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Abstract: Exploiting the Bachet weight decomposition theorem, a new two-dimensional filter is
designed. The filter can be adapted to different multimedia applications, but in this work it is
specifically targeted to image processing applications. The method allows emulating standard
32 bit floating point multipliers using a chain of fixed point adders and a logic unit to manage the
exponent, in order to obtain IEEE-754 compliant results. The proposed design allows more compact
implementation of a floating point filtering architecture when a fixed set of coefficients and a fixed
range of input values are used. The elaboration of the data proceeds in raster-scan order and is capable
of directly processing the data coming from the acquisition source thanks to a careful organization of
the memories, avoiding the implementation of frame buffers or any aligning circuitry. The proposed
architecture shows state-of-the-art performances in terms of critical path delay, obtaining a critical
path delay of 4.7 ns when implemented on a Xilinx Virtex 7 FPGA board.
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1. Introduction

In image processing applications such as object recognition, segmentation or Visual Search (VS), a
filtering stage is always required. In particular, often the convolution operation has to be performed
directly in two dimensions, due to the inherently two-dimensional (2D) nature of the object to process.
Moreover, during the last years the computational complexity of designs dedicated to this kind of
problems underwent a critical growth, due to more complex architecture designs and an increase in the
amount of data to be processed, related to higher resolution images. These kind of issues are typical of
any algorithm working on 2D portions of images [1,2] and they are relevant in both software (SW) and
hardware (HW) applications.

In particular, VS search applications are among those which require most in terms of complexity,
due to the high amount of calculations needed for searching and extracting the features in the input
frame [3]. However, in these kind of applications, SW implementations are usually limited in terms
of maximum achievable frequency, which does not allow for real-time processing in the case of
higher resolution images unless using strong simplifications of the algorithms. Among the most
important 2D filtering applications, one of the most important regards the convolution between a tile
of the image and several Gaussian kernels to obtain the Difference-of-Gaussian (DoG) scale-space
pyramid [4]. These elaborations are required in the Scale Invariant Feature Transform (SIFT) [3,4]
algorithm, for example, where they represent the most computationally demanding step. In this case,
SW implementations of the algorithm require long elaboration times to process a single image, thus
they are not capable of achieving real-time performances, while the problem is worse for images
having higher resolutions [4–8]. For these reasons, HW implementations of filtering stages are more
and more frequent, but it has to be underlined that the effort to obtain optimized designs is not justified
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by the real-time requirements only. In fact, the diffusion of handheld devices and Internet-of-Things
(IoT) applications is leading the research to new designs, capable of achieving better Area-Power-Delay
(ADP) trade-offs. Starting from these considerations, during the last years, several HW design
have been proposed aiming to obtain optimized filtering architectures dedicated to SIFT and feature
extraction [8–10].

Another issue arising in applications dealing with image processing is related to the large amount
of data to be processed and stored and thus to the memory requirements for frame buffering. At this
end, other works have focused on memory management in order to develop architectures capable of
optimizing memory designs, together with writing and reading operations. The solution proposed
in [11] exploits custom coding and a partial serialization of the filtering operation to obtain a buffer-less
solution. The design is tailored for DoG operations and its method could not be used as presented
for other VS applications or other methods not using Gaussian kernels. On the contrary, the design
presented in [12] could be used with kernels different from the Gaussian one, since it does not recur
to the separability property of the Gaussian kernels, presenting a complex arrangement of SRAMs
modules, row shuffling operations and dedicated logic, which complexity grows with the dimensions
of the tile to be processed.

Another huge difference between SW and HW implementations regards the simplification of
the operands from IEEE-754 floating point data (FP32) to fixed point (FI) ones. This simplification
reduces the accuracy of the design to obtain units capable of performing multiply-accumulate (MAC)
operations with better ADP performances, while reaching a trade-off on the accuracy of performances.
Meanwhile, very few studies have been conducted to optimize the arithmetic units and improve their
performances. Other simplifications of the above-cited methods regard reductions of the algorithm’s
complexity, such as the reduction in the number of scales or octaves or a decrease of the value of the
standard deviation of the Gaussian filter in the case of SIFT applications [13,14].

