
computers

Article

New Residue Number System Scaler for the
Three-Moduli Set {2n+1− 1, 2n, 2n− 1}
Ahmad Hiasat ID

Department of Computer Engineering, School of Engineering, Princess Sumaya University for Technology,
P.O. Box 1438, Al-Jubeiha, Amman 11941, Jordan; a.hiasat@psut.edu.jo

Received: 13 August 2018; Accepted: 30 August 2018; Published: 3 September 2018
����������
�������

Abstract: This work proposes the first scaler designed specifically for the three-moduli set M1 =

{2n+1 − 1, 2n, 2n − 1}. Hence, there is no other functionally similar scaler to compare the proposed
scaler with. However, when compared with the latest published scalers for a different moduli set,
M2 = {2n + 1, 2n, 2n − 1}, the proposed scaler has a better area and power performance, while it
requires a longer time delay. As demonstrated in earlier publications, replacing the (2n + 1) channel
in the M2 moduli set by the (2n+1 − 1) channel, to form the M1 moduli set, considerably improves
the overall time performance of residue-based multiply–accumulate arithmetic units.

Keywords: residue number system; scaling; computer arithmetic; VLSI design

1. Introduction

The residue number system (RNS) is a non-weighted number system representation. Numbers
are represented using a set of relatively prime positive integers, referred to as moduli [1,2]. Specific
arithmetic operations, such as addition, subtraction, and multiplication, are carried with respect
to each modulus independently from other moduli. This feature allows parallel processing on all
channels without having a carry propagating across different channels. Therefore, the RNS is used
in applications that depend on the aforementioned operations, such as digital signal processing and
cryptography [1–5]. However, division is considered a difficult RNS operation [6].

Scaling is an important operation needed whenever the results of computations carried out
on each data set exceed specific allowable ranges within a RNS-based processor. The work that
has been published so far regarding scaling the RNS deals either with moduli sets of general form
or with the traditional set. The main scalers that deal specifically with the traditional moduli set
M2 = {2n + 1, 2n, 2n − 1} are presented in [7–13]. Those that are most efficient in terms of different
metrics are presented in [12,13].

Although it provides a dynamic range similar to that of the traditional set, the moduli set
M1 = {2n+1 − 1, 2n, 2n − 1} has no (2n + 1) modulus. Compared to modulo (2n+1 − 1) multipliers,
modulo (2n + 1) multipliers require additional significant area, time delay, and power [14–17].
Expressed in terms of the gate-equivalent count and delay (which are technology-independent
indicators), the modulo (2n + 1) multiplier has 15–35% more gate equivalents and 10–15% more
delay than the modulo (2n+1 − 1) multiplier [14].

These conclusions have also been supported experimentally in terms of integrated circuit area,
time delay, and power consumption for values of n extending from 32 to 64 bits [17]. Additionally, in a
very recent publication [18], circuit layout experiments on the moduli set {2n + 1, 2n, 2n − 1} over the
range of (3 ≤ n ≤ 22) showed that the modulus (2n + 1) increases the area and latency of a RNS-based
arithmetic structure when compared with modulo 2n and (2n − 1) structures. A circuit layout of a
Multiplier and an Accumulator (a single MAC structure) proved that the (2n + 1) channel requires on
average an 18.9–35.6% increase in area and a 21.9–45.2% increase in delay as compared with the 2n

Computers 2018, 7, 46; doi:10.3390/computers7030046 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-4785-3698
http://www.mdpi.com/2073-431X/7/3/46?type=check_update&version=1
http://dx.doi.org/10.3390/computers7030046
http://www.mdpi.com/journal/computers

Computers 2018, 7, 46 2 of 7

and (2n − 1) MACs [18]. Therefore, the (2n + 1) channel leads to a serious latency imbalance across a
RNS-based processor that uses the popular three-moduli set. This imbalance increases progressively
when designing a multi-MAC RNS-based processor [18]. The delay avoided by excluding modulo
(2n + 1) arithmetic components such as adders and multipliers and replacing them with modulo
(2n+1− 1) components is considerably large, as demonstrated in [14,17,18]. Hence, using a (2n + 1)-free
moduli set such as M1 substantially improves the overall time performance of a RNS-based processor.
To the best of the author’s knowledge, the scaler presented here is the first proposed in the literature to
deal with M1.

