence of hardware faults. This is
because the tasks that the systems manage have fixed implementation circuits. It is due to this fixed
nature of tasks that systems can only re-schedule them (in time) and re-allocate or re-map them on
different available resources (space). With this limited flexibility in the dimensions of time and space,
it may be possible to adapt to dynamically varying workloads, but it may not be completely possible

Computers 2018, 7, 52 5 of 34

to satisfy dynamically changing environmental constraints. This is because the adaptation techniques
are applied to optimize a fixed parameter in presence of a fixed set of environmental constraints.
For example, minimize power consumption with fixed task-performance and resource constraints.
However, in the case of mobile and autonomous systems operating in non-static environments,
the environmental constraints themselves vary and hence even the parameter to be optimized.
For example, if power budget drops, system power consumption must be minimized in accordance
with the new power budget constraint by trading off task performances. If hardware faults occur,
resource utilization must be minimized. If tasks being executed are critical, performance should
be maximized. Such a flexibility can only be achieved if a system is able to change its structure,
i.e., use different task implementation circuits to accommodate dynamic variations in the set of
constraints. Some research efforts have been observed in this direction. Ref [47] proposes selection
of a suitable combination of number of processor cores, the clock frequency and the placement
of software threads based on the performance and power consumption constraints of the system.
Ref [48] discusses the use of software task variants for massively parallel processor arrays. Based on
temperature changes, a different configuration of the same task, occupying a different number of
processing elements is re-configured. The authors of [49] propose system adaptation using task variants
varying from pure software to a mix of hardware and software implementations. The concept of using
task variants is also gaining consideration in systems supporting purely hardware tasks. Ref [50]
proposes the use of differently shaped variants for hardware tasks, which differ in performance and
resource utilization. The focus of the algorithm, however, is only to improve FPGA resource utilization
ratio and reduce task rejection ratio. It cannot therefore apply well to systems which have multiple
varying constraints. The QoS-aware real-time management system presented in [51] uses tasks with
implementation variants on different platforms like processors, FPGA, GPUs etc. Such a system can
be useful specifically for heterogeneous systems only. Adaptation using variants of tasks and system
configurations is discussed in [52,53] respectively. However, in both cases, the events that trigger the
choice of a variant or a configuration are fixed. The system therefore cannot adapt to scenarios outside
the pre-defined scope of events.

From a review of the literature, the following points can be noted: (a) Most of the dynamic
adaptation methods mainly serve processor-centric systems. Even on FPGA-based SoPC platforms,
the research focus is for task management on soft-core processors or tasks which execute as hardware
accelerators for processors. (b) Most RTOSs are developed for tasks with deadlines, i.e., which run
only for specific periods of time. (c) They are based on task attributes like arrival time, worst-case
execution time, period, deadline, etc. The adaptation therefore becomes dependent on the nature
of tasks. (d) In most power/thermal/fault-aware systems, the adaptation method caters to only
one or two parameters and not all the constraints together. In practical scenarios, critical multi-task
multi-modal systems usually run continuously executing stream processing hardware tasks and can
face the conditions of varying power budgets, temperature, performance constraints, and hardware
faults, all together! Thus, more research is required towards development of systems that can sustain
their dynamic workload in varying environmental and fault conditions. Our initial efforts resulted in
a method for systems with static workloads to dynamically adapt to depleting power budgets and
fault conditions [54]. This paper proposes a run-time structural adaptation method for systems with
dynamically varying task-sets and their performance constraints. It allows run-time adaptation to
the changing system modes, increasing or decreasing power budgets, and mitigating hardware faults.
Adaptation to varying temperature conditions can also be easily incorporated in the proposed method.
This method can be integrated with an RTOS to form a decision-making RTOS that supports run-time
system adaptation to a wide range of dynamically varying constraints.

3. MACROS Framework

Figure 1 shows the general architecture of the MACROS framework [6]. It is formed by:
(a) several identical PRRs called “slots” on the FPGA, (b) a Distributed Communication and Control

Computers 2018, 7, 52 6 of 34

Infrastructure (DCCI), and (c) a Bit-stream and Configuration Management system (BCM). A task
variant’s ASP circuit may consist of multiple components, each occupying one slot on the FPGA.
Identical slots reduce management of reconfiguration of ASP circuit variants as their components can
be reconfigured on any available slot. DCCI, a crossbar switch structure, permits seamless system
communication. Inter-communication of task components to find their up-stream and down-stream
partners, their self-synchronization and inter-connection also happens over the DCCI [6]. The DCCI
thus ensures dynamic and automatic integration of the task components to form the complete ASP
circuit of a task. The BCM extracts the required bit-streams from the system memory and configures
them on available slots.

Figure 1. General architecture of MACROS framework.

For a MACROS framework-based system, when a new configuration is selected, the BCM
configures the components of the chosen variant of every task in the available FPGA slots without
any complex decision-making processes. The DCCI then dynamically interconnects the components
that belong to the same task without the need for any additional time-consuming control processes.
The new combination of task variants is ready to function with a very small time overhead [7,8],
thus making the MACROS framework an essential element of run-time structural adaptation.

4. Method for Run-Time Structural Adaptation to Varying System Modes, Power Budget,
and Occurrence of Hardware Faults

The proposed run-time structural adaptation method, termed as ‘Explorer’, is conceptually based
on [54], which was an initial attempt to test a run-time adaptation mechanism on a static set of tasks.
In real-life applications, mobile and autonomous systems supporting critical applications do not
usually have a fixed set of executing tasks. The set of tasks, number of tasks, their performance
specifications, priorities etc. can change based on the occurrence of some events. For example, a system
on-board a satellite might need to carry out some tasks when it gets enough sunlight. This means the
applications, or the multiple tasks running on the system are multi-modal. Run-time adaptation to
environmental conditions like varying power budget or hardware faults etc. is much more complex in
the case of multi-modal tasks as compared to when the set of tasks is fixed.

Furthermore, in [54], the only scenario considered with respect to adaptation to power budget
was when the power budget is depleting. However, in field deployed systems, power budget can
increase as well as decrease. For example, power budget of a space-borne system can increase when it
is in the presence of sunlight, which allows charging up it’s solar-energy dependent batteries. On the
other hand, if the system suddenly needs to run a set of tasks from its sleep mode, if will face a quick
drop in its power budget. Adaptation to scenarios when the power budget can vary; i.e., increase or

Computers 2018, 7, 52 7 of 34

decrease, is different and more algorithmically intensive as compared to an adaptation mechanism
only for depleting power budgets.

Thus, in this paper we are proposing a novel run-time adaptation mechanism for multi-task
systems which can have multiple modes, and which can face situations of increasing or decreasing
power budgets, and/or hardware faults. The mechanism is a look-up-table based run-time design
space exploration mechanism, that finds a close-to-optimum variant for each active task in the
given system mode, such that the existing constraints of power budget (increased or decreased),
performance specifications of the tasks, available hardware resources, etc., all are met.

4.1. System Description

The Explorer enables run-time structural adaptation for multi-task multi-modal systems. For such
systems, let Tj, j = 0, 1, 2, . . . , l represent the system tasks and Mi, i = 0, 1, . . . , n represent the
system’s mode number, where each mode is associated with a set of tasks that execute simultaneously
while that mode is active. The number of tasks in a mode m is referred as Nm. Each task has the
following attributes:

1. Priority of the task in a mode—P0 (highest priority), . . . , Pk (lowest priority)
2. Range of performance available for this task in a mode, i.e., from hspec, the highest

performance level (e.g., 240 frames per second (f ps) => 8) to lspec, the lowest performance
level (e.g., 60 f ps => 2). These values are relative not absolute and thus, can be associated with
different performance characteristics.

3. Existence condition, EC, a parameter that determines whether a task in a mode can be eliminated
or not. The task can be terminated if its EC = 0; not if its EC = 1.

The Explorer’s behavior is based on specific LUTs, namely, ‘Mode-specific LUT’ (‘MODE-LUT’)
and ‘Variant-specific LUT’ (‘Variant-LUT’). This approach allows the fastest reaction on unpredicted
events which may require minimum possible response time. Consider a multi-task multi-modal
system having a total of 6 tasks, T0 to T5, and three modes, M0 to M2. Table 1 presents an example of
MODE-LUT. It stores the tasks, their performance bounds and priorities for each mode. Task priority
in the paper’s context means the task’s criticality, i.e., how important the functioning of a task is,
with respect to the other tasks, when there is a need to either reduce some task’s performance
or eliminate a task in situations like low power budget, limited available hardware resources etc.
For example, as seen in Table 1, in mode M0 (N0 = 4), T5, the most critical task, has priority P0,
and T4, the least critical task, has priority P3. This means adaptation to varying environmental
conditions will begin with the least critical task T4. Since it has the least priority over the other tasks,
its performance/functioning will be altered (within its range of specifications) first to adapt to the
new set of constraints. MODE-LUT also lists the range of performance specifications, i.e., hspec and
lspec, for every task in each mode. For example, in Table 1, T0 has hspec = 8 and lspec = 2 in mode
M0, whereas it is a critical task with strict performance constraints, i.e., hspec = lspec = 8 in mode M2.
The hspec and lspec values in the Table 1 are a ratio with respect to the minimum performance instead
of actual values. For example, if the tasks are video processing tasks, their performance will be in
f ps. If minimum performance is 30 f ps, then in the above case, T0 will have hspec = 240 f ps and
lspec = 60 f ps in mode M0, and hspec = lspec = 240 f ps in mode M2.

Each of the six tasks has ten ASP circuit variants for run-time structural adaptation. Characteristics
of the ASP circuit variant of all the tasks, i.e., their resource utilization, operating frequency,
and performance are stored in the Variant-LUT, as shown in Table 2. In this table, only the task variants
used for the discussion in Section 7 are listed. The Variant-LUT, comprising of all the variants of each
of the six tasks, is shown in Table A1. A task with a particular performance can be implemented with
different combinations of frequency and resource utilization. For example, in Table 2, variants T0 − 0,
T0 − 1, and T0 − 2 of task T0, all have a performance of 8. However, T0 − 1 and T0 − 2 have half and
one fourth the operating frequency of T0 − 0, and occupy twice and four times the number of slots

Computers 2018, 7, 52 8 of 34

as T0 − 0 respectively. The choice of a variant depends on the existing set of constraints. Consider
the example shown in Figure 2. The system frequency, Fsys, is initially at 240 MHz and T0 − 0 has
been configured. If the system’s power budget reduces, Fsys can be reduced to 120 MHz to reduce
the system’s DPC. In order to maintain the performance of T0, T0 − 1 can be reconfigured instead
of T0 − 0. Similarly, if power budget further reduces, Fsys can be reduced to 60 MHz and T0 − 2 can
be reconfigured.

It must be noted that the set of tasks in a mode together result in the execution of the application
supported by system, in that mode. As a result, all the tasks are assumed to execute at the same system
frequency, i.e., Fsys. Thus, variants of tasks selected for adaptation are such that they all run at the Fsys

selected at that point of time. For example, in the case of a video processing application, all the tasks
will operate at the same Fsys to provide the same frame rate at a given resolution.

Table 1. Mode-LUT.

Mode # of Tasks (Nm)

P0 P1 P2 P3

hspec lspec hspec lspec hspec lspec hspec lspec

EC EC EC EC

M0 N0 = 4

T5 T0 T2 T4

8 8 8 2 8 2 8 2

1 0 0 0

M1 N1 = 3

T2 T4 T1

8 8 8 2 8 2

1 0 0

M2 N1 = 3

T0 T1 T3

8 8 8 8 8 2

1 1 0

Table 2. Variant-LUT.