The aim of the present work is to develop a novel 2D convolutional filter for the processing of
images obtaining FP32 results, showing low area occupation and power consumption, while achieving
good speed performances. This has been achieved exploiting an ad hoc partitioning method of the
operands [15,16], dedicated to multimedia applications and to all other applications which present a
well-defined integer input range and working on kernels of fixed coefficients. Moreover, the design
is capable of working on continuous data streams, which could be provided by either an external
memory or an acquisition device, such as an image sensor without using any frame buffer, thanks
to a careful organization and management of small intermediate buffers, which allow for on-the-fly
calculations. The organization of the data and the management of the memory structures have been
favored by the optimized hard macros available in modern Field Programmable Gate Arrays (FPGAs)
to implement Block-RAM (BRAM) modules. However, the FPGA implementation has been chosen
not only for the availability of hard macros for the memory structures, but also for prototyping
purposes, before developing an Application Specific Integrated Circuit (ASIC) design. Avoiding the
use of multipliers, the design achieves great area reduction if compared to structures having the same
accuracy, allowing to greatly improving the performances to obtain a FP32 compliant result in this
case. The implementation of the proposed design on a high-end FPGA board shows a worst delay
path of 4.7 ns to elaborate an IEEE-754 FP32 compliant results in the slow/slow corner, considering a
3 × 3 pixels window as input.

2. Mathematical Background

The implemented partitioning method derives from a problem stated for the first time by
the French mathematician Claude-Gaspard Bachet de Méziriac in the XVII century. The original
formulation of the problem regarded how to establish the minimum set of integers to obtain any
integer number included in the range [1; 40] using addition and subtraction of the parts composing
the set. The problem, known as Bachet’s Weights Problem, concerns theory of numbers and was
analytically discussed for the first time by Hardy and Wright in [17]. However, a solution to the
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generalized Bachet’s problem, in which 40 could be replaced with any integer number, has been
developed in the last years in [18,19]. A complete review on the problem, its discussion and on the
relative theorems is provided in [20]. The principal conclusions which are useful in understanding the
proposed design are summed up in the following.

Theorem 1. Given a range of integers [0; r], it is possible to define a set of integers Sr = {λ0, λ1, λ2, . . . , λn−1, λn}
of cardinality n + 1 =

⌊
log3(2r)

⌋
+ 1 capable of obtaining all the values in the given range as a combination

of the terms λi ∈ Sr, called parts.

Theorem 2. The set Sr is composed by union of the first n powers of 3 and the term R = r − (30 +

31 + 32 + . . . + 3n−1). The obtained set could then be rewritten as Sr = {λ0, λ1, λ2, . . . , λn−1, λn} :={
30, 31, 32, . . . , 3n−1, R

}
.

Theorem 3. The obtained partition is a unique one and does not exist any other partition, St, of the set [0; r]
which satisfies the conditions stated in Theorem 1 and Theorem 2 and is composed by fewer than n+1 elements,
as Sr.

The reported theorems allow to express any integer number in the input range, q ∈ [0; r], as a
combination of the previously calculated parts

q =
n

∑
i=0

Ciλi (1)

where Ci is the generic coefficient defined in the set C := {−1, 0, 1} and used to obtain the correct
choice of the parts. The application of the proposed method to obtain any q number is given in Table 1,
in the general case of (n + 1) parts and.

Table 1. Application of the proposed method.

Input Value
Bachet Partition

30 31 32 33 . . . λn

0 0 0 0 0 . . . 0
1 +1 0 0 0 . . . 0
2 −1 +1 0 0 . . . 0
3 0 +1 0 0 . . . 0
4 +1 +1 0 0 . . . 0
5 −1 −1 +1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .
q C0 C1 C2 C3 . . . Cn

. . . . . . . . . . . . . . . . . . . . .
r +1 +1 +1 +1 . . . +1

Equation (2) shows an example in the case of an 8 bits input, in which the partition set is defined
as Sr = {1, 3, 9, 27, 81, 134} for the input 42

q = 42 = (0)× 1 + (−1)× 3 + (−1)× 9 + (−1)× 27 + (1)× 81 + (0)× 134 (2)

and the set of values Ci = {0;−1;−1;−1;+1; 0}.
It is now possible to understand how Equation (1) is capable of obtaining a partition of a generic

multiplication between an input pixel, representing an integer value, and a value taken from a set
and representing a coefficient of a Gaussian kernel. Doing this operation also for the other pixels
composing the input tile, having dimensions K× K, it is then possible to obtain the result of the 2D
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convolution between the input tile and a generic kernel F, of the same dimensions. The result of the
filtering operation for the central pixel of the tile I(x0, y0) could be rewritten as

