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Abstract: Petri nets are a useful tool for the modeling and performance evaluation of discrete event 
systems. Literature reveals that the Petri Net models of real-world discrete event systems are most 
frequently event graphs (a subclass of Petri nets). Literature also reveals that there are some simple 
methods for the performance evaluation of event graphs. The general-purpose Petri Net simulator 
(GPenSIM) is a new simulator that runs on the MATLAB platform. GPenSIM provides a Petri net 
language, with which Petri net classes and extensions can be developed. GPenSIM also provides 
functions for performance analysis. Since real-world discrete event systems usually possess a large 
number of resources, the Petri net models of these systems tend to become huge. Activity-Oriented 
Petri Nets (AOPN) is an approach that reduces the size of the Petri nets. In addition to the simulator 
functions, GPenSIM also realizes the AOPN approach on the MATLAB platform. Thus, AOPN is an 
integral part of GPenSIM. As a running example, a flexible manufacturing system is firstly modeled 
as an event graph, and then the size of the model is reduced with the AOPN approach. The 
advantages of GPenSIM and AOPN are discussed in this paper. 

Keywords: Petri nets; event graphs; GPenSIM; performance evaluation; Activity-Oriented Petri 
Nets (AOPN); discrete event dynamic systems 

 

1. Introduction 

Modeling, analysis, and performance evaluation of discrete event systems are conducted in 
order to find out useful information about the behavior of the systems, such as the productivity (flow 
rate), the existence of bottlenecks and deadlocks, etc. Petri net is useful for the performance evaluation 
of discrete event systems because of its useful properties such as self-documentation and explicit state 
information. A literature study reveals that the Petri Net models of discrete event systems are most 
frequently event graphs, which form a subclass of Petri nets [1–3]. Also, these event graphs are 
strongly connected. A literature study also reveals that there are some simple methods for 
performance evaluation and that these methods are only applicable for strongly connected event 
graphs [1–3]. 

General-purpose Petri Net simulator (GPenSIM) is a new tool for the modeling, simulation, and 
performance analysis of discrete event systems. GPenSIM, developed by the first author of this paper, 
is a toolbox on the MATLAB platform and is being used by universities around the world because of 
its simplicity, flexibility, and extensibility. To build Petri net models, GPenSIM provides a Petri net 
language, with which a variety of Petri net classes and extensions can be developed. GPenSIM also 
provides some functions for the analysis of Petri nets. 

Activity-Oriented Petri Nets (AOPN) is an approach that can be used to simplify Petri net 
models of discrete event systems, especially ones with a large number of system resources. In 
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addition to the Petri net simulator functions, GPenSIM also realizes AOPN on the MATLAB platform. 
Thus, AOPN has become an integral part of GPenSIM. 

The novelty of this paper is the introduction of the Petri net simulator GPenSIM and the 
approach AOPN, for the performance analysis of real-world discrete event systems that have a large 
number of resources. This paper shows how easily GPenSIM can model, simulate, and analyze real-
world discrete event systems on the MATLAB platform. 

In this paper: GPenSIM and AOPN are introduced in Sections 2 and 3, respectively. In Section 4, 
the basic definitions of Petri nets, event graphs, etc., are given. In Sections 5 and 6, GPenSIM is used 
for the performance analysis of event graphs; as an example, a flexible manufacturing system is 
modeled as an event graph, and then simulated and performance-analyzed using GPenSIM. In the 
final sections of this paper (Sections 7 and 8), the AOPN approach is used to simplify a Petri net 
model when the model becomes large due to the resources in the system. 

2. Introducing the Petri Net Simulator GPenSIM 

The general-purpose Petri net Simulator (GPenSIM) defines a new Petri net language for the 
modeling, simulation, and performance analysis of discrete event systems [4–6]. GPenSIM runs on 
the MATLAB platform. GPenSIM is also a real-time controller with which external hardware can be 
controlled [6–8]. 

2.1. The Design and Development of GPenSIM 

GPenSIM was developed with three specific goals: 

(1) To allow the easy integration of Petri net models with any other tools that are available on the 
MATLAB platform. Being an industry standard platform, MATLAB has numerous toolboxes 
such as Fuzzy logic, Neural Network, Machine learning, Control systems, Advanced Statistics, 
etc. For example, a modeler can easily integrate a discrete event model with the Control systems 
toolbox, making a hybrid system. The simulation results from this hybrid system can be easily 
analyzed using the Advanced Statistical toolbox that is readily available on the MATLAB 
platform. Being a MATLAB toolbox, GPenSIM gives numerous possibilities for extending the 
discrete event models, which is not easy (if not impossible) in other software (e.g., Arena). This 
flexibility offered by GPenSIM is the reason why the Australian research team chose GPenSIM 
over the other tools, as they quote in their paper [9].  

(2) Easy to learn and use: GPenSIM is easy to learn and use. This is because the programming 
language of GPenSIM is MATLAB, which is a very simple Basic language clone. This ease of 
learning and use is the main reason why some of the users of GPenSIM have chosen it as a tool for 
the modeling and simulation of various discrete event systems, such as Gameplay analysis, flexible 
manufacturing systems, motor control, and service modeling (see the references [7,9–13]). 

(3) Easy to extend: Being a file-based system, a modeler can easily extend the functions available in 
GPenSIM. For example, Professor Tilbury’s group at the Michigan University, USA, created their 
own version (named “Attributed Hybrid Dynamical Nets”) by extending GPenSIM functions to 
transform it into a tool for modeling complex interconnected manufacturing systems [10].  

GPenSIM supports many Petri net extensions and subclasses such as event graphs, inhibitor 
arcs, transition with priorities, enabling functions, color extension, etc. Implementing a Petri net 
model with GPenSIM usually happens via four M-files:  

1. Petri net Definition File (PDF): A PDF declares the static Petri net graph: the set of places, the set 
of transitions, and the set of connections (arcs) are declared in this file. 