Variant No. No. of Slots Fsys (MHz) Performance Logic Slices BRAM Slices DSP Slices

T0 − 0 1 240 8 3093 43 30
T0 − 1 2 120 8 6062 86 60
T0 − 2 4 60 8 11,877 172 120
T0 − 3 2 60 4 6062 86 60
T0 − 4 1 60 2 3093 43 30

T1 − 0 1 240 8 2061 22 82
T1 − 1 2 120 8 4040 44 164
T1 − 2 4 60 8 7914 88 328

T2 − 0 1 240 8 5003 27 24
T2 − 1 2 120 8 9806 54 48
T2 − 2 2 60 4 9806 54 48
T2 − 3 1 60 2 5003 27 24

T3 − 0 1 240 8 4009 16 46
T3 − 1 2 120 8 7858 32 92

T4 − 0 1 240 8 5088 39 51
T4 − 1 2 120 8 9972 78 102
T4 − 2 1 60 2 5088 39 51

T5 − 0 1 240 8 2567 33 73
T5 − 1 2 120 8 5031 66 146
T5 − 2 4 60 8 9857 132 292

Computers 2018, 7, 52 9 of 34

Since each task has a range of performance specifications, it also has ASP circuit variants with
different performance values. A variant with a lower performance will occupy lesser resources than
another variant with a higher performance at the same Fsys. Thus, having a range of performance
specifications enables continuous execution of the task instead of mere elimination if it is unable
to fit in the available space at a fixed performance. For example, as seen in Table 1, in mode M0,
T2 has hspec = 8 and lspec = 2. As seen in Figure 3, if its current performance is 4 and Fsys = 60 MHz,
from Table 2, variant T2 − 2, occupying 2 slots, needs to be configured. However, if only 1 slot is
available in the FPGA, performance of T2 can be reduced to 2, so that variant T2 − 3, occupying 1 slot,
can be configured. This way, T2 can continue to execute at a reduced performance and its elimination
due to lack of space is avoided. The current performance of a task is expressed by a parameter called
Current Possible Performance (CPP). Since tasks can be eliminated to adapt to the existing constraints,
the active number of tasks in a mode may not always be equal to Nm. A track of the active number of
tasks is maintained by a parameter Na.

Figure 2. Example of a task’s ASP circuit variants that have the same performance.

4.2. Decision-Making Run-Time Structural Adaptation Method

The Explorer monitors the current power budget at regular intervals of time and is also invoked
when there is a hardware fault or a need for a system mode change. It takes different decision paths
depending on the system mode, power budget, hardware resource and task performance constraints
to dynamically select a system configuration which satisfies all the constraints. The system needs
spare slots for adaptation; maintaining a task’s performance while reducing Fsys or relocating a task
component due to a hardware fault requires free slots. The Explorer therefore, always selects a
configuration at the highest possible Fsys that meets the power budget to keep as many slots in reserve
as possible.

Mode_Change Flow: The Explorer uses this decision path when the system begins in its default
mode or if there is a need to switch to another mode while the system is functioning. As shown in
the left side of Figure 4, it extracts the characteristics of the tasks in the required mode, m, from the
Mode-LUT and estimates the system’s Permitted DPC (PDPC) based on the available power budget.
It sets Fsys to maximum, Na = Nm, and the current possible performance, CPP, of every task in the
mode m to its respective hspec with the goal of finding a configuration where every task will operate at

Computers 2018, 7, 52 10 of 34

its hspec at the highest possible Fsys. Once the Fsys is set, the Explorer scans the Variant-LUT of every
active task to find a suitable variant for it. It begins scanning the Variant-LUT of the task with highest
priority P0, and then continues for all the Nm tasks in the mode m. If a variant for a task is not found,
it checks if that was because a potential variant could not fit in the available space. In that case, it goes
to the Space_Adjustment Flow to cater to that issue. If that is not the case, there is an error. This can
occur only if there is an error during the design phase of the system. Once variants for all the tasks are
found, i.e., a candidate system configuration is selected, the explorer goes to the Power_Analysis Flow
for checking if the configuration meets the power budget constraint.

Figure 3. Example of a task’s ASP circuit variants that have different performances.

Power_Analysis Flow: This flow is shown in the right side of Figure 4. The Explorer uses the
run-time DPCEM discussed in Section 5 to estimate the DPC of the candidate configuration. If it’s
estimated DPC (EDPC) is lower than the PDPC, the set of ASP circuit variants is chosen as the new
system configuration and the Explorer waits for the next instance of power budget. Otherwise, it goes
to Reduce_System_DPC Flow in an attempt to reduce the system’s DPC to adapt to the low power
budget constraint.

Power_Budget_Check Flow: This flow, as shown in the left side of Figure 5, is used whenever it
is time to check the system’s power budget. This means, after using the Mode_Change Flow either due
to system start up or request for changing the system’s mode, the Explorer always comes to this flow
at regular intervals of time for adaptation to the new monitored power budget. At the time of new
power budget check, the Explorer estimates the system’s PDPC. If the power budget has dropped
with respect to the previous one, it checks the DPC of the current configuration (CDPC). If it meets
the PDPC constraint, the Explorer retains the configuration and waits for the next instance of power
budget. Otherwise, it goes to Reduce_System_DPC Flow in an attempt to reduce the system’s DPC to
adapt to the low power budget constraint.

Computers 2018, 7, 52 11 of 34

When power budget increases as compared to the previous one, the Explorer sets Na = Nm

and the CPP of every task in that mode to its respective hspec. This is because, with the increased
budget, it may now become possible to execute all the Nm tasks at their hspec. If Fsys is not already
maximum, the Explorer increases the Fsys by a step and finds suitable variants for all the tasks. If the
new configuration has a lower EDPC than the PDPC, Fsys is increased again and the process repeats.
This continues until a configuration is found whose EDPC exceeds the PDPC. The explorer now
follows Reduce_System_DPC Flow and finally settles onto a configuration which has lower EDPC
than the PDPC. This process is needed to reach the highest possible Fsys for the available power
budget. If the Explorer accepted a configuration in the first iteration itself, there could still be room for
increasing some task’s performance or adding in an eliminated task and it would have been missed.
During the iterations, if a configuration has a lower EDPC than the PDPC even at maximum Fsys, it is
accepted as a solution since the tasks are executing in their best possible configuration.

Reduce_System_DPC Flow: This decision flow is shown in right side of Figure 5. Since the
system’s DPC needs to be reduced due to a reduced power budget condition, the Explorer reduces
Fsys by one step, finds a new configuration for the active set of tasks at that Fsys, and proceeds to the
Power_Analysis Flow. If Fsys is already at its minimum, it goes to Reduce_System_DPC_Minimum_Fsys

Flow in an attempt to reduce the system’s DPC.

Figure 4. Mode_Change and Power_Analysis Flows of the Explorer.

Space_Adjustment Flow: This flow is shown in Figure 6. When Fsys is reduced, the Explorer
needs to select ASP circuit variants requiring more number of slots to maintain the performance
of every task. Hence, it is possible that even after using the spare slots, all the tasks may not be
accommodated. If a task with priority Ps does not fit in the available space, the Explorer tries to reduce
it’s CPP so that a variant which occupies lesser number of slots can be chosen. If it is already at it’s lspec,
the Explorer saves the task priority Ps and then tries to reduce the CPP of a higher priority task to make

Computers 2018, 7, 52 12 of 34

room for the task under consideration. When successful, it comes back to the task with priority Ps in
an attempt to accommodate it in the created space. However, if CPP of any task cannot be reduced
even after reaching the task with highest priority P0, the Explorer eliminates the task with priority Ps if
its EC = 0 and throws an error if its EC = 1. If the task with priority Ps is eliminated, the Explores
moves on to the Power_Analysis Flow. If the task with priority Ps is accommodated and is the last task,
i.e., the least priority task, the Explorer proceeds to the Power_Analysis Flow. If not, it moves on with
finding variants of the remaining tasks.

Figure 5. Power_Budget_Check and Reduce_System_DPC Flows of the Explorer.

Reduce_System_DPC_Minimum_Fsys Flow: This flow is shown in Figure 7. When Fsys is at itś
minimum, the Explorer tries to reduce the system DPC by reducing the CPP of a task, starting from
the one with the least priority (PNa−1). If the task is already at its lspec, the Explorer tries to reduce the
CPP of a higher priority task. If it is not possible to do so even after reaching the task with highest
priority P0, the Explorer eliminates the least priority task after verifying its EC. It then proceeds to the
Power_Analysis Flow.

Computers 2018, 7, 52 13 of 34

Hardware_Fault Flow: The Explorer chooses the same flow as shown in Figure 7 when a hardware
fault occurs in a slot. The fault mitigation method is based on the run-time component relocation
method discussed in [7,8]. The basic idea is to relocate the affected task component to a spare slot.
This process always takes the same time, which is the slot reconfiguration time. The affected task
component thus has a fast recovery. The faulty slot can then be tested for transient or permanent faults,
while the affected task component is already up and functioning.

Figure 6. Space_Adjustment Flow of the Explorer.

For the kind of systems discussed here, a spare slot may not always be available for relocation
in the case of a fault. In such a case, a spare slot will need to be created to cater to the situation.
When a hardware fault is detected in a slot, the Explorer checks the availability of a spare slot. If found,
it reconfigures the affected task component to that slot. If there is no spare slot, it tries to create one by
reducing the CPP of a task, starting from the one with the least priority. If that is not possible even
after reaching the task with highest priority P0, the Explorer eliminates the least priority task after
verifying its EC and configures the affected task component in the new available spare slot. In the
case of a transient fault, this adaptation is temporary; only until the affected slot is restored. However,
when the fault is permanent, the available number of slots permanently reduce for the system.

Computers 2018, 7, 52 14 of 34

Find_System_Configuration Flow: The Explorer comes to this flow, shown in Figure 8,
whenever there is a need to find a candidate configuration for the system, i.e., find a combination
of suitable variants of the active set of tasks. The Explorer starts with the task with highest priority
P0. It finds a suitable variant for the task that satisfies the existing set of constraints, using the
Find_Task_Variant Flow, and moves on to scan the LUT of the next lower priority task. This continues
till the task with least priority. The selected variants of all the tasks form the candidate configuration
of the system.

Figure 7. Reduce_System_DPC_Minimum_Fsys and Hardware_Fault Flows of the Explorer.

Find_Task_Variant Flow: The flow to select a suitable variant for a task under consideration is
shown in the expanded view in Figure 8. The explorer scans the Variant-LUT of the task to find an ASP
circuit variant whose frequency and performance are equal to Fsys and the CPP of that task, and which
fits in the available number of slots on the FPGA. If no variant is selected due to lack of space, it goes
to the Space_Adjustment Flow in an attempt to accommodate the task. Otherwise, if there is no variant
selected, there is a system design error.

Computers 2018, 7, 52 15 of 34

4.3. Analyzing Cost of Run-Time Structural Adaptation

Adaptation Time Overhead: From Section 4.2, it can be seen that the Explorer can dynamically
maintain the performance of a system’s critical tasks by adjusting the performance values of its lower
priority tasks, changing system frequency and/or relocating task components such that the system
configuration meets the existing power budget, hardware resource constraints, and the performance
specifications of all the individual tasks. The cost of such a dynamic flexibility is only a small period
of adaptation time where some or all of the executing tasks are affected. This further depends on the
availability of spare slots. For example, suppose that a variant of task needs to be reconfigured for
adaptation. If spare slots are available, the new variant can be reconfigured to the spare slot(s) while
the original task is executing. Once the new variant is reconfigured, the originally running task variant
is stalled at an appropriate point in its execution cycle and the new one is integrated by the MACROS
framework. The adaptation time in this case is only the time taken by MACORS to integrate the
components of the newly configured task. However, if spare slots are not available, the original task
variant is stalled, followed by reconfiguration of the new task variant. In this case, the reconfiguration
time of the variant adds to the adaptation time. For a dynamic relocation example in [7], the adaptation
time is in the order of milliseconds. This time frame can satisfy the permitted adaptation time for many
applications; for example, multi-media/video/image processing applications, digital communication
etc. The small time overhead of the method makes it suitable for supporting run-time adaptation.

Figure 8. Find_System_Configuration and Find_Task_Variant Flows of the Explorer.