O(x0, y0) =
K−1
∑

h=0

K−1
∑

j=0
F(h, j)I

(
x0 + h − K−1

2 , y0 + j − K−1
2

)
=

=
K−1
∑

h=0

K−1
∑

j=0
Fh,j

n
∑

i=0
Ci

(
x0 + h − K−1

2 , y0 + j − K−1
2

)
λi =

K−1
∑

h=0

K−1
∑

j=0

n
∑

i=0

(
Fh,jλi

)
Ci

(
x0 + h − K−1

2 , y0 + j − K−1
2

) (3)

where F(h, j) = Fh,j and the general input tile I(x, y) is a matrix in which each element can be
decomposed as in (1).

In typical image and video applications working on gray scale images, such as in the case of VS,
the input data is coded using 8 bits, representing an integer number in the range [0; 28 − 1]. In these
cases, choosing the dimensions of the kernel, it is possible to obtain the coefficients of the filter, Fj, and
precompute all the partial products between all the Fh,j and all the parts λi. All these pre-calculated
products could then be used to rewrite the convolution operation as a summation of the various
terms, P:

O(x0, y0) =
K−1

∑
h=0

K−1

∑
j=0

P
(

x0 + h − K− 1
2

, y0 + j − K− 1
2

)
(4)

where

P
(

x0 + h − K− 1
2

, y0 + j − K− 1
2

)
= F(h, j)I

(
x0 + h − K− 1

2
, y0 + j − K− 1

2

)
.

The minimality property of the Sr set, obtained using the proposed partition method, guarantees
a simplified computational complexity to implement Equation (4), if compared to a classical base-2
Distributed Arithmetic (DA) method. Moreover, compared to a base-2 DA decomposition method, the
proposed architecture avoids shift operations.

3. The Proposed Architecture

The proposed method has been used to implement a 2D filter, starting from a single FP32
multiplier unit developed using the Bachet decomposition. The input pixels are, in general, coded
on m bits, representing unsigned integer data, and they are acquired in raster-scan mode, without
using input frame buffers or caching apparatus, except from the one provided by the input acquisition
device itself. The main units composing the architecture are:

• a Coefficient Generator Unit;
• a Memory Module;
• a Filtering Module.

A block scheme of the proposed implementation is depicted in Figure 1.
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3.1. Coefficient Generator Unit

In order to calculate the combination of the various λi parts, a unit capable of generating the
various Ci coefficients for any q of the input range is needed. This unit, called Coefficient Generator
Unit, takes as input the Uint-m data and returns a 2(

⌊
log3

(
2m+1)⌋+ 1) bits string as output, since

every sign coefficient Ci is coded on 2 bits. The unit is principally made up by a Read-Only Memory
(ROM) implementing the coding reported in Table 1, where the input range, i.e. the value of the input
length in bits, m, establishes the size of the ROM needed to store all the coefficients, which value is

MC = 2m+1 · (
⌊
log3(2m)

⌋
+ 1) (5)

Obviously, after this operation the input pixel value is no longer needed, since this information is
coded in the associated coefficients that are sent to the Memory Module. Figure 2 reports the memory
requirement for the Coefficient Generator ROM varying the number of the input bits.
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3.2. Memory Module

The data coming from the Coefficient Generator Unit are stored in a Serial Input Parallel Output
(SIPO) unit. The SIPO takes the input pixels in raster scan order and could be represented as a stripe
buffer having dimensions K ·W, to store the first K rows of the frame to be elaborated. Only when the
first K values of the last row arrive to the buffer, the data related to the tile to be processed are ready
to be sent to the filtering stage. In this way, after the Memory Module stored (K− 1)× (W − 1) + K
values it is possible to process one pixel per cycle, due to the organization of the memory described
above. In fact, the insertion of a new data in the Memory Module, causes the shift of those stored in a
way that data to be filtered result naturally aligned in the new tile, without any additional operation.