2. Main Simulation File (MSF): The MSF declares the initial dynamics (e.g., initial tokens in the 
places, firing times of the transitions, firing costs of the transitions, etc.) and runs the simulations. 
When the simulation terminates, the code for plotting and printing the simulation results are 
also coded in this file. 
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3. The common preprocessor file (COMMON_PRE): If there are additional conditions for the 
enabled transitions to satisfy before firing, these conditions are coded in the COMMON_PRE 
file. 

4. The common postprocessor file (COMMON_POST): If there are any postfiring actions to be 
performed after firing of transitions, these actions can be coded in the common postprocessor file. 

2.2. Comparing GPenSIM with the Other Petri Net Simulators 

GPenSIM is a unique simulator. However, some tools and proposals resemble GPenSIM, e.g., 
Stochastic Activity Network (SAN) [14]. In SAN, a Petri net is composed of places, transitions, and 
gates. The gates are similar to transitions but are unique as they can be connected with both places 
and transitions as inputs and outputs [14]. An input gate has an enabling predicate which determines 
whether an enabled gate can fire or not. Also, both the input and output gates can have functions, 
which are any computable actions. Further, in SAN, transitions in a Petri net can be either timed or 
untimed (instantaneous). Though beautiful in theory, SAN will be a difficult idea to realize as a tool. 
First of all, the introduction of gates as a third type of element into a Petri net disturbs the 
fundamental bipartite nature of Petri nets. The introduction of gates as a third type of element is 
unnecessary, too, as a transition can replace a gate if the transition is associated with an enabling 
predicate.  

GPenSIM is a modern tool primarily designed for modeling real-life discrete event systems. In 
GPenSIM, there are just two types of elements: places and transitions. Every transition has an 
enabling predicate associated with it. In the preprocessor, this enabling predicate (Boolean variable 
“fire”) can be computed by any computable predicate, resulting in true (where the enabled transition 
can start firing) or false (where the enabled transition is prohibited from firing). Also, all transitions 
can have both input functions (for performing any actions before the start of firing) and output 
functions (for performing any postfiring actions).  

When it comes to time, GPenSIM makes a clear separation between timed and untimed systems. 
This is because we believe that a system cannot be timed and untimed at the same time. For example, 
in a real-world discrete event system, if there is a transition that is fast, firing instantaneously 
compared with the other transitions, it should still take some time for firing, perhaps some 
milliseconds. Thus, it is not untimed, after all.  

In summary, SAN looks like a predecessor to GPenSIM. However, GPenSIM is simpler and 
easier to use and to understand.  

3. Introducing the Activity-Oriented Petri Nets (AOPN) Approach 

In the next sections of this paper, a Flexible Manufacturing System (FMS) is given as an 
application example (see Figure 1) which will be modeled with Petri nets (Figure 2) and implemented 
and analyzed with GPenSIM. It is visible from the Petri net shown in Figure 2 that, even for a simple 
FMS with few manufacturing resources (four robots, two conveyor belts, and two Computer Numeric 
Controlled (CNC) machines), the Petri net model becomes large. It is usual for an FMS to have many 
more manufacturing resources. In this case, the Petri net models become too huge to handle. In such 
situations, the approach using Activity-Oriented Petri Nets (AOPN) can give smaller and more 
compact Petri net models that can be analyzed with ease. The software tool General-purpose Petri 
net Simulator (GPenSIM) is a realization of AOPN on the MATLAB platform [15]. 

The Background of AOPN 

AOPN was introduced as “Petri Net Interpreted for Scheduling (PNS)” in earlier works, e.g., 
[16,17]. AOPN can be considered as a natural extension to Process-Oriented Petri Nets (POPN) and 
Resource-Oriented Petri Net (ROPN) [18,19]. POPN models are obtained by tracking the processes 
that make up the discrete event system [18]. In POPN, the connections between the places and the 
transitions resemble the topology of connection that exists between the elements in the physical 
system (e.g., machines and resources). Thus, POPN are simple to understand. However, one of the 
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disadvantages of the POPN models is that they can be large. This is because all the resources and all 
their connections with the other elements in the system are shown in the model, causing an extra-
large number of places, transitions, and arcs [16–19]. Another disadvantage of POPN is that they are 
prone to deadlocks. In POPN, arcs that connect the resources with the other elements induce 
“resource circuits” [18]; it has been proven [18] that the circuits cause some places (known as 
“siphons”) to get emptied of tokens, causing deadlocks. 

In ROPN, each resource is represented by a single place [19]. The processes that compete for a 
resource are modeled separately as subnets, and the subnets are then merged to make the complete 
model. When merging, the subnets are merged in a manner such that the places that represent a 
specific resource in different subnets become a single unique place in the complete model [19]. Also, 
ROPN possesses inbuilt algorithms for deadlock detection and alleviation, and is thus less prone to 
deadlocks. However, the ROPN methodology is incapable of differentiating resource instances. For 
example, if a resource (machines m) has two instances mi and mj, there is no mechanism in ROPN to 
differentiate mi from mj. The ROPN methodology only allows the modeling of activities that use at 
most one resource at a time. AOPN is a remedy for this problem. AOPN is designed to tackle a 
modeling situation in which all the resources can be treated as independent of each other, and all 
instances of a resource can also be handled independently. AOPN can be considered as a natural 
extension to ROPN to support an activity demanding any number of resources and resource 
instances.  