Storage Overhead and Exploration Time: Consider a system having 50 modes and 20 tasks.
Each task has 16 ASP circuit variants. For simplicity, let there be 10 tasks in each mode. In this case,
if system configurations need to be explored, for each mode, 1610 ≈ 1012 configurations will need to be
stored and scanned. For a total of 50 modes, the Explorer would need to store 50× 1610 ≈ 5× 1013

configurations. It may not be feasible to store so many configurations in an LUT. Additionally, even if
such a large design space is stored in a memory system, exploring it would take a prohibitively large

Computers 2018, 7, 52 16 of 34

computation time to be used at run-time. However, as discussed in Section 4.2, the Explorer selects
ASP circuit variants for all tasks individually, instead of selecting the entire system configuration.
Therefore, only ASP circuit variants of individual tasks need to be stored. For the above example,
only 20× 16 = 320 configurations will need to be stored. From these configurations, the Explorer will
only explore 10× 16 = 160 configurations for the existing mode. The number of configurations to be
stored and explored reduce by a huge factor of (50× 1610)/320 = 1.7× 1011 and (1610)/160 = 6.9× 109

respectively! The method thus not only reduces the memory requirements of the system, but also
reduces the exploration time significantly by reducing the number of configurations to be explored;
a requisite for run-time adaptation.

Reconfiguration Power Consumption: While reconfiguring a task component on a slot, the task
component operating on that slot prior to reconfiguration needs to be stalled. This means,
during reconfiguration, DPC is only due to the reconfiguration process since there is no data processing
during that time. Furthermore, DPR usually takes hundreds of micro-seconds to tens of milli-seconds
depending on the size of the bit-stream and the medium used for reconfiguration. It has been
demonstrated that power consumption for this small frame of time is negligible as compared to any
task operating on that slot [55]. In fact, since there is no data processing during DPR, the power budget
improves for that period of DPR. This is because instead of power being consumed by an executing
task, there is only a negligible power consumption of the DPR process. Thus, power consumed by
DPR can easily be ignored from the power budget calculations.

Data Loss during Adaptation: For the proposed run-time adaptation mechanism, it is important
to consider the data/information lost as a result of the adaptation. As mentioned in Section 2,
critical multi-task multi-modal systems usually run continuously executing stream processing
hardware tasks. Consider a system executing tasks which process incoming video streams. In such
a case, if a new variant for a task needs to be reconfigured, it will be stalled only when a frame
being processed is completed and the results are delivered. There is therefore, no loss of data within
a frame. Depending on the time taken for reconfiguration, as discussed above, in the ’Adaptation
Time Overhead’ Section, a couple frames could be lost. Once the task is reconfigured, it begins
operating from the new incoming frame. This means, for the kind of systems considered in this paper,
adaptation does not require saving the states of tasks, as they process incoming streams, and they are
stalled/initiated only at the completion/start of a new set of data (frame in this case).This is efficiently
supported by the MACROS framework, which can auto-synchronize the set of tasks executing at that
time. Thus, there is no time/storage overhead of the mechanism in terms of saving the tasks’ contexts.
However, there is some loss of data, the cost of which depends on the nature of the application being
supported by the system. For example, losing 2–3 frames in commercial applications does not matter
since the loss of a few frames is not even visible to the human eye.

Influence of Adaptation on Task Functioning: As discussed above, the systems considered for
this paper are autonomous systems with tasks processing incoming streams of data. Such tasks mostly
include BRAM-based buffers to store the incoming streams or the processed outputs. There is usually
no interaction with external memory. External memory, in such systems, is mostly used to store the
different bit-streams of the task variants and is accessed by the Bit-stream Manager while configuring a
selected task variant. When different variants of the ASP circuits of a task are configured for adaptation,
they do not affect the functionality of the task. For example, consider an ASP circuit variant of an
image processing task which occupies one slot, and operates at 120 MHz to give a performance of
120 f ps. The ASP circuit of this variant would include one buffer dealing with the entire image at
120 MHz. Suppose that the system needs to adapt to a low power budget condition and another
variant which occupies two slots and operates at 60 MHz needs to be configured. This variant would
have two buffers, processing half the image simultaneously at 60 MHz, thus giving a frame rate of
120 f ps. Similarly, consider a situation where a variant with a reduced performance needs to be
configured to adapt to a limited resource condition. If a variant which occupies one slot and operates
at 60 MHz is configured, there would be one buffer processing the full image at 60 MHz, thus giving a

Computers 2018, 7, 52 17 of 34

reduced performance of 60 f ps. This means adaptation does not affect the task functionality in any
way. The variants of ASP circuits of the tasks are developed with the aim of run-time adaptation
during their design phase.

Furthermore, if external communication with the DDR memory is required, this is achieved
through continuously executing static tasks, which operate at a fixed frequency. Thus, irrespective of
the changing operating frequencies of the configured task variants, their communication with the
external DDR memory is not affected. It can thus be seen that the Explorer does not have any role
to play in terms of the task functioning. It is solely responsible for selecting the appropriate system
configuration that meets the changing set of constraints. Run-time adaptation does not affect the
functioning of the tasks and their communication with external memory.

5. Method for Derivation of DPC Estimation Model

From Section 4.2, it is seen that during the structural adaptation process, the Explorer uses the
DPCEM of an FPGA to estimate the DPC of potential system configurations at run-time. This section
therefore discusses the method to derive the DPCEM for an FPGA.

During run-time structural adaptation, it is possible to reconfigure only the PRRs of the FPGA with
the ASP circuits of the system tasks. This means run-time structural adaptation can result in a change
only in the number and type of reconfigurable resources of the FPGA. Therefore, only the resources in
the PRRs and hence only the system tasks contribute to DPC of the FPGA. Power consumption of any
FPGA resource other than those in the PRRs become a part of the static FPGA power consumption.
DPC of a system configuration and hence the DPCEM can be therefore be expressed as the sum of the
DPC of each type of reconfigurable resource used by the ASP circuits. Thus, the DPCEM of an FPGA
must have the FPGA’s reconfigurable resources as its variable parameters.

To derive the DPCEM, the power consumption behavior of each type of reconfigurable resource
must be identified. From experiments performed on different FPGA devices based on the 28 nm
CMOS technology (Xilinx 7-series and Zynq 7000 family), it was found that DPC of each type
of reconfigurable resource in an ASP circuit has a linear relation with: (a) clock frequency and
(b) utilization, i.e., number of slices of the resource deployed. This behavior is in line with DPC
trend shown for the Xilinx FPGAs in [56]. Although the focus in [56] is not to observe the DPC
behavior of FPGAs, the presented DPC results depict the linear behavior of the Stratix and Virtex-4
family of FPGAs. This can also be validated from the equation that represents the DPC of each resource
in a FPGA [57]:

DPCresource = Cswitched ×V2 × F (1)

where Cswitched is the switched capacitance, V is the voltage supply, and F is the clock frequency of the
resource. From this equation, it is clear that the DPC of any FPGA resource will have a linear relation
with the clock frequency.

Another point to be noted is that capacitance of the resource is influenced by its switching activity,
i.e., number of transitions in a clock period [57]. The switched capacitance of a resource can therefore be
expressed as Cswitched = Ce f f × S, where Ce f f is the effective capacitance of the resource, that depends
on the parasitic effects of the interconnection wires and transistors, and S is the switching activity of
the resource. Thus, the total DPC of an FPGA resource with a utilization U can be written as:

Total DPCresource = V2 × F× Ceff ×U × S (2)

From Equation (2), the DPC of the FPGA can be expressed as [57]:

DPCFPGA = V2 × F×∑ Ceff _i ×Ui × Si (3)

where Ce f f _i, Ui, and Si are the effective capacitance, utilization, and switching activity of the resource i.

Computers 2018, 7, 52 18 of 34

Thus, DPCEM derivation essentially involves identifying the coefficients representing the linear
relationship of each type of reconfigurable resource with frequency and its utilization. These identified
coefficients will be dependent on the switching activity of the application. The DPCEM can therefore be
represented as a simple linear equation. Such a model can have a very small execution time overhead
and can hence be suitable for use at run-time.

5.1. Experimental Setup for DPCEM Derivation

As discussed above, DPC of an FPGA strongly depends on its underlying micro-architecture
and the switching activity factor of the circuit configured on it. As a result, the DPCEM of an FPGA
corresponds to only the application for which it has been derived. If the application and/or the FPGA
changes, a new set of DPCEM coefficients will need to be established for that FPGA and application.
However, the method of DPCEM derivation stays the same for any FPGA and any application. Thus,
to be able to derive a DPCEM, it was necessary to develop an experimental setup, i.e., choose an FPGA
platform and develop a test-circuit for which the DPCEM of that FPGA will be derived. Since the
MACROS framework requires DPR to enable run-time structural adaptation, the latest Xilinx 7-series
FPGA family based on 28 nm CMOS technology was selected. The ZedBoard [58], which houses the
Zynq XC7Z020 device (Artix-7 equivalent) [59], and the KC705 evaluation board [60], which houses
the Kintex-7 XC7K325T FPGA [61], were selected because they have different methods for DPC
measurement. This way, both the methods can be tested for DPCEM derivation and their use in
practical systems.

Most modern FPGAs have three types of reconfigurable computing and memory resources,
namely, Logic, BRAM and DSP slices [62,63]. A test-circuit was therefore developed such that it
includes all the three types of resources and has a structure which permits variation of usage of each
type of resource individually to isolate its behavior. It must be noted that in practice, for deriving
the actual DPCEM of an FPGA, the application that will run on the FPGA should be implemented
and tested instead of using the test-circuit discussed here. This aspect is briefly discussed in the
next Section.

The developed test-circuit, as shown in Figure 9a, includes three modules, namely, Memory,
Logic and DSP modules. The Memory Module mainly includes 2 buffers, formed using BRAM slices.
One buffer acts as the input to the Logic and DSP Modules while the other is being written into,
and they switch roles when the buffer is full. The buffers are continuously written into and read from
to have some switching activity in the BRAM slices that will result in their DPC. The Logic and DSP
modules are mainly formed using Logic and DSP slices respectively. They perform the same set of
arithmetic functions, are fed with the same input from the Memory module and produce the same
output. Their outputs are switched to form the circuit output to avoid the CAD tool from considering
one of the modules redundant and eliminating it from the design.

This circuit, consisting of Memory, Logic and DSP modules forms the base design for the
experiments. From this design, several variants with individually varying Logic, BRAM and DSP
slice utilization must be generated to identify the DPC behavior of each type of resource. This means,
variants with increasing Logic slice utilization must be generated at multiple frequencies to observe
the behavior of Logic slices alone. Similarly, another set of variants must be generated with increasing
BRAM and DSP slice utilization at multiple frequencies to observe their individual behaviors. To be
able to do so, each module is scaled multiple times and the outputs are logically ORed together
to produce one single output. For example, design variants with varying Logic utilization can be
generated by repeating only the Logic modules n times, where n = 1 to N; N is the number beyond
which, if the module is repeated, the required logic utilization will become higher than the logic slices
available in the FPGA. A combination of the scaled modules is termed as a ‘Bundle’. The scaled
modules are logically ORed to produce a single output so that the design functionality is maintained
in every variant. This means although every variant has a different Logic utilization, they all behave as
if they have only one Logic module in their design. Any other method that can maintain the design

Computers 2018, 7, 52 19 of 34

functionality while varying resource utilization can also be used to generate the variants. Figure 9b
shows a design variant where only Logic utilization is increased by scaling Logic Modules in the Logic
bundle and the BRAM and DSP Modules remain untouched.

While developing the base design, first, the individual modules, i.e., the Memory, Logic, and DSP
modules were designed. The attempt was that each module has a resource utilization between 15–25%
so that at-least 4 variants of varying utilization of one reconfigurable resource could be generated by
scaling the corresponding module (N = 4; n = 1 to 4). This way sufficient data would be available for
DPCEM derivation. Apart from this criteria, the resource utilization achieved for the base designs was
arbitrary; purely dependent on the circuits involved in the design.

Figure 9. (a) Memory Module; (b) A design-variant with increased Logic Utilization.