2. The Proposed Scaler

2.1. Decoding Analysis

For a three-moduli set, the Chinese remainder theorem (CRT), which is used to convert the RNS
value to its weighted equivalent, is defined by the following [1]:

X =

∣∣∣∣∣ 3

∑
i=1

m̂i

∣∣∣m̂−1
i

∣∣∣
mi

Ri

∣∣∣∣∣
M

, (1)

where

• m1 = 2n+1 − 1, m2 = 2n, and m3 = 2n − 1;
• m̂1 = m2m3 = 2n(2n − 1), m̂2 = m1m3 = (2n+1 − 1)(2n − 1), and m̂3 = m1m2 = 2n(2n+1 − 1);

•
∣∣∣m̂−1

1

∣∣∣
m1

= |−4|m1
,
∣∣∣m̂−1

2

∣∣∣
m2

= 1, and
∣∣∣m̂−1

3

∣∣∣
m3

= 1;

• M is the dynamic range given by M = m1m2m3;
• X is an integer such that X ∈ [0, M), with the binary value of X represented using (3n + 1) bits;
• the RNS representation of X is X = (R1, R2, R3), where i = 1, 2, and 3, Ri = |X|mi

(the least
non-negative remainder when dividing X by mi).

Substituting the above values into Equation (1) leads to

X =
∣∣(−4)2n(2n − 1)R1 + (2n+1 − 1)(2n − 1)R2 + 2n(2n+1 − 1)R3

∣∣
M

. (2)

Using the notation b.c to refer to the floor value of (.), X can be expressed as in [1]: X =⌊
X
2n

⌋
2n + |X|2n . Because X is represented in (3n + 1) binary bits, the value |X|2n represents the

least-significant n bits of X. Moreover, the value
⌊

X
2n

⌋
, which represents the most-significant (2n + 1)

bits of X, is the scaled value of X, where the scaling factor is 2n. The floor value of X
2n is considered

because the RNS represents only integer values [1].
The corresponding RNS digits of the scaled value

⌊
X
2n

⌋
are given by (R1s, R2s, R3s), where

Ris =
∣∣∣⌊ X

2n

⌋∣∣∣
mi

. (3)

Equation (2) is rewritten as follows [1]:

X = (−4)2n(2n− 1)R1 + (2n+1− 1)(2n− 1)R2 + 2n(2n+1− 1)R3 −MI, (4)

where I is the number of integer multiples of M in the summation of the right-hand side (RHS) of
Equation (2).

To evaluate
⌊

X
2n

⌋
, the floor value of dividing Equation (4) by 2n produces

⌊
X
2n

⌋
= (−4)(2n − 1)R1 +

(
2n+1 − 3

)
R2 +

(
2n+1 − 1

)
R3 −m1m3 I, (5)

Computers 2018, 7, 46 3 of 7

where the fractional part R2
2n is dropped in Equation (5) when taking the floor value because R2 < 2n;

hence,
⌊

R2
2n

⌋
= 0.

Applying modulus m1m3 to Equation (5) produces⌊
X
2n

⌋
=

∣∣(−4)(2n − 1)R1 +
(
2n+1 − 3

)
R2 +

(
2n+1 − 1

)
R3
∣∣

m1m3
. (6)

Observing that
∣∣∣ |(.)|m1m3

∣∣∣
m1

= | (.) |
m1

[1], then applying modulus m1 to Equation (6) results in

R1s = |−4(2n − 1)R1 + (m1 − 2) R2 + m1R3|m1

= |−2(m1 − 1)R1 − 2R2|m1
= |(−2)(−1)R1 − 2R2|m1

= |2(R1 − R2)|m1
.

(7)

Recalling that m3 = (2n − 1), the three terms on the RHS of Equation (6) can be rewritten as
follows: (−4)(2n − 1)R1 = −4m3R1, (2n+1 − 3)R2 = (2m3 − 1)R2, and (2n+1 − 1)R3 = (2m3 + 1)R3.