In summary, both POPN and ROPN methodologies are “resource-based modeling” 
methodologies emphasizing resources and their usage. Resources take central stage in the models, 
making the resources very visible while the activities are seen strewn around the resources, whereas, 
in AOPN, the emphasis is given to activities on the ground, as it is the activities that produce 
something or add value—resources are passive and are worthless unless they are utilized by some 
activity. Also, in AOPN, resource management is done transparently by the underlying system in the 
background (e.g., by GPenSIM). For a resource scheduling problem consisting of a total of n activities 
and r resources, the Table 1 shows the size of the Petri net models obtained by the three 
methodologies. 

Table 1. Summary: Comparing Process-Oriented Petri Nets (POPN), Resource-OPN (ROPN), and 
Activity-OPN (AOPN). 

 POPN [18] ROPN [19] AOPN [15] 
Number of places O(n + r) O(r) O(n) 

Number of transitions O(n) O(r2) O(n) 

4. Petri Nets and Event Graphs: Definition and Properties 

A Petri net is a bipartite graph, having only two types of elements: the active elements (known 
as transitions) and the passive elements (known as places). 

4.1. Definitions 

4.1.1. Definition: Classic Petri Net (PN) [1,2] 

A classic Petri Net is a 4-tuple PN = (P, T, A, m), where  
P is the set of places, P = {p1, p2, … , pn}  
T is the set of transitions, T = {t1, t2, … , tm},  
A is the set of arcs (from places to transitions and from transitions to places),  
A ⊆ (P × T) ⋃ (T × P), and 
m is the row vector of markings (tokens) on the set of places  
m = [m(p1), m(p2), …, m(pn)] ∈ Nn, m0 is the initial marking. 

Definition: Input and Output Sets of a Place 
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It is convenient to use •pj to represent the set of input transitions of a place pj and pj• to represent 
the set of output transitions of pj. 

•pj = {ti ∈ T: (ti, pj) ∈ A}, pj• = {ti ∈ T: (pj, ti) ∈ A}. 

4.1.2. Definition: Timed Petri Net (TPN) 

A Timed Petri Net is a 5-tuple TPN = (P, T, A, m0, D), where 
PN = (P, T, A, m0) is a classic Petri Net, and 
D: T → R+ is the duration function—a mapping of each transition to a positive rational number, 

meaning that the firing of each transition ti takes dti time units.  

4.1.3. Definition: Event Graph (EG) 

An Event Graph is a classic Petri net EG = (P, T, A, m0) in which each place has exactly one input 
and one output transition; that is, the sets of input and output transitions of each place have only one 
member: |•pj | = |pj•| = 1. 

4.1.4. Definition: Strongly Connected Graph 

In a directed graph, a pair of nodes is strongly connected if there is a path between them in both 
directions. A directed graph is strongly connected if there is a directed path joining any two nodes of 
the graph.  

4.1.5. Definition: Elementary Circuit 

In a strongly connected graph, there will be cycles (circuits). An elementary circuit in a strongly 
connected graph is a directed path that starts at one node and comes back to the same node, while no 
other node is repeatedly visited in the path. 

4.2. Properties of Strongly Connected Event Graphs 

Given below are some of the properties of strongly connected event graphs (SCEG). These 
properties are very useful for the performance evaluation of discrete event systems. In an SCEG: 

• Property 1: the number of tokens in an elementary circuit is invariant, meaning that the number 
of tokens does not change with the firings of the transitions [1,3]. 

• Property 2: Performance is bounded by its critical circuit [1,20]. The critical circuit is the 
elementary circuit that has the lowest flowrate r·r* = min Σ(m(pn))/Σ(dti), where Σ(dti) is the sum 
of the firing times of the transitions in the circuit and Σ(m(pn)) is the sum of all tokens in that 
circuit.  

• Property 3: Under the assumption that a transition fires as soon as it is enabled, the firing rate of 
each transition in steady state (the same as the current token flow rate at any point in the circuit) 
is given by r = r* [20]. 

• Property 4: Deadlock-free if, and only if, every elementary circuit contains at least one token [1]. 

Based on the properties mentioned above, there are many tools available for the performance 
evaluation of SCEG. However, the General-purpose Petri Net Simulator (GPenSIM) is considered as 
the ideal tool for working with event graphs [9], and for interacting with other MATLAB toolboxes 
[10]. The following section describes the functions of GPenSIM for working with SCEG. 

5. Implementing Petri Nets with GPenSIM 

With GPenSIM, a discrete system can be modeled and implemented either as [4–6] 

• A classic Petri Net: firing times are not assigned to any of the transitions, meaning all the 
transitions are primitive [2]; or 

• A Timed Petri Net: firing times are assigned to all the transitions, meaning all the transitions are 
nonprimitive. 
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5.1. Implementing Timed Petri Nets with GPenSIM 

In GPenSIM, it is not acceptable to assign firing times to some of the transitions and let the other 
transitions take zero value; we may assign very small values close to zero, but not zero [4]. GPenSIM 
interprets a Timed Petri Net in the following manner [4,5]: 

• No variable firing time: the transitions representing events are assigned a firing time beforehand. 
The pre-assigned firing time can be deterministic (e.g., firing time dti = 5 TU) or stochastic (e.g., 
firing time dti is normally distributed with mean value 10 TU and standard deviation 2 TU). 
However, variable firing times are not possible. 

• Maximal-step firing policy: The Timed Petri Net operates with the maximal-step firing policy; 
this means that, if more than one transition is collectively enabled and they are not in conflict 
with each other at a point of time, all of them fire at the same time. 

• Enabled transition starts firing immediately: enabled transition can start firing immediately as 
long as there is no (forcibly) induced delay between the time a transition became enabled and 
the time it is allowed to fire. 

Being a MATLAB toolbox, GPenSIM supports all the probability distributions (e.g., Gaussian, 
Uniform, Poisson, etc.) that are supported by MATLAB. The Normal distribution is mentioned above 
only as an example, “(e.g., firing time dti is normally distributed with mean value 10 TU and standard 
deviation 2 TU).”  