The base design developed for the Zynq XC7Z020 device, which includes one Memory, Logic,
and BRAM module, has a resource utilization of 3236, 35 and 22 Logic, DSP and BRAM slices, which is
≈25%, 16% and 16% respectively. These numbers are taken from the resource utilization file generated
for the base design by Vivado. With this initial resource utilization, it was possible to generate 4 variants
of varying Logic slice utilization and 5 variants of varying BRAM and DSP slice utilization.

Similarly, the base design developed for the Kintex-7 XC7K325T device includes 11219, 140 and
70 Logic, DSP and BRAM slices, which is ≈22%, 17% and 16% respectively. This utilization permitted
generation of 5 variants of varying utilization per resource.

5.2. Setup for DPCEM Derivation for Real Applications

As discussed, a test-circuit has been developed in this paper to demonstrate the DPCEM derivation
procedure. When deriving the DPCEM for real applications, the same concept that is used for
developing the test-circuit must be applied. This means, the main idea is to be able to isolate the
reconfigurable resources to identify their individual behaviors. The only assumption here is that
the design/circuit for the application is modular. This will allow scaling the number of specific
modules in the design to vary specific reconfigurable resources. For this purpose, modules that have a
higher concentration of a particular resource must be identified, just like in the case of the test-circuit.
For example, video/image processing applications usually have buffers to store the incoming frames.
They also have modules that are responsible for data processing; such modules will usually have a
higher percentage of logic slice utilization. DSP modules will have more DSP slice utilization, and so
on. To generate variants that have varying utilization of a particular resource, only the corresponding
module must be scaled multiple times, and not the entire circuit. For example, to generate variants with
increasing logic utilization, only the data processing module can be scaled multiple times, with their
outputs logically ORed together to produce one single output. This way, there is no change in the
functioning of the module and its output interface. Similarly, to generate variants with increasing

Computers 2018, 7, 52 20 of 34

BRAM utilization, only the buffer modules can be scaled. The same applies for the DSP modules. Once
this is done, the same method as discussed in this paper (Section 5.4) can be used to derive the DPCEM
for the desired FPGA device.

All applications may not use all the reconfigurable resources. Some may not need DSP modules,
while some may not need BRAM modules. For such applications the model coefficients will need to
be derived only for the reconfigurable resources being used. The step in the derivation procedure,
corresponding to the resource not being used, can be skipped.

5.3. Power Consumption Measurement Methods

While deriving the DPCEM, DPC values of the FPGA for all the design variants are required
in order to gather the initial data for model derivation. Software prediction tools like Xilinx Power
Analyzer can be used for this purpose if accurate switching activity factors are available [64–66].
We have used the method of actual DPC measurement to maximize the accuracy of the model derivation
process. This Section discusses the method of DPC measurement for the Zynq and Kintex devices
housed on the ZedBoard and KC705 evaluation board respectively.

Initially, the static power consumption (SPC) of both the boards is recorded. Total power
consumption (TPC) of the boards is then measured for every design variant. SPC is subtracted
from the TPC of every design variant to obtain the DPC of the respective FPGA for that design variant.
The DPC corresponds to the FPGA and not to the board since the test design uses only the FPGA
resources. The power consumed by the other on-board resources is a part of the board’s SPC.

Measurement Method on ZedBoard: The ZedBoard has a 10 mΩ sense resister in series with its
12 V power supply [58]. Power consumption of the board is obtained through the voltage recorded
across the sense resistor using Agilent Technologies Digital Multimeter, U3401A.

Measurement Method on KC705 Board: For the KC705 board, power supply is distributed in
the form of individual rails, which can be monitored with the on-board Texas Instruments power
controllers UCD9248PFC [60]. The individual rail voltages, currents, and thus power consumption
can be read by I2C-based communication with the Power Management Bus (PMBus) connected to the
controllers. Power consumption of the board is the sum of the power consumption of all rails.

5.4. DPCEM Derivation Process

This Section presents the procedure to derive the complete DPCEM of an FPGA in terms of all
its reconfigurable resources, i.e., Logic, BRAM and DSP Slices. It is based on [67], which discusses
a DPCEM derivation method for applications that use only Logic and BRAM slices. The DPCEM
derivation procedure in this paper considers usage of DSP slices along with Logic and BRAM slices.
It thus enables DPCEM derivation for an FPGA in terms of all its reconfigurable resources. The method
of identifying the coefficients for each resource is much simpler than the method in [67]. Since all the
reconfigurable resources are considered, the test designs developed for the derivation are different as
compared to the ones used in [67]. Furthermore, in [67], DPCEM results have been presented only for
the ZedBoard. However, in this paper, DPCEM results have been presented for the ZedBoard and the
KC705 evaluation board, i.e., for the Xilinx Zynq XC7Z020 and Xilinx Kintex 7 devices respectively.
This is done to: (a) Validate the fact that the proposed procedure is generic and can be used to derive a
DPCEM for any FPGA device or any FPGA-based board; as long as there is a mechanism to measure
the power consumption of the FPGA/board, and (b) Analyze the DPC behavior of FPGA devices built
on the same micro-architecture.

Zynq XC7Z020 device, housed on the ZedBoard, is used as the experimental platform to
demonstrate the derivation procedure. The DPCEM results for the KC705 board are presented next. It is
to be noted that even though the Zynq device includes the ARM Cortex A9 core, we are interested in
the DPCEM of only the FPGA. Since the test-circuits involve only the resources of the FPGA, the ARM
processor has a static power consumption. It is therefore, a part of the SPC of the ZedBoard, which is
eliminated from the TPC of the board to obtain the DPC of the FPGA. Thus, the ARM processor does

Computers 2018, 7, 52 21 of 34

not influence the derived DPCEM of the FPGA, and thus does not affect Explorer’s decision while
choosing a system configuration.

Step 1—Isolate Behavior of Logic Slices: In this step, four design variants with varying Logic
utilization are generated from base design discussed in Section 5.1. The Logic modules in the Logic
Bundle are scaled from n = 1 to 4. The Memory and DSP modules stay constant at one module for
all the variants. The resource utilization file of the base design for the Zynq device shows that each
Memory and DSP module consists of 22 BRAM and 35 DSP slices respectively (also discussed in
Section 5.1). These BRAM and DSP slices remain constant for all the variants.

For each of the four variants, five bit-streams are generated whose operating frequencies range
from 30 MHz to 150 MHz, in multiples of 30 MHz. DPC of the FPGA is measured for each of
the 20 bit-streams using the procedure described in Section 5.3. Since number of Logic slices and
frequency are the only variable parameters in the design variants, variation in the measured DPC is
also only due to variation in Logic slices and frequency. Therefore, the relation between DPC and
number of Logic slices is observed at each of the five frequencies with the help of the graph shown
in Figure 10a. Five linear equations are obtained, one for each frequency. The ‘Step 1’ tab of Table 3
lists the Coefficients and Constants of these equations at each multiple of 30 MHz. The Coefficient at a
particular frequency corresponds to the slope of increase in DPC due to increase in number of Logic
slices at that frequency. Similarly, the Constant at a particular frequency corresponds to the DPC of the
constant resources in the design, including the constant BRAM and DSP slices (22 and 35 respectively
in this case), at that frequency. It can be observed from the ‘Step 1’ tab of Table 3 that the Coefficients
and Constants linearly increase with frequency. Their values obtained at 30 MHz scale with the same
factor as the frequency. This shows that the Logic slices, BRAM slices, DSP slices and other constant
resources in the FPGA have a frequency dependent behavior. The set of five linear equations can,
therefore, be encapsulated into a single frequency dependent equation as:

DPC(Zynq7020) (mW) =
Fcc(MHz)

30
× (0.013× NLS + 55.17) =

Fcc

Fmin
× (CLS × NLS + 55.17) (4)

where, Fcc is current operating clock frequency and Fmin is minimum operating frequency for the
test design. CLS is the coefficient relating the DPC to NLS; the number of Logic slices. Fcc

Fmin
× 55.17

represents the frequency dependent behavior of the remaining constant resources in the design,
including the constant BRAM and DSP slices. This means, in actual circuits, which will have a different
BRAM and DSP slice utilization, their influence will be observed in the second term of Equation (4),
i.e., Fcc

Fmin
× 55.17. The constant 55.17 will be replaced by a different value, which will depend on the

BRAM and DSP slice utilization, and also on the switching activity factor of that hardware circuit.
Step 2—Isolate Behavior of BRAM Slices: In this step, five design variants are generated by

scaling the Memory modules in the Memory Bundle from 1 to 5. DSP utilization (35 slices) remains
constant throughout this step. Frequency is varied from 30 MHz to 150 MHz for each variant,
resulting in 25 bit-streams. DPC of Zynq is measured for each bit-stream. It must be noted that
increasing BRAM utilization also increases Logic utilization. As a result, DPC of Logic slices must be
eliminated to observe the behavior of BRAM slices alone. DPC of Logic slices in every design variant
is calculated using the first term of (4), i.e., Fcc(MHz)

30 × 0.013× NLS and subtracted from the measured
DPC values. Variation in DPC is now only due to variation in BRAM slices and frequency. The relation
between DPC of BRAM slices is observed at each of the five frequencies with the help of the graph
shown in Figure 10b. A set of five linear equations are obtained, whose Coefficients and Constants are
listed in the ‘Step 2’ tab of Table 3. The Coefficient at a particular frequency corresponds to the slope of
increase in DPC due to increase in number of BRAM slices at that frequency. Similarly, the Constant at
a particular frequency corresponds to the DPC of the constant resources in the design at that frequency.
The constant resources in this step include the DSP slices (35 in this case), but exclude the Logic slices
as their power consumption has been eliminated from the measured power consumption. It can be
observed from the ‘Step 2’ tab of Table 3 that these Coefficients and Constants also linearly increase

Computers 2018, 7, 52 22 of 34

with frequency, like in Step 1. This again shows that the reconfigurable resources and other constant
resources in the FPGA have a frequency dependent behavior. The set of equations can hence be
combined into the following general equation:

DPC(Zynq7020) (mW) =
Fcc(MHz)

30
× (1.1× NBS + 31) =

Fcc

Fmin
× (CBS × NBS + 31) (5)

where, CBS is the coefficient relating the DPC to NBS; the number of BRAM slices. Since DPC of
Logic slices is eliminated, Fcc(MHz)

30 × 31 represents the frequency dependent behavior of the remaining
constant resources in the design excluding the Logic slices.

Figure 10. (a–c) Zynq DPC vs. Number of Logic, BRAM and DSP slices respectively.

Table 3. Coefficients and constants of linear equations obtained during DPCEM derivation.

F = Fcc (MHz)
30

Step 1 Step 2 Step 3

Coefficient Constant Coefficient Constant Coefficient Constant

1 0.013 49.631 1.1 29.1 0.225 39.9
2 0.026 110.553 2.1 67.8 0.45 86.501
3 0.039 166.184 3.1 95.9 0.677 132.951
4 0.054 220.928 4.3 129.7 0.921 183.778
5 0.068 270.274 5.5 153.4 1.224 228.929

Approximation F× 0.013 F× 55.17 F× 1.1 F× 31 F× 0.226 F× 47

Step 3—Isolate Behavior of DSP Slices: In this step, five design variants are generated by
scaling the DSP modules in the DSP Bundle from 1 to 5. BRAM utilization (22 slices) remains constant
throughout this step. Frequency is varied from 30 MHz to 150 MHz for each variant, resulting in
25 bit-streams. DPC of Zynq is measured for each bit-stream. In this step too, scaling DSP modules
also increases Logic slices. This is because the DSP module is made up of DSP slices and some Logic
slices used as glue logic. Hence DPC of the Logic slices in every design variant is subtracted from the
measured DPC values like in Step 2. The relation between DPC and DSP slices is observed at each
of the five frequencies with the help of the graph shown in Figure 10c. A set of five linear equations

Computers 2018, 7, 52 23 of 34

are obtained. Their Coefficients and Constants are listed in the ‘Step 3’ tab of Table 3. The Coefficient
at a particular frequency corresponds to the slope of increase in DPC due to increase in number of
DSP slices at that frequency. The Constant at a particular frequency corresponds to the DPC of the
constant resources in the design at that frequency. The constant resources in this step include the
BRAM slices (22 in this case), but exclude the Logic slices as their power consumption has been
eliminated from the measured power consumption. Here too, the frequency dependent behavior of
the FPGA resources is observed; the Coefficients and Constants from the ‘Step 3’ tab of Table 3 scale
with frequency. Therefore, the set of equations in this step also can be represented as the following
general frequency dependent equation:

DPC(Zynq7020) (mW) =
Fcc(MHz)

30
× (0.226× NDS + 47) =

Fcc

Fmin
× (CDS × NDS + 47) (6)

where, CDS is the coefficient relating the DPC to NDS; the number of DSP slices. Since DPC of Logic
slices is eliminated, Fcc(MHz)

30 × 47 represents the frequency dependent behavior of the remaining
constant resources in the design excluding the Logic slices.