Substituting the last three expressions into Equation (6) leads to⌊
X
2n

⌋
= |−4m3R1 + (2m3 − 1)R2 + (2m3 + 1)R3|m1m3

. (8)

Rearranging the terms in Equation (8) produces⌊
X
2n

⌋
=

∣∣∣ |m3(−4R1 + 2R2 + 2R3)|m1m3
+ (R3 − R2)|m1m3

∣∣∣
m1m3

. (9)

Using the identity | m3(.)|m1m3
= m3 |(.)|m1

[1], the term given by |m3(−4R1 + 2R2 + 2R3)|m1m3
on

the RHS of Equation (9) can be rewritten as m3 |−4R1 + 2R2 + 2R3|m1
.

Substituting the last expression into Equation (9) leads to⌊
X
2n

⌋
=

∣∣∣m3 |(−4R1 + 2R2 + 2R3)|m1
+ (R3 − R2)

∣∣∣
m1m3

. (10)

Recalling the identity
∣∣∣ |(.)|m1m3

∣∣∣
m3

= | (.) |
m3

[1], then applying modulus m3 to Equation (10)

deletes the term m3 |(−4R1 + 2R2 + 2R3)|m1
, which is an integer multiple of m3. This produces

R3s = |R3 − R2|m3
. (11)

Defining A and v to be

A = |−4R1 + 2R2 + 2R3|m1
, (12)

v =

{
1, if ((A = 0) ∧ (R3 < R2)),
0, otherwise,

(13)

where ∧ denotes a logical AND operation, then Equation (10) can be rewritten as⌊
X
2n

⌋
= |m3 A + (R3 − R2) |m1m3

. (14)

This allows the rewriting of Equation (14) as⌊
X
2n

⌋
=

{
|R3 − R2|m1m3

, if v = 1,

m3 A + R3 − R2, if v = 0.
(15)

Computers 2018, 7, 46 4 of 7

Equivalently, Equation (15) can be rewritten as⌊
X
2n

⌋
=

{
R3 − R2 + m1m3, if v = 1,
m3 A + R3 − R2, if v = 0.

(16)

Recalling that R2s =
∣∣∣⌊ X

2n

⌋∣∣∣
2n

, A = 0 if v = 1, and |m1m3|2n = 1, then applying modulus 2n

to Equation (16) produces

R2s =


∣∣∣ |R3 − R2|2n − |A|

2n + 1
∣∣∣

2n
, if v = 1,∣∣∣|R3 − R2|2n − |A|

2n

∣∣∣
2n

, if v = 0.
(17)

Equivalently, Equation (17) is rewritten as

R2s =
∣∣∣ |R3 − R2|2n − |A|

2n + v
∣∣∣

2n
. (18)

2.2. Hardware Implementation

The proposed hardware implementation of the CRT-based 2n scaler of the moduli set {2n+1 −
1, 2n, 2n − 1} is shown in Figure 1. The carry-save adder (CSA) of Figure 1 consists of (n + 1) full
adders operating in parallel. The modulo (2n+1 − 1) adder, modulo (2n+1 − 1) subtractor, and modulo
2n subtractor are described thoroughly in [19]. The modified 2n modulo adder is described in the last
paragraph of this section.

Figure 1. The proposed scaler of the moduli set {2n+1 − 1, 2n, 2n − 1}.

It is important to mention the modulo (2p − 1) properties, where p is a positive integer [1].
The first property states that

∣∣∣2ka
∣∣∣
(2p−1)

is performed by rotating the binary representation of a to

the left k-bits, where a and k are positive integers and a < (2p − 1). The second property states
that |−a|(2p−1) is performed by obtaining the 1’s complement of a. Therefore, the value of |−4R1|m1

,
applied to the CSA of Figure 1, is computed by rotating the binary representation of R1 2 bits to the left
and then taking the 1’s complement of the rotated value. Assuming the binary representation of R1 is
given by R1 = r1(n)r1(n−1) · · · r1(1)r1(0), then |−4R1|m1

= r1(n−2)r1(n−3) · · · r1(1)r1(0)r1(n)r1(n−1), where

Computers 2018, 7, 46 5 of 7

the overline (.) denotes the complement of the bit (.). However, in the m1 channel of Figure 1, R1s is
obtained by rotating the output of the modulo (2n+1 − 1) adder 1 bit to the left.