The classic Petri net (or the original Petri net) is untimed, and all the transitions take zero time 
for firing. Hence, the transitions cannot represent any activities, as activities in the real world do take 
time. The Timed Petri Net was extended from the untimed Petri net based on the assumptions 
(interpretations) given in this section. The Timed Petri net does not give any advantage in terms of 
simulation computing cost. On the contrary, the Timed Petri net runs slower during simulations. 
However, we need the Timed Petri net to model real-world discrete event systems as the firing time 
of a transition represents the time taken by the activity, and the (virtual) tokens inside a transition 
represent the work-in-progress. 

5.2. The GPenSIM Functions for the Performance Evaluation of Event Graphs 

Table 2 lists some of the GPenSIM functions that are exclusively for the performance evaluation 
of strongly connected event graphs (SCEG). 

Table 2. General-purpose Petri Net Simulator (GPenSIM) functions for performance evaluation of 
strongly connected event graphs (SCEG). 

GPenSIM Function Purpose
pnclass Find out the class of Petri net 

stronglyconn Find out the number of strongly connected components in the Petri net 
mincyctime Finding the performance bottleneck in a SCEG 

cycles Extract the elementary circuits in a Petri Net 

The “pnclass” function checks the class of a Petri net and returns a vector of flags representing 
the following information: 

• Flag 1: whether the Petri net is a Binary Petri Net or not (0 = not a binary Petri Net). 
• Flag 2: whether the Petri net is a State Machine or not (0 = not a State Machine). 
• Flag 3: whether the Petri net is an Event Graph or not (0 = not an Event Graph). 
• Flag 4: whether the Petri net is a Timed Petri Net or not (0 = not a Timed Petri Net). 
• Flag 5: number of Strongly Connected Components in the Petri Net. 

The “stronglyconn” function returns the number of strongly connected components in a Petri 
net. If the returned value is a singleton, then the Petri net is strongly connected. There are several 
algorithms for finding strongly connected components, e.g., a simple two-pass depth-first search 
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algorithm [21] and the recent and more efficient Rader’s method [22]. In GPenSIM, Rader’s method 
is implemented. 

The “mincyctime” function returns the performance bottleneck (critical elementary circuit) of an 
SCEG. For finding the elementary circuits, this function makes use of the function “cycles”. The 
function mincyctime also suggests flow rate improvement if the optional input parameter “expected 
flowrate” is given. Given the current flowrate r* = [Σ(m(pn))/Σ(dti)] of the critical circuit, the expected 
flowrate (efr) can be achieved by either 

• Increasing the token count of the critical circuit by Δm0, 

where Δm0 = [efr × Σ(dti)] − Σ(m(pn)); or  

• Reducing the delay (total firing times) of the circuit by Δft, 

where Δft = Σ(dti) − [Σ(m(pn))/efr].  

The “cycles” function finds the elementary circuits in a Petri net. There are several algorithms 
available for finding the elementary circuits, e.g., Tiernan and Tarjan’s method [23] or Johnson’s 
method [24]. However, the algorithm that is implemented in GPenSIM is a simple variant of the 
depth-first search technique. Even though this algorithm is not the most efficient, it is chosen because 
of its ease of implementation. 

6. Simulation of Event Graphs with GPenSIM: An Example 

The simple Flexible Manufacturing System (FMS) shown in Figure 1 is for making only one type 
of product. The FMS shown in Figure 1 is trivial and old. However, the particular problem is only 
presented in the paper as an example to show how easily it can be modeled and simulated with the 
new tool known as GPenSIM. In other words, the example is to show the simplicity of modeling and 
simulation with GPenSIM. 

 
Figure 1. The Flexible Manufacturing System (FMS). 

The operational specifications of the FMS are as follows: 

• The input raw material of type 1 arrives on the conveyor belt C1. Robot R1 picks up the raw 
material of type 1 and places into the machine M1. Similarly, robot R2 picks up the raw material 
of type 2 from conveyor belt C2 and places it into the machine M2. 
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• Machine M1 makes the part P1, and M2 makes the part P2. When the parts are made by the 
machines M1 and M2, they are placed on the assembly station (AS) by the robots R1 and R2, 
respectively. 

• Assembly station AS is used to join the two parts P1 and P2 together to form the semiproduct. 
Robot R2 does the part assembly at AS. 

• Robot R3 picks the product from the assembly station and places it on the painting station PS.  
• Robot R4 performs the surface polishing and painting. 
• Once the painting is completed, robot R3 picks up the completed product from the painting 

station PS and packs it into the cartridge OB. 

In the Petri net model shown in Figure 2, the following activities represent the FMS operations 
(“t” stands for transition): 

• tC1: conveyor belt C1 brings the input material of type 1 into the FMS. 
• tC2: conveyor belt C2 brings the input material of type 2 into the FMS.  
• tC1M1: robot R1 moves raw material from conveyor belt C1 and places it on M1.  
• tC2M2: robot R2 moves raw material from conveyor belt C2 and places it on M2.  
• tM1: machining of part 1 at machine M1. 
• tM2: machining of part 2 at machine M2. 
• tM1AS: robot R1 moves part 1 from M1 to the Assembly Station AS. 
• tM2AS: robot R2 moves part 2 from M2 to the Assembly Station AS. 
• tAS: robot R2 assembles parts P1 and P2 together at the assembly station AS. 
• tAP: robot R3 picks the product from the assembly station and places on the painting station PS.  
• tPS: robot R4 performs surface polishing and painting on the product.  
• tPCK: when the painting job is finished, R3 packs the product into the output cartridge. 