An implementation of the described Memory Module could be carried out using registers to
compose the entire stripe buffer, but this kind of solution has the major drawback of requiring a
large amount of physical resources. In fact, for an 8 bit input, in the case of working on VGA frames
(640 × 480 pixels), would require, in the case of a kernel having K = 25, 640× 25 = 16, 000 values;
considering that each value is coded on 12 bits, the total amount of memory to be implemented has to
store 188 Kbits. A much more fitting solution consists of using embedded BRAMs modules, emulating
the SIPO structure behavior, to store a complete frame row, with the exception of the data to be sent to
the Filtering Module which are stored in registers instead. On the contrary, the K ·K tile has to be stored
in registers, in order to preserve the data stream and to allow the transfer of all the tile to the final
filtering structure. It is important to note that, due to the use of RAM structures, the shifting operations
do not involve any data transfer, but only a careful management of the generation of the addresses
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to emulate the shift operations and maintain the correct alignment of the data. The solution is also
advantageous due to the availability of hard macros in modern FPGA boards, which are optimized for
data transferring and storing operations. Using a partial tile buffer, the proposed implementation is
always better in terms of resource requirements if compared to a buffer-based one in terms of amount
of memory to be stored.

3.3. Filtering Module

In order to calculate (3), the pre-calculated products Fh,jλi are stored in (n + 1) small ROMs, one

for each part, whose dimensions are reduced to
dK/2e

∑
i=1

i words for the symmetry of the kernel. A further

simplification of the operation to be performed could be achieved storing also the 2’s complements
of the pre-multiplied coefficients in the ROMs. In this way, when the generic Ci = −1, any further
logic circuitry to complement the operands for the subtraction operation is not needed. The outputs of
the ROMs together with the coefficients bits coming from the Memory Module are sent to the Bachet
multiplier units. It is important to note that all the ROMs must be read at the same time. The structure
of the developed equivalent FP32 multiplier unit is depicted in Figure 3.
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It is basically composed of an adder tree structure, having depth dlog2(n + 1)e and made up
by n adder units. The operation performed by the architecture is the one presented in Equation (3):
the pre-multiplied coefficients are selected using a multiplexer and the Ci coefficients coming from
the stripe buffer as selection inputs. The partial results of the multiplications then have to be added
together with the products calculated for the other pixels, to complete the convolution operation.

Moreover, the operands have been custom recoded to obtain further simplifications of the
complexity of the proposed architecture, without accuracy losses. In fact, starting from considerations
of the FP32 format it is possible to code the starting coefficients and the partial results as FI data,
establishing the appropriate codelength in order to not undermine the accuracy of the result of the
single multiplication and of the overall convolution operation. To obtain this implementation, first a
careful study of the IEEE-754 coding of the product between the kernel coefficients and the parts set
has to be conducted. Then, all the exponents of the pre-multiplied coefficients have to be reported to
the greatest exponent among all the used coefficients and the significands have to be shifted according
to the difference between the maximum exponent value and the significand exponent. Hence, to obtain
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the correct FI coding, the codelength of each operand has to be increased to avoid any truncation of
the operands that could undermine the accuracy of the result. Given the minimum and maximum
kernel coefficients, Fmin and Fmax, it is possible to obtain an analytical formula to choose the adequate
codelength, lS, as

lS =

⌈
23 + log2

(
Fmaxλn

Fminλ0

)⌉
(6)

where 23 bits are the length of the standard FP32 significand while λ0 and λn represents the minimum
and maximum element of the calculated part set, respectively. Using this type of coding, the mantissas
of the partial results do not need any normalization operation and the exponents are not taken into
account in these operations, causing a resource and thus an area saving. The normalization operations
on both the mantissa and exponent of the final results will be then performed in order to obtain a
FP32 compliant format, allowing to correctly reuse the outputs of the Filtering Module for further
elaborations.