Step 4—Complete the DPCEM Equation: From (4)–(6) we have: CLS = 0.013, CBS = 1.1,
and CDS = 0.226; the coefficients which relate DPC to the number of Logic, BRAM and DSP slices
respectively. Also, from Steps 1 to 3, it has been observed that the DPC of each type of resource linearly
depends of frequency. A generic equation can thus be formed from (4)–(6), which represents the
DPCEM of an FPGA.

DPC(FPGA) (mW) =
Fcc

Fmin
× (CLS × NLS + CBS × NBS + CDS × NDS + CF) (7)

where, CF is a frequency dependent coefficient representing the behavior of the remaining constant
resources in the design excluding the Logic, BRAM and DSP slices.

Comparing (4) from Step 1 with (7) from Step 4, we get the following relation:

CBS × NBS + CDS × NDS + CF = 55.17 =⇒ 1.1× 22 + 0.226× 35 + CF = 55.17 =⇒ CF = 23.06 (8)

Similarly, comparing (5) and (6) with (7), the following relations are obtained:

CDS × NDS + CF = 31 and CBS ×NBS + CF = 47. (9)

The identified coefficients CLS, CBS, CDS, and CF validate the relations in (9). Thus, the complete
DPCEM for Zynq XC7Z020 involving the parameters of Logic slices, BRAM slices, DSP slices and
frequency can be represented as:

DPC(Zynq7020) (mW) =
Fcc

Fmin
× (0.013× NLS + 1.1× NBS + 0.226× NDS + 23.06) (10)

The maximum difference between the DPC values estimated using (10) and the measured DPC
results is 30 mW. Thus, (10) is an accurate DPCEM for the Zynq XC7Z020 FPGA device, for the test
design considered. It is clear that the BRAM slices highly influence the DPC of the FPGA as against
the Logic slices (1.1/0.013 ≈ 85 times) and DSP slices (1.1/0.226 ≈ 5 times). Also, the following can be
analyzed from the generic DPCEM Equation (7) obtained for an FPGA:

Due to the presence of the frequency dependent coefficient CF, it is possible to reduce power
consumption by decreasing frequency alone. This means, a task variant V1 with double the resource
utilization and half the operating frequency of another variant V2 will have lesser DPC as compared
to V2. For example, consider the first two variants, T0 − 0 and T0 − 1 listed in Table 2. T0 − 0 has
Fsys = 240 MHz and uses 1 slot on the FPGA. T0 − 1 has Fsys = 120 MHz and uses 2 slots on the FPGA
to give the same performance as T0 − 0. If we assume that T0 − 1 has double the number of resources

Computers 2018, 7, 52 24 of 34

used in T0 − 0, it will still have lower power consumption as compared to T0 − 0 due to the presence of
the frequency dependent coefficient CF in Equation (7). The value of the term Fcc

Fmin
× CF will be halved

when the frequency reduces to 120 MHz. It must be clarified that variant T0 − 1 may not have exactly
double the resources as that of T0 − 0, even though it uses double the number of slots as compared
to T0 − 0. For example, T0 − 0 could be carrying out some functions using more BRAM slices in a
slot. On the other hand, T0 − 1 could be carrying out the same function using more Logic slices in the
two occupied slots instead of BRAM slices so that its DPC could further be reduced. To summarize,
from the generic DPCEM Equation (7), it can be said that due to the frequency dependent coefficient
CF, the power consumption of a variant with double the resource utilization and half the operating
frequency of another variant will be lower instead of being the same. Thus, configuring a variant at a
lower frequency will help reduce the system DPC. (Each system mode usually has only a few tasks
whose performance need to be sustained at all times. The performance of other tasks may be reduced
within the specified performance range, if needed, to accommodate the changing set of constraints.
Thus, along with reduced Fsys, which helps reduce the system’s DPC, the lowered performance of
non-critical tasks can further reduce the total DPC of the system.)

Since the DPCEM derivation procedure is generic, the same method has been followed to derive
the DPCEM for the Kintex-7 XC7K325T device. For the steps 1, 2 and 3, the Logic, Memory and
DSP modules are respectively scaled from 1 to 5. Frequency is varied from 30 to 210 MHz in steps
of 30 MHz, resulting in 35 bit-streams per step. Figure 11a–c show the plots representing DPC vs.
Logic, BRAM and DSP slices respectively. Based on the set of linear equations obtained, the following
coefficient values are derived:

CLS = 0.012, CBS = 1, CDS = 0.22 and CF = 29.2 (11)

Figure 11. (a–c) Kintex-7 DPC vs. Number of Logic, BRAM and DSP slices respectively.

The complete DPCEM for Kintex-7 involving the parameters of Logic slices, BRAM slices,
DSP slices and frequency can be represented as:

DPC(Kintex-7) (mW) =
Fcc

Fmin
× (0.012× NLS + 1× NBS + 0.22× NDS + 29.2) (12)

Computers 2018, 7, 52 25 of 34

The maximum difference between the DPC values estimated using (12) and the measured DPC
results is 100 mW. (12) is an accurate DPCEM for the Kintex-7 FPGA, for the test design considered.
It can be observed that the DPCEM for Kintex-7 has the same general form as (7); the one obtained
while deriving the DPCEM for Zynq device. It thus validates the generic equation obtained as the
DPCEM of an FPGA. Comparing (10) and (12) shows that the coefficients obtained for Zynq and
Kintex-7 devices are similar. This is because even though they belong to different FPGA families,
they have the same fabrication technology and hence have similar power consumption behavior.
The DPCEM results for the Zynq XC7Z020 and the Kintex-7 device also show that the proposed
DPCEM derivation procedure is generic and can be applicable to any FPGA device.

6. DPCEM Usage during Run-Time Structural Adaptation

This section shows how the Explorer identifies the PDPC at every power budget check and how
it uses the DPCEM to estimate the DPC of a configuration-under-test.

PDPC Calculation: Consider the system to be operating on a rechargeable battery with a capacity
of I Ah at V volts. The battery capacity is thus Pavail(Wh) = V × I. If the system needs to function for
H hours, the permitted total power consumption (PTPC) is given as: PTPC(W) = (Pavail/H). If the
system’s SPC is Pstatic W, PDPC(W) = PTPC− Pstatic.

At the time of a new power budget after an interval of Hnew hours, the battery capacity reduces
by (Icon f ig × Hnew) Wh; where Icon f ig is the current being drawn by the present system configuration
in Amperes. Thus, Pavail(Wh) = Pavail − (Icon f ig × Hnew). The new PDPC of the system, based on the
new available power budget can again be found using the above steps.

DPC Estimation of a Configuration-under-Test: Equation (7) is used to estimate the DPC of a
candidate configuration. The resource utilization for the configuration can be obtained by accessing the
resource utilization of the selected variants of all the tasks in the configuration from the variant-LUT
and summing them up. Equation (7) then becomes:

EDPC (mW) =
Fcc

Fmin
× (CLS ×

Nc−1

∑
n=0

NLS + CBS ×
Nc−1

∑
n=0

NBS + CDS ×
Nc−1

∑
n=0

NDS + CF) (13)

where Nc is the number of tasks in the candidate configuration.

7. Example of Run-Time Adaptation in Different Scenarios

This section discusses an example of run-time structural adaptation of a system for different
mode, power budget and fault conditions. Consider the same example of the multi-task multi-modal
system having six tasks and three modes, described in Section 4.1. Tables 1 and 2 represent the
’mode-LUT’ and the ’Variant-LUT’ respectively. Consider this system to be developed on the Kintex-7
FPGA device which is deployed with the MACROS framework and has 8 slots. The system runs on a
rechargeable 12 V battery with a capacity of 48 Wh. Fsys can take values of 30, 60, 120 and 240 MHz.
Table 4 summarizes the flow of events which are discussed next.

Initial State: The default system mode is M0. On start-up, the battery capacity (BC) = 100%.
Estimated time of next battery recharge is after 9 h. With a Pavail = 48 Wh and H = 9 h,
PTPC = 48/9 = 5.33 W. Considering a Pstatic = 1.7 W, PDPC = 5.33− 1.7 = 3.63 W. The Explorer sets
Fsys to 240 MHz and selects variant no. 0 for each of the tasks in M0, i.e., T5, T0, T2 and T4, to maintain
their performance at maximum (Mode_Change Flow). Using Table 2, (11), and (13), EDPC of this
combination can be calculated as:

EDPC (mW) =
240
30
× {0.012× 15751 + 1× 142 + 0.24× 178 + 26.4} = 3.195 W.

Since EDPC ≤ PDPC, T5− 0, T0− 0, T2− 0, T4− 0 is selected as the system configuration, as seen
in Figure 12a. The system can now function for 9.81 h, ≈48 min more than needed by the budget.

Computers 2018, 7, 52 26 of 34

Table 4. Flow of events discussed in Section 7.

Time Elapsed
(hours)

System
Mode Pavail (%)

Current
Lifetime
(hours)

Needed
Lifetime

PTPC
(W)

PDPC
(W)

Candi-Date
EDPC (W)

New
Lifetime

0 M0 100.00 9.00 5.33 3.63 3.195 9.81
1 M0 89.80 8.79 9.00 4.79 3.09 3.048 9.08
1 M0 79.91 8.05 9.00 4.26 2.56 1.440 12.22

3.5 M2 57.02 8.67 8.00 3.42 1.72 1.251 9.27
0.5 M2 53.94 8.72 5.00 5.18 3.48 2.039 6.93

Adaptation to a depleted power budget in presence of spare slots: After one hour, BC ≈ 90%,
which permits the system to function for 8.81 h. However, power budget shows that due to external
conditions, battery recharge is possible after 9 h instead of the expected 8 h. PDPC reduces to 3.09 W
(Power_Budget_Check Flow). Since CDPC(3.195 W) ≥ PDPC, the Explorer reduces Fsys to 120 MHz
(Reduce_System_DPC Flow) and selects variant no. 1 for all the tasks to maintain their performance
at hspec. EDPC of this configuration, i.e., T5 − 1, T0 − 1, T2 − 1 and T4 − 1, as shown in Figure 12b,
is 3.048 W. Since EDPC ≤ PDPC, it is selected as the new system configuration. Thus, due to
availability of spare slots, the performance of all the tasks remains unaffected even when system
adapts to a reduced power budget. The system can now run for 9.08 h, ≈16 min more than it would
on the previous configuration and ≈5 min more than required by the budget.

Adaptation to a depleted power budget in absence of spare slots: After another hour, BC≈ 80%.
The system can function for 8.08 h. The new power budget estimates that since external conditions have
not improved, the system will need to run for 9 more hours before a recharge is possible. PDPC drops
to 2.56 W (Power_Budget_Check Flow). Since CDPC(3.048 W) ≥ PDPC, the Explorer reduces Fsys

to 60 MHz (Reduce_System_DPC Flow) and selects T5 − 2, which occupies 4 slots, to maintain the
performance of the critical task T5 at its hspec. Similarly, it chooses T0 − 2 to maintain the performance
of T0 at hspec = 8. Since there is no empty slot left for any other task, it reduces the CPP of T0 to 4
(Space_Adjustment Flow) and selects T0 − 3. Following the same process, it selects variants T2 − 3
and T4 − 2. The EDPC of T5 − 2, T0 − 3, T2 − 3 and T4 − 2, shown in Figure 12c, is 1.44 W. Since
EDPC ≤ PDPC, it is therefore selected as the new system configuration. In this case, the system can
function for 12.22 h, 4.14 h more than the previous configuration and 3.22 h more than that required by
the power budget. This happens because performance of lower priority tasks is reduced due to lack of
enough spare slots which substantially reduces system DPC.