 
Figure 2. Petri Net model of the FMS. 
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6.1. The Petri Net Model 

The Petri net model of the FMS is shown in Figure 2. The Petri net model is obtained by 
connecting the operations listed above, one after the other; the times taken by the operations are 
shown in Figure 2 as the firing times of the transitions. 

The input buffers IB1 and IB2 (represented by the places pIB1 and pIB2) and the output buffer 
(place pOB) are for testing purposes only. These three places will be omitted in the final model, in 
order to make the Petri net a SCEG. This is because the presence of the three places will destroy the 
strong connectedness property. Thus, the Petri net will not be an event graph. It is safe to neglect the 
three buffers with the following assumptions: 

1. The supply of raw materials from the input buffers (IB1 and IB2) is never exhausted; 
2. The finished product will be placed into the output buffer OB that has no capacity restraints. 

6.2. GPenSIM Code for Simulation 

We usually need four files to code (implement) a Petri net model in GPenSIM: 

1. Petri Net Definition File (PDF): This is the coding of the static Petri net (the structure of the Petri 
net defined by the sets of places, transitions, and arcs). 

2. Main Simulation File (MSF): In this file, the initial dynamics (e.g., initial tokens in places pC1, 
pC2, pR1, pR2, and pR3, and the firing times of transitions) are declared.  

3. COMMON_PRE: In this file, the conditions for the enabled transitions to start firing are coded. 
However, in this FMS example, there are no additional conditions for the transitions as they start 
firing whenever they become enabled.  

4. COMMON_POST: The postfiring actions of the transitions are coded in this file. Again, this file 
is not necessary for the FMS example, as there are no post-actions needed to be carried out. 

Due to brevity, the PDF is not shown in this paper. However, the interested reader is referred to 
the webpage [25] from where the complete code can be downloaded.  

In the main simulation file (MSF), we want to compute the following: 

• The cycle that creates the deadlock, 
• The current flow rate, and  
• How we can increase the flow rate to 0.07 tokens per TU. 

The MSF is given below:  
%%%% MSF: the main simulation file %%%%%%%%%%%%%%%%%%%%% 
clear all; clc; 
global global_info 
global_info.STOP_AT = 100; % stop simulation after 100 TU 
pns = pnstruct('fms_pdf'); % declare the PDF 
% declare the firing times of the transitons 
dyn.ft = {'tC1',10,'tC2',10, 'tM1',5,'tM2',10,'tAS',7,... 
 'tPS',8, 'tPCK',3, 'allothers',2}; 
% declare the initial markings 
dyn.m0 = {'pC1',1,'pC2',1, 'pR1',1,'pR2',1,'pR3',1,'pR4',1, ... 
 'po1AS',1,'po2AS',1}; 
% combine static and dynamic parts to form the Petri net  
pni = initialdynamics(pns, dyn); 
mincyctime(pni, 0.07); % find the minimum cycle of event graph 

6.3. The Simulation Results 

The simulation results show that there are five elementary circuits (“cycles”) in the event graph. 
This is a Strongly Connected Petri net. 
  
Cycle-1: -> pC2 -> tC2 -> poC2 -> tC2M2 
TotalTD = 12 TokenSum = 1 Cycle Time = 12 
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Cycle-2: -> tM2AS -> pi2AS -> tAS -> pR2 -> tC2M2 -> piM2 -> tM2 -> poM2 
TotalTD = 21 TokenSum = 1 Cycle Time = 21 
  
Cycle-3: -> pC1 -> tC1 -> poC1 -> tC1M1 
TotalTD = 12 TokenSum = 1 Cycle Time = 12 
  
Cycle-4: -> pR1 -> tC1M1 -> piM1 -> tM1 -> poM1 -> tM1AS 
TotalTD = 9 TokenSum = 1 Cycle Time = 9 
  
Cycle-5: -> po1AS -> tM1AS -> pi1AS -> tAS 
TotalTD = 9 TokenSum = 1 Cycle Time = 9 
  
Cycle-6: -> pi2AS -> tAS -> po2AS -> tM2AS 
TotalTD = 9 TokenSum = 1 Cycle Time = 9 
  
Cycle-7: -> pR4 -> tPS 
TotalTD = 8 TokenSum = 1 Cycle Time = 8 
  
Cycle-8: -> poAS -> tAP -> piPS -> tPS -> piCK -> tPCK -> pR3 -> tAS 
TotalTD = 20 TokenSum = 1 Cycle Time = 20 
  
Minimum-cycle-time is: 21, in cycle number-2 
  
*** Token Flow Rate: *** 
In steady state, the firing rate of each transition is: 
 1/C* = 0.047619 
meaning, on average, 0.047619 tokens pass through  
any node in the Petri net, per unit period of time. 
  
*** We can increase the current flow rate to 0.07 tokens/TU, by improving 
the critical circuit alone ... 
 In the circuit-2 either:  
 1. increase the sum of tokens by 1 tokens, or,  
 2. decrease the total delay (firing times) by 6.7143 TU. 

The simulation result shows that the elementary circuit number 2 is the bottleneck as it has 
highest cycle time (=21), which means the flow rate of the circuit is 1/21 = 0.0476 tokens per TU. The 
second highest cycle time (=20) belongs to the circuit number 8, having a flow rate of 1/20 = 0.05.  

We can achieve the performance (flow rate) of 0.07 tokens per TU by enhancing the bottleneck 
(circuit number 2). The proposed enhancements are (1) to increase the sum of tokens by one (meaning 
adding one more robot/machine in parallel), and (2) to decrease the total delay by 6.7 TU (meaning 
to reduce the firing times of the robot/machine involved in circuit 4 by 6.7 TU). 

The results also show that there are no deadlocks (the Petri net is live) as each elementary circuit 
has at least one token. 