3.4. Memory Reduced Bachet Multiplier Architecture

A study on the amount of memory to be stored, increasing the dimensions of the tile to be
processed, has been conducted. The results are shown in Figure 4.
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Given an input range, the amount of memory to be stored related to the Ci does not increase
with the filter, as showed in Equation (5). On the contrary, the number of bits to be stored that are
dedicated to the pre-multiplied coefficients undergoes a huge increase with the filter size. Analytically
the number of bits, Mparts, increases as

Mparts = 2lS(n + 1)
dK/2e

∑
i=1

i (7)

where lS is the coefficient codelength, (n + 1) is the number of parts and
dK/2e

∑
i=1

i is the number of

coefficients to be considered.
This could result in unacceptable memory requirements in the case of memory-constrained

applications. We developed a memory-reduced implementation of the Bachet multiplier, which
is capable of obtaining the other Fh,jλi coefficients starting from Fh,jλ0 and their 2’s complement
counterparts. The other coefficients are obtained by shift and add operations on the stored Fh,jλ0 and
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−Fh,jλ0 stored terms. Table 2 reports the shift and add operations in the case of an 8 bit input. In this
case, Equation (6) could be rewritten as

Mparts = 2lS
dK/2e

∑
i=1

i (8)

Table 2. Detailed shift and add operations for an 8 bits input design.

Operation # of Shifts # of Additions

λ0 = 1 – 0 0
λ1 = 3 2 + 1 1 1
λ2 = 9 23 + 1 3 1
λ3 = 27 25 − 22 − 1 7 2
λ4 = 81 26 + 24 + 1 9 2

λ5 = 134 27 + 22 + 2 10 2
−λ0 = −1 – 0 0
−λ1 = −3 −2 − 1 1 1
−λ2 = −9 −23 − 1 3 1
−λ3 = −27 −25 + 22 + 1 7 2

This approach reduces the number of embedded ROMs to be implemented on the targeted FPGA
at the cost of allocating more logic and algebraic elements. We have to underline that in the 8 bit
input case there is no need to store the 2’s complements of λ4 and λ5, since the related pre-multiplied
coefficients are never used in the decomposition operations for the given input range.

4. Results

At the end of obtaining an implementation that could be easily compared to the ones presented in
literature related to VS applications, we decided to implement a 2D Gaussian kernel, working on 8 bit
inputs. In typical VS applications a minimum size K = 3 is fixed for the kernel, thus this size has been
chosen for the Gaussian kernel. The input range fixes the r parameter, r = 2m − 1 = 255, and thus
from Theorem 1 and Theorem 2 it is possible to state that n + 1 =

⌊
log3(2r)

⌋
+ 1 = 6 parts are needed,

while the parts set is given by Sr = {1, 3, 9, 27, 81, 134} and the codelength requirement to code the
sign coefficients Ci for each input pixel is lc = 12 bits.

In order to obtain the codelength on which to code the pre-calculated coefficients, further
considerations have to be developed on the filter. A standard 2D symmetric Gaussian kernel function
is analytically represented by

G(x, y, σ) = (2π)−1σ−2e−
x2+y2

4σ2 (9)

and starting from that it is possible to obtain the Fmin and Fmax values

Fmin = Gmin = G(3, 3, σ) = (2π)−1σ−2e−
18σ2

2σ2 = (2π)−1σ−2e−9

Fmax = Gmax = G(0, 0, σ) = (2π)−1σ−2
(10)

Since λ0 = 1 and λn = 134, substituting these values in (5) we obtain a length of the significands
lS =

⌈
23 + log2

(
λne9)⌉ = 44 bits. An example of the custom recoding is given in Table 3.

Table 3. Detailed shift and add operations for an 8 bits input design.

Smallest Coeff. r λn FP32 Coding of 1.1 × 10−3 Modified Coding of 1.1 × 10−3

1.1 × 10−3 255 134 0 01110101001 00000010110111100000 0000000000000100100000010110111100000
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The results related to the implementation of the proposed filter are instead presented in Table 4,
together with a comparison with architectures using conventional FP32 multipliers and a one using
Modified Booth (MB) multipliers, used to compare the proposed design with DA related techniques.

Table 4. Synthesis of results for the proposed filter implementation compared with other designs.

Proposed Proposed Reduced
Memory

Conventional
FP32 MB Prop. FP16 Cabello [21]

Tech. XC7V XC7V XC7V XC7V Spartan 6 Spartan 6
LUTs 4750 7760 7732 8606 2395 5052

Mem. [bytes] 582 417 – 528 4 BRAM 1 BRAM
MC [bytes] 384 384 – – –

Mparts [bytes] 198 33 – – –
Delay [ns] 4.700 4.720 17.432 8.785 6.90 10

Power * [W] 0.684 0.728 0.907 1.226 – –

* Normalized at 100 MHz.