Mitigating hardware fault in absence of spare slots: While the system is running, there is a
hardware fault in a slot where a component of T5 is executing. Since there are no spare slots available
for relocation, the Explorer attempts to reduce the CPP of the least priority task, T4 (Hardware_Fault
Flow). T4 is already at its lspec and so is the higher priority task T2. It therefore reduces the CPP of T0

to 2 and selects T0 − 4 which occupies only 1 slot. Thus, a free slot is created and the affected task
component of T5 is relocated to that spare slot as shown in Figure 12d. Thus, the system can recover
from a hardware fault and still maintain the performance of its critical task at hspec by adjusting the
performance and resource utilization of the lower priority tasks.

Adaptation to system mode change: For the next three hours, there are no changes in power
budget, resource constraints or mode. So the system continues to have the same configuration
(Flow 6) as shown in Figure 12d. After half an hour, there is an interrupt to change the mode to
M2 (Mode_Change Flow). Based on the new estimates, the system needs to be able to run for 8 h
with BC ≈ 57%, PDPC = 1.72 W. Candidate configurations at 240 and 120 MHz do not satisfy the
PDPC constraint. The Explorer sets Fsys to 60 MHz (Reduce_System_DPC Flow) and selects variant
no. 2 for T0 and T1 to maintain their maximum performance. Since there are no more spare slots
to accommodate T3 and it is not possible to reduce the CPP for T0 or T1, the Explorer removes task
T3 after checking its EC = 0 (Space_Adjustment Flow). The EDPC of T0 − 2, T1 − 2 is 1.251 W. It is

Computers 2018, 7, 52 27 of 34

selected as the new configuration for M2, as shown in Figure 12e. The system can run for 9.27 h, 1.27 h
more than that required by the power budget.

Figure 12. Different run-time structural adaptation scenarios.

Adaptation to increased power budget: After half an hour, BC ≈ 54% and the system can run
for 8.77 h. External conditions have improved and the battery recharge is now possible after 5 h.
The power budget thus goes up to 3.47 W (Delta = 1, Power_Budget_Check Flow). The Explorer
increases Fsys iteratively (Flow 6), until Fsys = 240 MHz. It selects T0 − 0, T1 − 0 and T3 − 0, as shown
in Figure 12f, which has an EDPC of 2.039 W. Since EDPC ≤ PDPC, Fsys is maximum, and all the tasks
are at their hspec, there is no need for further iterations. This combination becomes the new system
configuration. It lets the system run for 6.93 h, 1.93 h more than required.

These scenarios demonstrate that given any set of conditions, the Explorer can find a suitable
system configuration that satisfies the mode, performance, DPC and hardware resource constraints.
As a by-product of the run-time structural adaptation, the system life-time can also increase; the extent
of which depends on the relation between the power budget and DPC of the selected configuration.

8. Experimental Results

Storage Requirements: The Explorer has been implemented as a bare-metal C code on the ARM
Cortex-A9 processor of the Zynq XC7Z020 device, operating at 666 MHz. The implementation
covers the example discussed in Section 7. Since each of the six tasks in the example has ten
ASP circuit variants, the Variant-LUT stores the operating frequency, performance, number of
slots, Logic slices, BRAM slices and DSP slices used, for only 6 × 10 = 60 variants, irrespective
of the modes. If a design space of system configurations was used, characteristics of 3 × 106

configurations would need to be stored in the Variant-LUT. The LUT size with the proposed method
(8 bytes/variant × 60 variants = 480 bytes) is only 0.002% of the size when system configurations
(8 bytes/variant × 3 ×106 variants ≈23 MB) are used. To reduce exploration time further, variants of
each task are stored in ascending order of frequency. Thus, every time Fsys is reduced, the Explorer
only needs to scan variants from the top of the LUT up to Fsys and can avoid the remaining ones at
higher frequencies.

Execution Time: Execution time of the code has been recorded for different scenarios of M0 since
it has the maximum number of tasks among the other modes in the example.

Computers 2018, 7, 52 28 of 34

Case 1—Initial state: When the system begins to function, it has a maximum power budget and a
default mode of M0. In this case, the Explorer will be able to find a configuration at Fsys = 240 MHz
itself. It takes ≈23 µs to select the configuration shown in Figure 12a.

Case 2—Worst-case depleted power budget: For adaptation to a worst-case power budget drop,
the system configuration consisting of tasks operating at the highest Fsys at their hspec would need
to change to the one having only the critical tasks with their EC = 1 operating at the lowest Fsys at
their lspec. So, in M0, if the initial configuration is the one in Figure 12a, it would change to the one
where only T5 is executing at 30 MHz occupying all the 8 slots. To reach this stage, the Explorer will
need to evaluate configurations at 120 and 60 MHz and finally settle at the configuration at 30 MHz.
The Explorer takes ≈33.5 µs to reach this conclusion.

Case 3—Worst-case increased power budget: The longest decision-making process in the case of
an increased power budget needs to be evaluated for this case. In M0, suppose that the system
configuration consists of only T5 operating at 30 MHz. An increase in the power budget causes the
Explorer to evaluate configurations at 60, 120 and 240 MHz. If EDPC > PDPC for a potential solution
at 240 MHz, the Explorer will again reduce Fsys to 120 MHz and settle at a configuration at 120 MHz.
The Execution time for this case is ≈40 µs. It must be noted in the case of a maximum increase in
power budget, the Explorer would settle at 240 MHz itself. It will not return to 120 MHz again for a
solution. Hence the execution time would be less than 40 µs.

Case 4—Worst-case mode change: Suppose while the system is functioning in a mode other than M0,
it experiences the worst power budget drop, as described in Case 2. In this situation, there is also an
interrupt to change the to mode M0. In this case, the Explorer will need to evaluate configurations at
240, 120, 60 MHz and finally settle at the one where only the critical task T5 is executing at 30 MHz
occupying all the 8 slots. Time recorded for this is ≈53 µs. This is also expected because it is a
combination of Case 1, where the Explorer finds a configuration at 240 MHz, and Case 3, where the
Explorer settles onto the configuration at 30 MHz from the one at 240 MHz.

Case 5—Worst-case hardware fault: Consider the configuration in Figure 12c. Assume for this
example that all the tasks are at their lspecs. If a hardware fault occurs now, the Explorer will need to
check the CPP of every task right from priority P3 to P0 and then finally decide that T4 (P3) needs to be
removed. The time recorded for this is only ≈7 µs.

From all the cases considered, the maximum execution time observed is 53 µs. A partial bit-stream
of 395 KB takes a reconfiguration time of 1 ms over the 32-bit ICAP port at a frequency of 100 MHz.
The maximum execution time of the decision-making adaptation method is only 5% of the time taken
to reconfigure a slot. The method thus proves to be suitable for use at run-time.

9. Conclusions

This paper proposes a method for mobile and autonomous, multi-task multi-modal FPGA-based
embedded systems to be able to adapt structurally to unpredictable mode-change events and
environmental conditions, and mitigate hardware faults. The decision-making capabilities of the
method allow run-time selection of a suitable system configuration for the existing system mode such
that critical tasks are sustained at their maximum performance, individual task performances are
within the specified range, system’s DPC is within the permitted DPC, and the configuration fits in the
available resources. The paper also presents a generic procedure to derive a complete DPCEM of an
FPGA in terms of all reconfigurable resources; a simple estimation tool used by the adaptation method
to evaluate DPC of candidate configurations at run-time. The observed worst-case decision-making
time of the method for the example considered in the paper is a very small fraction of the time taken
to reconfigure a partial bit-stream on an FPGA slot. The small execution-time overhead validates the
method to be suitable at run-time. Future research efforts will be directed towards finding a run-time
optimization method to achieve the aforementioned adaption for very large systems where LUT-based
search will not be able to satisfy the permitted adaptation time frames.

Computers 2018, 7, 52 29 of 34

Author Contributions: Conceptualization, D.S. and L.K. and V.K.; Methodology, D.S. and L.K. and V.K.; Data
Curation, D.S.; Software, D.S.; Validation, D.S.; Project Administration, L.K.; Supervision, L.K.; Funding
Acquisition, L.K., Resources, L.K.; Writing—Original Draft, D.S.; Writing—Review and Editing, L.K. and V.K.

Funding: This research has been funded by external and internal sources: (a) The instrumentation and CAD
software has been funded & provided by Canadian Microsystems Corporation (CMC); (b) Research and
implementation of the MACROS framework (Section 3), the SoPC base for the presented research, has been
funded by Ontario Centres of Excellence (OCE) and industrial partners; (c) The hardware platforms based on
Xilinx Zynq-7020 FPGA and Kintex-7 FPGA have been purchased by internal (lab) funds.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 is the Variant-LUT for the system example discussed in Section 4.1. It contains the
characteristics of the ten variants of each of the six tasks T0 to T5.

Table A1. Example Variant-LUT for six tasks.

Variant No. No. of Slots Fsys (MHz) Perfor-Mance Logic Slices BRAM
Slices

DSP
Slices

T0 − 0 1 240 8 3093 43 30
T0 − 1 2 120 8 6062 86 60
T0 − 2 1 120 4 3093 43 30
T0 − 3 4 60 8 11,877 172 120
T0 − 4 2 60 4 6062 86 60
T0 − 5 1 60 2 3093 43 30
T0 − 6 8 30 8 23,259 344 240
T0 − 7 4 30 4 11,877 172 120
T0 − 8 2 30 2 6062 86 60
T0 − 9 1 30 1 3093 43 30

T1 − 0 1 240 8 2061 22 82
T1 − 1 2 120 8 4040 44 164
T1 − 2 1 120 4 2061 22 82
T1 − 3 4 60 8 7914 88 328
T1 − 4 2 60 4 4040 44 164
T1 − 5 1 60 2 2061 22 82
T1 − 6 8 30 8 15,499 176 656
T1 − 7 4 30 4 7914 88 328
T1 − 8 2 30 2 4040 44 164
T1 − 9 1 30 1 2061 22 82

T2 − 0 1 240 8 5003 27 24
T2 − 1 2 120 8 9806 54 48
T2 − 2 1 120 4 5003 27 24
T2 − 3 4 60 8 19,212 108 96
T2 − 4 2 60 4 9806 54 48
T2 − 5 1 60 2 5003 27 24
T2 − 6 8 30 8 37,623 216 192
T2 − 7 4 30 4 19,212 108 96
T2 − 8 2 30 2 9806 54 48
T2 − 9 1 30 1 5003 27 24

T3 − 0 1 240 8 4009 16 46
T3 − 1 2 120 8 7858 32 92
T3 − 2 1 120 4 4009 16 46
T3 − 3 4 60 8 15,395 64 184
T3 − 4 2 60 4 7858 32 92
T3 − 5 1 60 2 4009 16 46
T3 − 6 8 30 8 30,148 128 368
T3 − 7 4 30 4 15,395 64 184

Computers 2018, 7, 52 30 of 34

Table A1. Cont.