7. The Two Phases of the AOPN Approach 

Activity-Oriented Petri Nets (AOPN) is an approach that consists of two phases [26]. In Phase I, 
the static Petri Net model is created. In this phase, mainly the activities are considered, and they are 
represented by transitions. The resources are grouped into two groups: (1) the “focal” resources, and 
(2) the “utility” resources. In addition to the activities, the focal resources will also be included in the 
static Petri Net model. The focal resources will be represented by places in the Petri net. The utility 
resources will be considered later in Phase II (the run-time model). Thus, a compact Petri Net model 
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is obtained with only the transitions representing the activities and, if there are any focal resources, 
they will be represented by places. Using the tool GPenSIM, coding the static Petri net in Phase I will 
result in the Petri net definition file (PDF). 

In Phase II, the run-time details that are not considered in Phase I are added to the Petri Net 
model. For example, transitions (activities) requesting, using, and releasing the utility resources are 
coded in the run-time model. Using the tool GPenSIM, the run-time details in Phase II will result in 
the files COMMON_PRE and COMMON_POST. The interested reader is referred to the GPenSIM 
user manual available from the website [4]. 

Let us remodel the FMS example using the AOPN approach. 

7.1. Phase I: Creating the Static Petri Net Graph 

Let us assume that the two conveyor belts, the two CNC machines, and the four robots are all 
utility resources. This means that in the first phase of the AOPN approach, which serves to create the 
static Petri Net graph by taking an “activity-oriented view”, only the activities and their precedence 
relationship between them will be seen in the model. The places representing the utility resources 
(the conveyor belts, the robots, and the machines) are not considered in Phase I. Because of the 
absence of these resources (represented by places, e.g., pC1, pR1) in the Petri net graph, along with 
all their connections (arcs) from these places to the transitions representing the activities, the resulting 
Petri net graph becomes much smaller than the usual Petri Net models. Figure 3 shows the resulting 
static Petri net graph by the AOPN approach. 

 
Figure 3. The compact Petri Net model obtained by Phase I of the AOPN approach. 

7.2. Phase II: Adding the Run-Time Dynamics 

The second phase of the AOPN approach is the addition of the run-time dynamics on the static 
Petri Net graph to make it the initial dynamic Petri net model. For example, the details about the 
activities requesting, using, and releasing a variety of resources are added in the second phase [6,26]. 
The initial markings of the places and the firing times of the transitions are also added in the second 
phase. 

Table 3, given below, shows the activities and the resources used by these activities. 
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Table 3. The activities and the resources used by these activities. 

Transition Resources Required to Start Firing Resources Released After Firing 
tC1 C1 - 

tC1M1 R1 C1 (acquired by tC1) 
tM1 M1 M1 

tM1AS - R1 (acquired by tC1M1) 
tC2 C2 - 

tC2M2 R2 C2 (acquired by tC2) 
tM2 M2 M2

tM2AS - - 
tAS R3 R2 (acquired by tC2M2) 
tAP - - 
tPS R4 R4 

tPCK - R3 (acquired by tAS) 

Figure 4 shows the Petri net model obtained after Phase II of the AOPN approach. The dynamic 
model shows the resources required by the different transitions and the resources released after 
firing. Also shown in Figure 4 are the initial markings of the places and the firing times of the 
transitions. 

 
Figure 4. The run-time Petri Net model obtained by Phase II of the AOPN approach. 

8. Simulation with GPenSIM 

In this section on coding and simulations, the first subsection presents some of the useful 
functions in GPenSIM for modeling scheduling problems with the AOPN approach. The second 
subsection presents the implementation details of the FMS example.  

8.1. Scheduling Using GPenSIM 

There are some issues in the scheduling of resources:  

• Instances of a resource: A resource can have many indistinguishable copies (“instances”), e.g., 
there are three cashiers in a shop (resource cashier has three instances). For a customer, it does 
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not make sense to prefer one cashier over the others. In this case, we could generalize all the 
cashiers into a group, name this resource as “cashier”, and say that cashier is a single resource 
with three instances. 

• Generic resources: There are some “named” resources available, but all of them are the same for 
some specific applications, e.g., in a mechanical workshop, there are three mechanics named 
“Alan”, “Bobby”, and “Chan”; though they are specialists in some works, when it comes to 
engine repair, they all are the same. Thus, for engine repair, we can pick a generic mechanic, 
without specifically naming anyone. 

• Specific resources: When the resources are named, we may request specific (named) resources. 
For example, in the mechanical workshop, “Chan” is an electrician. Hence, when we need an 
electrical fixing, we would prefer to use the specific resource “Chan”. 

• Write Access: When a resource has many instances, a transition may try to acquire one or many 
of these instances. Write access means that the resource will be locked, and all the instances will 
be made available to a requesting transition. 

Table 4 shows a number of GPenSIM functions available for the modeling of resource 
scheduling. 

Table 4. GPenSIM functions for the modeling of resource scheduling. 

GPenSIM Function Purpose 
availableInst check whether any instances are available in a resource 
availableRes check whether any resources are available (not in use) 
requestsSR request a number of instances from specific (“named“) resources 
requestGR request a number of resource instances, without naming any re-source
requestAR request a number of resource instances among many alternatives 
requestWR request all the instances of a specific resource (either all or none) 

release release all the resources and resource instances held by a transition 
Prnschedule prints information on resource usage 

8.2. Code Implementation with GPenSIM 

As discussed in the Sections 3 and 4, implementing a Petri net model using GPenSIM usually 
results in four files: the main simulation file (MSF), the Petri net Definition file (PDF), and the two 
common processor files (COMMON_PRE file and COMMON_POST file). 

The PDF file given below defines the static Petri net graph by declaring the sets of places, 
transitions, and arcs. 