The modified 2n modulo adder in the m3 channel is a binary adder that adds R3 to R2.
The modified adder is built as follows: The output of the parallel prefix structure of the adder is
directed into two different and parallel tracks. In the first track, a 1 is added as an input carry to
the output of the parallel prefix structure to produce

∣∣R3 + R2 + 1
∣∣
2n = |R3 − R2|2n . In the second

track, the output carry, cout , of the parallel prefix structure is reinserted and added as an input carry to
produce R3s (i.e., |R3 − R2|(2n−1) =

∣∣R3 + R2
∣∣
(2n−1) =

∣∣R3 + R2 + cout

∣∣
2n = R3s [14]). A few additional

gates (not shown in Figure 1) are used to verify if the condition v is true. The result of this verification
is inserted as an input carry to the modulo 2n subtractor in the m2 channel. This input carry bit is
injected into the least-significant prefix operator [19,20].

3. Comparison and VLSI Realization

There is no scaler published in the literature for the moduli set {2n+1 − 1, 2n, 2n − 1}. The new
proposed scaler was compared with the most recent and efficient published scaler of the traditional
moduli set {2n + 1, 2n, 2n − 1} [12,13]. The unit-gate model was used as a basis for theoretical
comparison [14]. All two-input monotonic gates had an area of 1 unit and a delay of 1 unit. The XOR
(Exclusive OR) and XNOR (Exclusive NOR) gates had an area of 2 units and a delay of 2 units.
However, the inverters were ignored. The full adder had an area of 7 units and a delay of 4 units,
while the half adder had an area of 3 units and a delay of 2 units. The (2p − 1) modular adder has an
area and delay of

(
3pdlog

2
pe+ 5p

)
and

(
2dlog

2
pe+ 3

)
, respectively [19,20]. The area and delay

of a 2p binary adder are
(

3
2dlog

2
pe+ 5p

)
and

(
2 dlog

2
pe+ 3

)
, respectively [19,20]. The modified

modulo 2n adder has an area and delay of
(

3
2 pdlog

2
pe+ 12p

)
and

(
2dlog

2
pe+ 5

)
, respectively

[19]. However, the area and delay of the (2p + 1) modular adder are
(

4.5pdlog
2

pe+ 0.5p + 6
)

and(
2dlog

2
pe+ 3

)
, respectively [20]. Table 1 lists the area and time delay requirements of the proposed

scaler and those in [12,13].

Table 1. Hardware and time requirements of the scaler proposed in this paper for M1 = {2n+1 −
1, 2n, 2n − 1} and of the scalers proposed in [12,13] for M2 = {2n + 1, 2n, 2n − 1}.

Channel
Proposed ? [12] ?? [13] ??

Area Delay Area Delay Area Delay

(2n+1 − 1)? 3ndlog
2
ne 2dlog

2
ne 4.5ndlog

2
ne 2dlog

2
ne 4.5ndlog

2
ne 2dlog

2
ne

(2n + 1)?? +5n + 5 +3 +7.5n + 6 +7 +3.5n + 6 +5
+3dlog

2
ne

2n 4.5ndlog
2
ne 4dlog

2
ne 3ndlog

2
ne 2dlog

2
ne 3ndlog

2
ne 2dlog

2
ne

+20n + 5 +10 +26n +13 +23n +9
+3dlog

2
ne

2n − 1 1.5ndlog
2
ne 2dlog

2
ne 3ndlog

2
ne 2dlog

2
ne 3ndlog

2
ne 2dlog

2
ne

+12n +5 +5n +3 +5n +3

Total 9ndlog
2
ne 4dlog

2
ne 10.5ndlog

2
ne 2dlog

2
ne 10.5ndlog

2
ne 2dlog

2
ne

+37n + 10 +10 +38.5n + 6 +13 +31.5n + 12 +9
+6dlog

2
ne

To obtain a more precise estimation of the area, delay, and power for the three designs under
consideration, all the structures were modeled in Verilog HDL(Hardware Description Language) for
values of n = 6, 12, 18, 24, and 30. Synopsys Design Compiler (G-2012.06) was used to synthesize the
designs and map them into 65 nm Synopsys DesignWare Digital Logic Libraries. The “place-and-route”
phase was performed using the Synopsys IC Compiler. The Synopsys Power Compiler was also used