Variant No. No. of Slots Fsys (MHz) Perfor-Mance Logic Slices BRAM
Slices

DSP
Slices

T3 − 8 2 30 2 7858 32 92
T3 − 9 1 30 1 4009 16 46

T4 − 0 1 240 8 5088 39 51
T4 − 1 2 120 8 9972 78 102
T4 − 2 1 120 4 5088 39 51
T4 − 3 4 60 8 19,538 156 204
T4 − 4 2 60 4 9972 78 102
T4 − 5 1 60 2 5088 39 51
T4 − 6 8 30 8 38,262 312 408
T4 − 7 4 30 4 19,538 156 204
T4 − 8 2 30 2 9972 78 102
T4 − 9 1 30 1 5088 39 51

T5 − 0 1 240 8 2567 33 73
T5 − 1 2 120 8 5031 66 146
T5 − 2 1 120 4 2567 33 73
T5 − 3 4 60 8 9857 132 292
T5 − 4 2 60 4 5031 66 146
T5 − 5 1 60 2 2567 33 73
T5 − 6 8 30 8 19,304 264 584
T5 − 7 4 30 4 9857 132 292
T5 − 8 2 30 2 5031 66 146
T5 − 9 1 30 1 2567 33 73

References

1. Kirischian, L. Reconfigurable Computing Systems Engineering: Virtualization of Computing Architecture;
CRC Press: Boca Raton, FL, USA, 2016.

2. Architecture Brief—What Is an SOC FPGA? Available online: https://www.altera.com/en_US/pdfs/
literature/ab/ab1_soc_fpga.pdf (accessed on 1 July 2018).

3. Xilinx Explains Thinking Behind Zynq. Available online: https://www.electronicsweekly.com/news/
products/fpga-news/xilinx-explains-thinking-behind-zynq-2011-11/ (accessed on 1 July 2018).

4. MCUs or SoC FPGAs? Which Is the Best Solution for Your Application? Available online:
https://www.digikey.ca/en/articles/techzone/2015/nov/mcus-or-soc-fpgas-which-is-the-best-
solution-for-your-application (accessed on 1 July 2018).

5. Dumitriu, V.; Kirischian, L.; Kirischian, V. Mitigation of variations in environmental conditions by SoPC
architecture adaptation. In Proceedings of the 2015 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), Montreal, QC, Canada, 15–18 June 2015; pp. 1–8.

6. Dumitriu, V.; Kirischian, L. SoPC Self-Integration Mechanism for Seamless Architecture Adaptation to
Stream Workload Variations. IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 799–802. [CrossRef]

7. Dumitriu, V.; Kirischian, L.; Kirischian, V. Run-Time Recovery Mechanism for Transient and Permanent
Hardware Faults Based on Distributed, Self-Organized Dynamic Partially Reconfigurable Systems.
IEEE Trans. Comput. 2016, 65, 2835–2847. [CrossRef]

8. Dumitriu, V.; Kirischian, L.; Kirischian, V. Decentralized run-time recovery mechanism for transient and
permanent hardware faults for space-borne FPGA-based computing systems. In Proceedings of the 2014
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–17 July 2014; pp. 47–54.
[CrossRef]

9. Wigley, G.B.; Kearney, D.A. Research Issues in Operating Systems for Reconfigurable Computing.
In Proceedings of the International Conference on Engineering of Reconfigurable System and
Algorithms(ERSA), Las Vegas, NV, USA, 24–27 June 2002; pp. 10–16.

10. Eckert, M.; Meyer, D.; Haase, J.; Klauer, B. Operating System Concepts for Reconfigurable Computing. Int. J.
Reconfig. Comput. 2016, 2016, 2478907. [CrossRef]

https://www.altera.com/en_US/pdfs/literature/ab/ab1_soc_fpga.pdf
https://www.altera.com/en_US/pdfs/literature/ab/ab1_soc_fpga.pdf
https://www.electronicsweekly.com/news/products/fpga-news/xilinx-explains-thinking-behind-zynq-2011-11/
https://www.electronicsweekly.com/news/products/fpga-news/xilinx-explains-thinking-behind-zynq-2011-11/
https://www.digikey.ca/en/articles/techzone/2015/nov/mcus-or-soc-fpgas-which-is-the-best-solution-for-your-application
https://www.digikey.ca/en/articles/techzone/2015/nov/mcus-or-soc-fpgas-which-is-the-best-solution-for-your-application
http://dx.doi.org/10.1109/TVLSI.2015.2417752
http://dx.doi.org/10.1109/TC.2015.2506558
http://dx.doi.org/10.1109/AHS.2014.6880157
http://dx.doi.org/10.1155/2016/2478907

Computers 2018, 7, 52 31 of 34

11. Santambrogio, M.D.; Rana, V.; Sciuto, D. Operating system support for online partial dynamic reconfiguration
management. In Proceedings of the 2008 International Conference on Field Programmable Logic and
Applications, Heidelberg, Germany, 8–10 September 2008; pp. 455–458.

12. Jozwik, K.; Tomiyama, H.; Edahiro, M.; Honda, S.; Takada, H. Rainbow: An OS Extension for Hardware
Multitasking on Dynamically Partially Reconfigurable FPGAs. In Proceedings of the 2011 International
Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November–2 December 2011;
pp. 416–421. [CrossRef]

13. Steiger, C.; Walder, H.; Platzner, M. Operating systems for reconfigurable embedded platforms: Online
scheduling of real-time tasks. IEEE Trans. Comput. 2004, 53, 1393–1407. [CrossRef]

14. Clemente, J.A.; Beretta, I.; Rana, V.; Atienza, D.; Sciuto, D. A Mapping-Scheduling Algorithm for Hardware
Acceleration on Reconfigurable Platforms. ACM Trans. Reconfig. Technol. Syst. 2014, 7, 9:1–9:27. [CrossRef]

15. Iturbe, X.; Benkrid, K.; Erdogan, A.T.; Arslan, T.; Azkarate, M.; Martinez, I.; Perez, A. R3TOS: A reliable
reconfigurable real-time operating system. In Proceedings of the 2010 NASA/ESA Conference on Adaptive
Hardware and Systems, Anaheim, CA, USA, 15–18 June 2010; pp. 99–104.

16. Iturbe, X.; Benkrid, K.; Hong, C.; Ebrahim, A.; Torrego, R.; Martinez, I.; Arslan, T.; Perez, J. R3TOS: A Novel
Reliable Reconfigurable Real-Time Operating System for Highly Adaptive, Efficient, and Dependable
Computing on FPGAs. IEEE Trans. Comput. 2013, 62, 1542–1556. [CrossRef]

17. Iturbe, X.; Benkrid, K.; Hong, C.; Ebrahim, A.; Torrego, R.; Arslan, T. Microkernel Architecture and Hardware
Abstraction Layer of a Reliable Reconfigurable Real-Time Operating System (R3TOS). ACM Trans. Reconfig.
Technol. Syst. 2015, 8, 5:1–5:35. [CrossRef]

18. So, H.K.H.; Brodersen, R. A Unified Hardware/Software Runtime Environment for FPGA-based
Reconfigurable Computers Using BORPH. ACM Trans. Embed. Comput. Syst. 2008, 7, 14:1–14:28. [CrossRef]

19. Göhringer, D.; Hübner, M.; Zeutebouo, E.N.; Becker, J. CAP-OS: Operating system for runtime scheduling,
task mapping and resource management on reconfigurable multiprocessor architectures. In Proceedings
of the 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–8.

20. Agne, A.; Happe, M.; Keller, A.; Lübbers, E.; Plattner, B.; Platzner, M.; Plessl, C. ReconOS: An Operating
System Approach for Reconfigurable Computing. IEEE Micro 2014, 34, 60–71. [CrossRef]

21. Pellizzoni, R.; Caccamo, M. Real-Time Management of Hardware and Software Tasks for FPGA-based
Embedded Systems. IEEE Trans. Comput. 2007, 56, 1666–1680. [CrossRef]

22. Hsiung, P.A.; Huang, C.H.; Shen, J.S.; Chiang, C.C. Scheduling and Placement of Hardware/Software
Real-Time Relocatable Tasks in Dynamically Partially Reconfigurable Systems. ACM Trans. Reconfig.
Technol. Syst. 2010, 4, 9:1–9:32. [CrossRef]

23. Tabkhi, H.; Schirner, G. Application-Guided Power Gating Reducing Register File Static Power. IEEE Trans.
Very Large Scale Integr. Syst. 2014, 22, 2513–2526. [CrossRef]

24. Hosseinabady, M.; Nunez-Yanez, J.L. Run-time power gating in hybrid ARM-FPGA devices. In Proceedings
of the 2014 24th International Conference on Field Programmable Logic and Applications (FPL), Munich,
Germany, 2–4 September 2014; pp. 1–6.

25. You, D.; Chung, K.S. Quality of Service-Aware Dynamic Voltage and Frequency Scaling for Embedded GPUs.
IEEE Comput. Arch. Lett. 2015, 14, 66–69. [CrossRef]

26. Khan, M.U.K.; Shafique, M.; Henkel, J. Power-Efficient Workload Balancing for Video Applications.
IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 2089–2102. [CrossRef]

27. Kornaros, G.; Pnevmatikatos, D. Dynamic Power and Thermal Management of NoC-Based Heterogeneous
MPSoCs. ACM Trans. Reconfig. Technol. Syst. 2014, 7, 1:1–1:26. [CrossRef]

28. Carlo, S.D.; Gambardella, G.; Prinetto, P.; Rolfo, D.; Trotta, P. SATTA: A Self-Adaptive Temperature-Based
TDF Awareness Methodology for Dynamically Reconfigurable FPGAs. ACM Trans. Reconfig. Technol. Syst.
2015, 8, 1:1–1:22. [CrossRef]

29. Lu, Y.H.; Benini, L.; Micheli, G.D. Low-power task scheduling for multiple devices. In Proceedings of the
Eighth International Workshop on Hardware/Software Codesign, CODES 2000 (IEEE Cat. No.00TH8518),
San Diego, CA, USA, 5 May 2000; pp. 39–43.

30. Yang, P.; Marchal, P.; Wong, C.; Himpe, S.; Catthoor, F.; David, P.; Vounckx, J.; Lauwereins, R. Managing
dynamic concurrent tasks in embedded real-time multimedia systems. In Proceedings of the 2002 15th
International Symposium on System Synthesis, Kyoto, Japan, 2–4 October 2002; pp. 112–119.

http://dx.doi.org/10.1109/ReConFig.2011.73
http://dx.doi.org/10.1109/TC.2004.99
http://dx.doi.org/10.1145/2611562
http://dx.doi.org/10.1109/TC.2013.79
http://dx.doi.org/10.1145/2629639
http://dx.doi.org/10.1145/1331331.1331338
http://dx.doi.org/10.1109/MM.2013.110
http://dx.doi.org/10.1109/TC.2007.70763
http://dx.doi.org/10.1145/1857927.1857936
http://dx.doi.org/10.1109/TVLSI.2013.2293702
http://dx.doi.org/10.1109/LCA.2014.2319079
http://dx.doi.org/10.1109/TVLSI.2015.2504415
http://dx.doi.org/10.1145/2567658
http://dx.doi.org/10.1145/2659001

Computers 2018, 7, 52 32 of 34

31. Qiu, M.; Chen, Z.; Yang, L.T.; Qin, X.; Wang, B. Towards Power-Efficient Smartphones by Energy-Aware
Dynamic Task Scheduling. In Proceedings of the 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded
Software and Systems, Liverpool, UK, 25–27 June 2012; pp. 1466–1472.

32. Ganeshpure, K.; Kundu, S. Performance-driven Dynamic Thermal Management of MPSoC Based on Task
Rescheduling. ACM Trans. Des. Autom. Electron. Syst. 2014, 19, 11:1–11:33. [CrossRef]

33. Ost, L.; Mandelli, M.; Almeida, G.M.; Moller, L.; Indrusiak, L.S.; Sassatelli, G.; Benoit, P.; Glesner, M.;
Robert, M.; Moraes, F. Power-aware Dynamic Mapping Heuristics for NoC-based MPSoCs Using a Unified
Model-based Approach. ACM Trans. Embed. Comput. Syst. 2013, 12, 75:1–75:22. [CrossRef]

34. Rodríguez, A.; Valverde, J.; Castañares, C.; Portilla, J.; de la Torre, E.; Riesgo, T. Execution modeling in
self-aware FPGA-based architectures for efficient resource management. In Proceedings of the 2015 10th
International Symposium on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), Bremen,
Germany, 29 June–1 July 2015; pp. 1–8.