PDF: 
% PDF: 'fms_AOPN_pdf.m'  
function [png] = fms_AOPN_pdf()  
png.PN_name = 'AOPN model of a FMS'; 
png.set_of_Ps = {'pIB1','pIB2', 'pOB',... %input & output buffers 
 'poC1','poC2','piM1','piM2','poM1', 'poM2', ...%intermediate buffers 
 'pi1AS','pi2AS','poAS', 'piPS','piCK'}; %intermediate buffers 
png.set_of_Ts = {'tC1','tC2', 'tC1M1','tC2M2', 'tM1','tM2',... 
 'tM1AS','tM2AS','tAS', 'tAP', 'tPS', 'tPCK'};  
png.set_of_As = {'pIB1','tC1',1, 'tC1','poC1',1, ... % tC1 connections 
 'poC1','tC1M1',1, 'tC1M1','piM1',1, ... % tC1M1 connections 
 'piM1','tM1',1, 'tM1','poM1',1,... % tM1 connections 
 'poM1','tM1AS',1, 'tM1AS','pi1AS',1,... % tM1AS connections 
 'pIB2','tC2',1, 'tC2','poC2',1, ... % tC2 connections 
 'poC2','tC2M2',1, 'tC2M2','piM2',1,... % tC2M2 connections 
 'piM2','tM2',1, 'tM2','poM2',1,... % tM2 connections 
 'poM2','tM2AS',1, 'tM2AS','pi2AS',1,... % tM2AS connections 
 'pi1AS','tAS',1,'pi2AS','tAS',1, 'tAS','poAS',1,... % tAS connections  
 'poAS','tAP',1, 'tAP','piPS',1,... % tAP connections 
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 'piPS','tPS',1, 'tPS','piCK',1, ... % tPS connections 
 'piCK','tPCK',1, 'tPCK','pOB',1}; % tPCK connections 

The MSF is shown below. In the MSF, firstly, the initial dynamics (e.g., initial tokens in places, 
firing times of transitions, available system resources) are declared. Then, the simulation iterations 
are started by calling the function “gpensim”. When the simulation iterations are complete, the results 
can be plotted (graphics) or displayed. 

MSF: 
% MSF: 'fms_AOPN.m' 
% AOPN model of a Flexible Manufacturing System 
global global_info 
global_info.STOP_AT = 300; 
pns = pnstruct('fms_AOPN_pdf'); % the PDF file 
dp.m0 = {'pIB1',3,'pIB2',3}; % initial markings on the places 
dp.ft = {'tC1',10,'tC2',10,'tM1',5,'tM2',10,... % firing times 
 'tAS',7,'tPS',8, 'tPCK',3, 'allothers',2}; % firing times 
dp.re = {'C1',1,inf,'C2',1,inf, 'M1',1,inf,'M2',1,inf, ... % resources 
 'R1',1,inf,'R2',1,inf,'R3',1,inf,'R4',1,inf}; % resources 
pni = initialdynamics(pns, dp); % initial run-time PetriNet  
sim = gpensim(pni); % simulation iterations 
prnschedule(sim); % print the simulation results 

The common processor file COMMON_PRE declares the resources required by the enabled 
transitions to start firing, whereas COMMON_POST declares the resources released by the fired 
transitions. The information coded in these two files is the same information that is presented in Table 
3 in a tabular format. 

COMMON_PRE: 
function [fire, transition] = COMMON_PRE(transition) 
switch transition.name 
 case 'tC1', granted = requestSR({'C1',1});  
 case 'tC1M1', granted = requestSR({'R1',1});  
 case 'tM1', granted = requestSR({'M1',1});  
 case 'tC2', granted = requestSR({'C2',1});  
 case 'tC2M2', granted = requestSR({'R2',1});  
 case 'tM2', granted = requestSR({'M2',1});  
 case 'tAS', granted = requestSR({'R3',1}); 
 case 'tPS', granted = requestSR({'R4',1});  
 case {'tM1AS','tM2AS', 'tAP','tPCK'}, granted = 1; % request nothing  
end % switch  
fire = granted; % fire if the required resource is granted  

COMMON_POST: 
function [] = COMMON_POST(transition) 
switch transition.name 
 case 'tC1' % do nothing 
 case 'tC1M1', release('tC1'); % release resource acquired by tC1 
 case 'tM1', release(); % release resource acquired by tM1 
 case 'tM1AS', release('tC1M1'); % release resource acquired by tC1M1 
 case 'tC2' % do nothing 
 case 'tC2M2', release('tC2'); % release resource acquired by tC2 
 case 'tM2', release(); % release resource acquired by tM2 
 case 'tM2AS'% do nothing 
 case 'tAS', release('tC2M2'); 
 case 'tAP' % do nothing 
 case 'tPS', release(); % 'R4'  
 case 'tPCK', release('tAS');  
end % switch  
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n = ntokens('pOB'); % get the number of tokens in pOB 
if eq(n,3), global_info.STOP_SIMULATION = 1; end % stop if n==3 

8.3. Simulation Result 

The simulation result given below is for the production of three units of products, as the 
simulation was started with three initial tokens in each of the places pIB1 and pIB2. The simulation 
result gives a very detailed analysis of the resource usage. Also, if the transitions (activities) and the 
resources are assigned costs (fixed costs and variable costs), the final costs of the products would be 
displayed in the result; however, the costs are neglected (assigned zero value) in this example. 