Computers 2018, 7, 46 6 of 7

to estimate the power consumed. Moreover, the Synopsys Simulator was used to verify the correctness
of the design functionality. The results are shown in Table 2. The relative differences between the three
designs (i.e., the proposed scaler [12,13]) are listed in Table 3. Compared to the scaler of [12], Table 3
indicates that, on average, the proposed scaler had a area and power reduced by 12.7% and 11.7%,
respectively. The proposed scaler had, on average, an increased time delay of 11.7%. Compared to the
scaler of [13], Table 3 shows that the proposed scaler required a slightly smaller area and power, by 5.9%
and 6.1%, respectively. However, it required an average time delay increase of 14.6%. Nevertheless, as
mentioned in Section 1, avoiding the (2n + 1) MAC unit and replacing it with the (2n+1 − 1) MAC
unit saves a very significant processing time [18].

Table 2. VLSI (Very Large Scale Integration) implementation results of the proposed scaler of the
moduli set {2n+1 − 1, 2n, 2n − 1}? and the scalers of [12,13] of the moduli set {2n + 1, 2n, 2n − 1}??.

Scaler Area Delay Power
n (µm2) (ps) (µW)

Proposed ? 6 1769.4 626.3 61.5
12 3706.6 723.7 90.1
18 5928.1 875.1 120.6
24 7056.2 902.9 143.4
30 8097.9 925.6 160.7

[12] ?? 6 2084.1 575.4 67.9
12 4210.6 662.3 102.5
18 6747.9 776.5 140.4
24 7883.4 797.8 160.7
30 9419.2 809.3 183.1

[13] ?? 6 1892.1 555.7 65.2
12 3988.0 633.5 96.5
18 6241.0 757.9 129.3
24 7389.4 782.7 152.4
30 8675.2 803.6 169.8

Table 3. Relative performance of the proposed scaler compared with [12,13].

Proposed Scaler Area Delay Power
Compared with: n Reduction (%) Reduction (%) Reduction (%)

[12] 6 15.1 −8.8 9.4
12 12.0 −9.3 12.1
18 12.1 −12.7 14.1
24 10.5 −13.2 10.8
30 14.0 −14.4 12.2

[13] 6 6.5 −12.7 5.7
12 7.1 −14.2 6.6
18 5.0 −15.5 6.7
24 4.5 −15.4 5.9
30 6.7 −15.2 5.4

4. Conclusions

This paper proposes the first scaler for the moduli set {2n+1− 1, 2n, 2n − 1}. When compared with
the most recent and efficient scalers of the traditional three-moduli set {2n + 1, 2n, 2n− 1}, the proposed
scaler is proven to have an area- and power-efficient structure. However, the scalers of the traditional
moduli set {2n + 1, 2n, 2n − 1} are more-time-efficient structures at the expense of having the modulo
(2n + 1) channel. Replacing the (2n + 1) channel by the (2n+1− 1) channel makes the proposed moduli
set a faster alternative for RNS-based applications.

Computers 2018, 7, 46 7 of 7

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Soderstrand, M.A.; Jenkins, W.; Jullien, G.; Taylor, F. (Eds.) Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing; IEEE Press: New York, NY, USA, 1986.

2. Hiasat, A. A suggestion for a fast residue multiplier for a family of moduli of the form (2n − (2p ± 1)).
Comput. J. 2004, 47, 93–102.

3. Hiasat, A.; Khateeb, A. Efficient digital sweep oscillator with extremely low sweep rates. IEE Proc. Circuits
Devices Syst. 1998, 145, 409–414.