35. Lin, K.W.; Chen, Y.S. Online Thermal-aware Task Placement in Three-dimensional Field-programmable Gate
Arrays. In Proceedings of the 2015 RACS Conference on Research in Adaptive and Convergent Systems,
Prague, Czech Republic, 9–12 October 2015; ACM: New York, NY, USA, 2015; pp. 412–417.

36. Iturbe, X.; Benkrid, K.; Hong, C.; Ebrahim, A.; Arslan, T.; Martinez, I. Runtime Scheduling, Allocation,
and Execution of Real-Time Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence. Int. J.
Reconfig. Comput. 2013, 2013. [CrossRef]

37. Biedermann, A.; Huss, S.A.; Israr, A. Safe Dynamic Reshaping of Reconfigurable MPSoC Embedded Systems
for Self-Healing and Self-Adaption Purposes. ACM Trans. Reconfig. Technol. Syst. 2015, 8, 26:1–26:22.
[CrossRef]

38. Xilinx. XAPP1088: Correcting Single Event Upsets in Virtex-4 FPGA Configuration Memory, v1.0. 2009.
Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.426&rep=rep1&type=pdf
(accessed on 1 July 2018).

39. Bolchini, C.; Miele, A.; Sandionigi, C. A Novel Design Methodology for Implementing Reliability-Aware
Systems on SRAM-Based FPGAs. IEEE Trans. Comput. 2011, 60, 1744–1758. [CrossRef]

40. Salvador, R.; Otero, A.; Mora, J.; de la Torre, E.; Sekanina, L.; Riesgo, T. Fault Tolerance Analysis and
Self-Healing Strategy of Autonomous, Evolvable Hardware Systems. In Proceedings of the 2011 International
Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November–2 December 2011;
pp. 164–169. [CrossRef]

41. Abramovici, M.; Breuer, M.A.; Friedman, A.D. Index. In Digital Systems Testing and Testable Design; Computer
Science Press: New York, NY, USA, 1990; pp. 647–652.

42. Zhang, H.; Bauer, L.; Kochte, M.A.; Schneider, E.; Braun, C.; Imhof, M.E.; Wunderlich, H.J.; Henkel, J. Module
diversification: Fault tolerance and aging mitigation for runtime reconfigurable architectures. In Proceedings
of the 2013 IEEE International Test Conference (ITC), Anaheim, CA, USA, 6–13 September 2013; pp. 1–10.
[CrossRef]

43. Vallero, A.; Carelli, A.; Carlo, S.D. Trading-off reliability and performance in FPGA-based reconfigurable
heterogeneous systems. In Proceedings of the 2018 13th International Conference on Design Technology of
Integrated Systems in Nanoscale Era (DTIS), Taormina, Italy, 9–12 April 2018; pp. 1–6. [CrossRef]

44. Carlo, S.D.; Gambardella, G.; Prinetto, P.; Rolfo, D.; Trotta, P.; Vallero, A. A novel methodology to increase
fault tolerance in autonomous FPGA-based systems. In Proceedings of the 2014 IEEE 20th International
On-Line Testing Symposium (IOLTS), Girona, Spain, 7–9 July 2014; pp. 87–92. [CrossRef]

45. Carlo, S.D.; Prinetto, P.; Scionti, A. A FPGA-Based Reconfigurable Software Architecture for Highly
Dependable Systems. In Proceedings of the 2009 Asian Test Symposium, Taichung, Taiwan,
23–26 November 2009; pp. 125–130. [CrossRef]

46. Carlo, S.D.; Miele, A.; Prinetto, P.; Trapanese, A. Microprocessor fault-tolerance via on-the-fly partial
reconfiguration. In Proceedings of the 2010 15th IEEE European Test Symposium, Praha, Czech,
24–28 May 2010; pp. 201–206. [CrossRef]

47. De Sensi, D.; Torquati, M.; Danelutto, M. A Reconfiguration Algorithm for Power-Aware Parallel
Applications. ACM Trans. Archit. Code Optim. 2016, 13, 43:1–43:25. [CrossRef]

http://dx.doi.org/10.1145/2566661
http://dx.doi.org/10.1145/2442116.2442125
http://dx.doi.org/10.1155/2013/905057
http://dx.doi.org/10.1145/2700416
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.426&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TC.2010.281
http://dx.doi.org/10.1109/ReConFig.2011.37
http://dx.doi.org/10.1109/TEST.2013.6651926
http://dx.doi.org/10.1109/DTIS.2018.8368557
http://dx.doi.org/10.1109/IOLTS.2014.6873677
http://dx.doi.org/10.1109/ATS.2009.53
http://dx.doi.org/10.1109/ETSYM.2010.5512759
http://dx.doi.org/10.1145/3004054

Computers 2018, 7, 52 33 of 34

48. Sousa, E.; Hannig, F.; Teich, J.; Chen, Q.; Schlichtmann, U. Runtime Adaptation of Application Execution
Under Thermal and Power Constraints in Massively Parallel Processor Arrays. In Proceedings of the SCOPES
’15 18th International Workshop on Software and Compilers for Embedded Systems, St. Goar, Germany,
1–3 June 2015; ACM: New York, NY, USA, 2015; pp. 121–124. [CrossRef]

49. Loukil, K.; Amor, N.B.; Abid, M. Self adaptive reconfigurable system based on middleware cross layer
adaptation model. In Proceedings of the 2009 6th International Multi-Conference on Systems, Signals and
Devices, Djerba, Tunisia, 23–26 March 2009; pp. 1–9. [CrossRef]

50. Wassi, G.; Benkhelifa, M.E.A.; Lawday, G.; Verdier, F.; Garcia, S. Multi-shape tasks scheduling for online
multitasking on FPGAs. In Proceedings of the 2014 9th International Symposium on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 26–28 May 2014; pp. 1–7.
[CrossRef]

51. Ullmann, M.; Jin, W.; Becker, J. Hardware Enhanced Function Allocation Management in Reconfigurable
Systems. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium,
Denver, CO, USA, 4–8 April 2005; p. 156a. [CrossRef]

52. Gueye, S.M.K.; Rutten, E.; Diguet, J.P. Autonomic management of missions and reconfigurations in
FPGA-based embedded system. In Proceedings of the 2017 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), Pasadena, CA, USA, 24–27 July 2017; pp. 48–55. [CrossRef]

53. Vipin, K.; Fahmy, S.A. Mapping adaptive hardware systems with partial reconfiguration using CoPR for
Zynq. In Proceedings of the 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
Montreal, QC, Canada, 15–18 June 2015; pp. 1–8. [CrossRef]

54. Sharma, D.; Kirischian, L.; Kirischian, V. Run-time adaptation method for mitigation of hardware faults
and power budget variations in space-borne FPGA-based systems. In Proceedings of the 2017 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), Pasadena, CA, USA, 24–27 July 2017; pp. 32–39.
[CrossRef]

55. Rihani, M.A.; Nouvel, F.; Prévotet, J.C.; Mroue, M.; Lorandel, J.; Mohanna, Y. Dynamic and partial
reconfiguration power consumption runtime measurements analysis for ZYNQ SoC devices. In Proceedings
of the 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland,
20–23 September 2016; pp. 592–596. [CrossRef]

56. Xilinx. Power vs. Performance: The 90 nm Inflection Point, v1.2. 2006. Available online: https://www.xilinx.
com/support/documentation/white_papers/wp223.pdf (accessed on 1 July 2018).

57. Shang, L.; Kaviani, A.S.; Bathala, K. Dynamic Power Consumption in Virtex™-II FPGA Family.
In Proceedings of the FPGA ’02 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 24–26 February 2002; ACM: New York, NY, USA, 2002; pp. 157–164.
[CrossRef]

58. Xilinx. ZedBoard Hardware Users Guide, v2.2. 2014. Available online: http://zedboard.org/sites/default/
files/documentations/ZedBoard_HW_UG_v2_2.pdf (accessed on 1 July 2018).

59. Xilinx. Zynq-7000 All Programmable SoC Overview, v1.10. 2016. Available online: https://cdn.hackaday.
io/files/19354828041536/ds190-Zynq-7000-Overview.pdf (accessed on 1 July 2018).

60. Xilinx. KC705 Evaluation Board for the Kintex-7 FPGA, v1.7. 2016. Available online: https://www.
xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf (accessed on
1 July 2018).

61. Xilinx. 7 Series FPGAs Data Sheet: Overview, v2.5. 2017. Available online: https://www.xilinx.com/
support/documentation/data_sheets/ds180_7Series_Overview.pdf (accessed on 1 July 2018)

62. Xilinx. Vivado Design Suite User Guide—Partial Reconfiguration, v206.1. 2016. Available
online: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-
partial-reconfiguration.pdf (accessed on 1 July 2018).

63. Intel. Intel Quartus Prime Pro Edition Handbook Volume 1. 2017. Available online: https://people.ece.
cornell.edu/land/courses/ece5760/DE1_SOC/qts-qpp-handbook.pdf (accessed on 1 July 2018).

64. Meintanis, D.; Papaefstathiou, I. Power Consumption Estimations vs Measurements for FPGA-Based Security
Cores. In Proceedings of the 2008 International Conference on Reconfigurable Computing and FPGAs,
Cancun, Mexico, 3–5 December 2008; pp. 433–437. [CrossRef]

http://dx.doi.org/10.1145/2764967.2771933
http://dx.doi.org/10.1109/SSD.2009.4956824
http://dx.doi.org/10.1109/ReCoSoC.2014.6861366
http://dx.doi.org/10.1109/IPDPS.2005.240
http://dx.doi.org/10.1109/AHS.2017.8046358
http://dx.doi.org/10.1109/AHS.2015.7231169
http://dx.doi.org/10.1109/AHS.2017.8046356
http://dx.doi.org/10.1109/ISWCS.2016.7600973
https://www.xilinx.com/support/documentation/white_papers/wp223.pdf
https://www.xilinx.com/support/documentation/white_papers/wp223.pdf
http://dx.doi.org/10.1145/503048.503072
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf
https://cdn.hackaday.io/files/19354828041536/ds190-Zynq-7000-Overview.pdf
https://cdn.hackaday.io/files/19354828041536/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/qts-qpp-handbook.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/qts-qpp-handbook.pdf
http://dx.doi.org/10.1109/ReConFig.2008.45

Computers 2018, 7, 52 34 of 34

65. Becker, J.; Huebner, M.; Ullmann, M. Power estimation and power measurement of Xilinx Virtex FPGAs:
Trade-offs and limitations. In Proceedings of the 16th Symposium on Integrated Circuits and Systems Design,
SBCCI 2003, Sao Paulo, Brazil, 8–11 September 2003; pp. 283–288. [CrossRef]

66. Oliver, J.P.; Acle, J.P.; Boemo, E. Power estimations vs. power measurements in Spartan-6 devices.
In Proceedings of the 2014 IX Southern Conference on Programmable Logic (SPL), Buenos Aires, Argentina,
5–7 November 2014; pp. 1–5. [CrossRef]

67. Sharma, D.; Dimitriu, V.; Kirischian, L. Architecture Reconfiguration as a Mechanism for Sustainable
Performance of Embedded Systems in case of Variations in Available Power. In Applied Reconfigurable
Computing(ARC 2017); Springer: Cham, Germany, 2017. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SBCCI.2003.1232842
http://dx.doi.org/10.1109/SPL.2014.7002214
http://dx.doi.org/10.1007/978-3-319-56258-2_16
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	MACROS Framework
	Method for Run-Time Structural Adaptation to Varying System Modes, Power Budget, and Occurrence of Hardware Faults
	System Description
	Decision-Making Run-Time Structural Adaptation Method
	Analyzing Cost of Run-Time Structural Adaptation

	Method for Derivation of DPC Estimation Model
	Experimental Setup for DPCEM Derivation
	Setup for DPCEM Derivation for Real Applications
	Power Consumption Measurement Methods
	DPCEM Derivation Process

	DPCEM Usage during Run-Time Structural Adaptation
	Example of Run-Time Adaptation in Different Scenarios
	Experimental Results
	Conclusions
	
	References