Simulation results 
RESOURCE USAGE:  
  
RESOURCE INSTANCES OF ***** C1 ***** 
tC1 [0 : 12] 
tC1 [12 : 24] 
tC1 [24 : 36] 
Resource Instance: C1:: Used 3 times. Utilization time: 36 
  
RESOURCE INSTANCES OF ***** C2 ***** 
tC2 [0 : 12] 
tC2 [12 : 33] 
tC2 [33 : 54] 
Resource Instance: C2:: Used 3 times. Utilization time: 54 
  
RESOURCE INSTANCES OF ***** M1 ***** 
tM1 [12 : 17] 
tM1 [24 : 29] 
tM1 [36 : 41] 
Resource Instance: M1:: Used 3 times. Utilization time: 15 
  
RESOURCE INSTANCES OF ***** M2 ***** 
tM2 [12 : 22] 
tM2 [33 : 43] 
tM2 [54 : 64] 
Resource Instance: M2:: Used 3 times. Utilization time: 30 
  
RESOURCE INSTANCES OF ***** R1 ***** 
tC1M1 [10 : 19] 
tC1M1 [22 : 31] 
tC1M1 [34 : 43] 
Resource Instance: R1:: Used 3 times. Utilization time: 27 
  
RESOURCE INSTANCES OF ***** R2 ***** 
tC2M2 [10 : 31] 
tC2M2 [31 : 52] 
tC2M2 [52 : 73] 
Resource Instance: R2:: Used 3 times. Utilization time: 63 
  
RESOURCE INSTANCES OF ***** R3 ***** 
tAS [24 : 44] 
tAS [45 : 65] 
tAS [66 : 86] 
Resource Instance: R3:: Used 3 times. Utilization time: 60 
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RESOURCE INSTANCES OF ***** R4 ***** 
tPS [33 : 41] 
tPS [54 : 62] 
tPS [75 : 83] 
Resource Instance: R4:: Used 3 times. Utilization time: 24 
  
RESOURCE USAGE SUMMARY:  
C1: Total occasions: 3 Total Time spent: 36 
C2: Total occasions: 3 Total Time spent: 54 
M1: Total occasions: 3 Total Time spent: 15 
M2: Total occasions: 3 Total Time spent: 30 
R1: Total occasions: 3 Total Time spent: 27 
R2: Total occasions: 3 Total Time spent: 63 
R3: Total occasions: 3 Total Time spent: 60 
R4: Total occasions: 3 Total Time spent: 24 
  
***** LINE EFFICIENCY AND COST CALCULATIONS: ***** 
 Number of servers: k = 8 
 Total number of server instances: K = 8 
 Completion = 86 
 LT = 688 
 Total time at Stations: 309 
 LE = 44.9128 % 
 **  
 Sum resource usage costs: 0 (NaN% of total) 
 Sum firing costs: 0 (NaN% of total) 
 Total costs: 0 
 ** 

9. Discussion 

General-purpose Petri Net Simulator (GPenSIM) is a software for the modeling, simulation, 
performance analysis, and control of discrete event systems. GPenSIM, developed by the first author 
of this paper, runs on the MATLAB platform. Though GPenSIM is new, it has been accepted by some 
universities around the world because of its simplicity, flexibility, and for the possibilities of 
interaction with the other MATLAB toolboxes and the external environment. GPenSIM (current 
version 9) can be freely downloaded from the website [4]. 

GPenSIM is being used to solve many engineering problems. For example, Service-Oriented 
Architecture [9], Solving Repetitive Production Planning Problems [26], Assembly Line Balancing 
Problems [27], Gameplay [11], Flexible Manufacturing Systems [12], Service Modeling [13], and 
Complex Interconnected Manufacturing Systems [10]. With GPenSIM, control of external hardware 
is also possible, e.g., a logical control system of a marine diesel engine [7], control of Atlantic salmon 
farming industry processes [28], and real-time control of a humanoid robot [8]. Finally, being a 
MATLAB toolbox, GPenSIM is used for integrating Petri net models with the other MATLAB 
toolboxes, e.g., with a Neural Network to make a learning Petri net model [29], with Fuzzy Logic to 
make Fuzzy Petri nets [30], and integration with the RWTH Lego NXT toolbox for real-time control 
of Lego robots [28]. 

9.1. Gpensim Is Not Only for Event Graphs 

In the first half of this paper, the focus was given to strongly connected event graphs. The 
performance of a strongly connected event graph can easily be evaluated using the functions 
available in GPenSIM. The paper starts with the Event Graph, which is a particular class of Petri nets 
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(defined in Section 4.1), that possess the properties defined in Section 4.2. The materials presented in 
Sections 4.1 and 4.2 are for event graphs only. 

However, the application of GPenSIM is not limited to event graphs. As stated in Section 2, 
GPenSIM supports nearly all the well-known Petri net classes and extensions (including inhibitor 
arcs, color extension, enabling functions, priorities, etc.). Since GPenSIM is flexible, other ad hoc 
extensions can also be easily implemented in GPenSIM. 

9.2. The Advantages of the AOPN Approach 

The AOPN approach presented in Sections 3 and 7 can be used to simplify Petri net models of 
discrete event systems, especially ones with a large number of system resources. The AOPN approach 
can be used to obtain compact models, and the functions available in GPenSIM can be used for 
performance evaluation. For reproducibility, the complete code for the simulations shown in the 
paper is available from the website [25]; the interested reader is encouraged to download the code 
and experiment with it. 

To understand the advantage of the AOPN approach from the example given in this paper, we 
have to compare Figure 2 (Timed Petri net model) with Figure 3 (AOPN model). Figure 4 shows the 
run-time model where the arrows labeled “C1” and “R1” show the transitions requesting and 
releasing resources during run-time. Again, by comparing Figures 2 and 3, we can see that the AOPN 
approach provides compact models. Because of the compact models (fewer places and arcs), the Petri 
net models run faster during simulations. However, this is only a secondary advantage.  

The main advantage of the AOPN approach is the following. For the AOPN approach, as 
GPenSIM provides resource management support during simulations (managing resource 
reservations, allocations, and retrievals), GPenSIM also provides a detailed analysis of the resource 
usage, which is not possible by simply running a Petri net as in the case of the other Petri net 
simulators. 
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