All the implementations have been targeted to the same FPGA board, considering the
multiplication between a FP32 and an 8 bits integer data at the end of a fair comparison. Moreover, to
obtain results which are as reproducible as possible, Xilinx IPs have been used in the comparisons to
implement the multiplier and adder units. In particular, the multiplier units have been implemented
using a 3-stage pipeline design. We imposed not too aggressive constraints, always to obtain a fair
comparison between the various designs. With this in mind, we forced the system to use BRAM
modules and we do not allow the use of Digital Signal Processors (DSP), aiming to obtain a good
estimation for future std_cell implementation, towards an ASIC realization of the proposed design.

As it is possible to notice from the data reported in Table 4, the proposed design is very fit to
be implemented on an FPGA board, since it is possible to obtain good speed and area performances
exploiting the availability of hard macros to implement both BRAMs and ROMs. The structure
developed is capable of processing one pixel per cycle in 4.700 ns. This represents a 371% increase in
speed compared to a conventional FP32 multiplier and a 187% increase compared to a MB multiplier.
A Floating-Point (FP) implementation on 16 bits of the proposed design has been also developed at
the end of comparing the proposed architecture with the one presented in [21]. This design has been
implemented on a Xilinx Spartan 6 board, using Nexys 3, in order to obtain a fair comparison with the
design in [21]. The results are also reported in Table 4. The number of LUTs required for the proposed
implementation are approximately 38.6% and 44.8% lower than in the conventional FP32 and MB
cases, respectively. However, in the case of memory-constrained applications, it is possible to use the
Memory Reduced implementation of the Bachet multiplier described in Section 3.4. To briefly recall,
this solution reduces the number of stored coefficients and, hence, of the related memory, deriving a
large number of coefficients by shift and add operations. For these reasons, it shows a small increase
in the number of occupied LUTs with respect to the conventional FP32 filter design, while having
approximately the same delay path of the classical Bachet filter. Furthermore, it has to be underlined
that, since almost the totality of the LUTs considered in Table 4 are used to implement the multipliers, it
is correct to say that increasing the size of the tile, K, the LUTs occupation will increase approximately
as K2, while the memory requirements will scale as shown in Figure 4. The performances for the
various architectures in terms of frames-per-second, by varying the resolution of the processed frames
are reported in Table 5.

Table 5. Performances of the reported designs in terms of frames-per-second (fps) varying the resolution
of the frames.

Proposed Proposed Reduced Memory Conventional FP32 MB Prop. FP16 Cabello [21]

VGA (640 × 480) 692 689 186 370 471 325
Full-HD (1920 × 1080) 102 102 27 54 69 48

4K UHDTV (3840 × 20160) 25 25 6 13 17 12
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Furthermore, VS applications usually require great amounts of memory; for this reason the
amount of memory required to implement the proposed architecture does not represent an actual
problem in most VS applications. In fact, due to the implementation of frame buffers [22] or partial
data storage [23–25], in these designs usually the memory requirements are in the order of Mbits,
making the additional memory required to store the coefficients negligible.

Finally, it is important to notice that implementations regarding Gaussian filters are some of the
most demanding applications in terms of resource usage. For this reason, it has been employed in
the proposed design. However, the proposed design can be very easily adapted to different kernel
filters, by simply changing the stored coefficients. This modification, in general, causes a favourable
reduction of the amount of mapped memory. Meanwhile, the arithmetic complexity of the convolution
operation does not vary, depending only on the number of additions to be performed and thus on
the dimensions of the kernels of the filters. For example, in the use of a weighted average filter or a
Sobel filter it is possible to store fewer coefficients than in the Gaussian case. This results in a simpler
implementation and allows for better performances, even on semi-custom devices [26].

5. Conclusions

This work proposes an HW design for two-dimensional filtering applications for image and video.
The results are particularly interesting for feature extraction and VS applications, where issues arise due
to the high number of operations and required memory. The proposed architecture strongly intervenes
on both of these issues, to improve the throughput and reduce the area occupation of the structures at
the same time, in the case of FP32 data elaboration. Moreover, a memory-reduced implementation of
the proposed method has been developed to be targeted to memory-constrained applications.

This has been done by exploiting a new partitioning method to simplify the arithmetic units
and in particular to substitute multipliers with equivalent units formed by small ROMs, simplified
adders. This solution is capable of achieving state-of-the-art performances when implemented on an
FPGA board.
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