4. Esmaeildoust, M.; Schinianakis, D.; Javashi, H.; Stouraitis, T.; Navi, K. Efficient RNS implementation of
elliptic curve point multiplication over GF(p). IEEE Trans. VLSI Syst. 2013, 21, 1545–1549.

5. Sousa, L.; Antao, S.; Martins, P. Combining residue arithmetic to design efficient cryptographic circuits and
systems. IEEE Circuits Syst. Mag. 2016, 16, 6–32.

6. Hiasat, A. Design and implementation of an RNS division algorithm. In Proceedings of the 13th IEEE
Sympsoium on Computer Arithmetic, Asilomar, CA, USA, 6–9 July 1997; pp. 240–249.

7. Ye, J.; Ma, S.; Hu, J. An efficient 2n RNS scaler for moduli set (2n − 1, 2n, 2n + 1). In Proceedings of the 2008
International Symposium on Information Science and Engineering ISISE, Shanghai, China, 20–22 December
2008; pp. 511–515.

8. Hiasat, A.; Sweidan, A. Residue Number System to Binary Converter for the Moduli Set (2n−1, 2n− 1, 2n + 1).
J. Syst. Arch. 2003, 49, 53–58.

9. Chang, C.H.; Low, J.; Yung, S. Simple, fast, and exact RNS scaler for the three-moduli set (2n − 1, 2n, 2n + 1).
IEEE Trans. Circuits Syst. I 2011, 58, 2686–2697.

10. Low, J.; Chang, C.H. A VLSI efficient programmable power-of-two scaler for (2n − 1, 2n, 2n + 1). IEEE Trans.
Circuits Syst. I 2012, 59, 2911–2919.

11. Tay, T.; Chang, C.H.; Low, J. Efficient VLSI implementation of 2n scaling of signed integer in RNS (2n −
1, 2n, 2n + 1). IEEE Trans. Very Large Scale Integr. Syst. 2013, 21, 1936–1940.

12. Sousa, L. 2n RNS scalers for extended 4-moduli sets. IEEE Trans. Comput. 2015, 64, 3322–3334.
13. Hiasat, A. Efficient RNS scalers for the extended three-moduli set (2n − 1, 2n+p, 2n + 1). IEEE Trans. Comput.

2017, 66, 1253–1260.
14. Zimmermann, R. Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication. In

Proceedings of the 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), Adelaide, Australia,
14–16 April 1999; pp. 158–167.

15. Hiasat, A.; Abdel-Aty-Zohdy, H. Design and implementation of a fast and compact residue-based
semi-custom VLSI arithmetic chip. In Proceedings of the 1994 37th Midwest Symposium on Circuits
and Systems, Lafayette, LA, USA, 3–5 August 1994; pp. 428–431.

16. Hiasat, A. RNS arithmetic multiplier for medium and large moduli. IEEE Trans. Circuits Syst. 2000, 47,
937–940.

17. Muralidharan, R.; Chang, C.-H. Area-power efficient modulo 2n − 1 and modulo 2n + 1 multipliers for
(2n − 1, 2n, 2n + 1) based RNS. IEEE Trans. Circuits Syst. I 2012, 59, 2263–2274.

18. Sheu, M.-H.; Siao, S.M.; Hwang, Y.T.; Sun, C.C.; Lin, Y.P. New adaptable three-moduli {2n+k, 2n − 1, 2n−1 −
1} residue number system-based finite impulse response implementation. IEICE Electron. Express 2016,
13, 20160090.

19. Kalamboukas, L.; Efstathiou, C.; Nikoloo, D.; Vergos, H.T.; Kalamatianos, J. High-speed parallel-prefix
modulo 2n − 1 adders. IEEE Trans. Comput. 2000, 49, 673–680.

20. Vergos, H.T. ; Efstathiou, C.; Nikolos, D. Diminished-one modulo 2n + 1 adder design. IEEE Trans. Comput.
2002, 51, 1389–1399.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Scaler
	Decoding Analysis
	Hardware Implementation

	Comparison and VLSI Realization
	Conclusions
	References

