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Abstract: There is a growing need to be able to accurately and efficiently recognize similar models 
from existing model sets, in particular, for 3D models. This paper proposes a method of similarity 
measurement of 3D models, in which the similarity between 3D models is easily, accurately and 
automatically calculated by means of skeleton trees constructed by a simple rule. The skeleton 
operates well as a key descriptor of a 3D model. Specifically, a skeleton tree represents node features 
(including connection and orientation) that can reflect the topology and branch features (including 
region and bending degree) of 3D models geometrically. Node feature distance is first computed by 
the dot product between node connection distance, which is defined by 2-norm, and node 
orientation distance, which is defined by tangent space distance. Then branch feature distances are 
computed by the weighted sum of the average regional distances, as defined by generalized 
Hausdorff distance, and the average bending degree distance as defined by curvature. Overall 
similarity is expressed as the weighted sum of topology and geometry similarity. The similarity 
calculation is efficient and accurate because it is not necessary to perform other operations such as 
rotation or translation and it considers more topological and geometric information. The experiment 
demonstrates the feasibility and accuracy of the proposed method. 

Keywords: skeleton tree; similarity measurement; model recognition; topology feature; geometry 
feature 

 

1. Introduction 

With rapid developments in computer hardware and computer technology, the construction of 
3D models has become much easier. This has contributed to an increasing accumulation of 3D 
models. In the last 20 years, model recognition has become one of the most popular fields of computer 
science. It has wide application in the fields of Computer Aided Design (CAD)/Computer Aided 
Manufacturing (CAM) [1,2], integrated circuit design [3], digital city planning [4], biomedical 
engineering [5], military applications [6], mesh decomposition [7], virtual reality [8], education [9] 
and animation [10]. Making full use of the existing resources of 3D model data can greatly reduce the 
workload of designing new models and promote the flow of 3D data and its application in various 
fields [11,12]. 

The core content of model recognition is similarity measurement between models. At present, 
there are a lot of similarity measurement methods:  

(1) Statistic characteristic-based methods. A classical algorithm is the shape distribution histogram 
formed by using the sampling function as the shape descriptor. The geometric similarity 
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between shapes can be measured by the histogram [13]. To calculate the distance histogram 
between any two points on a shape, the enhanced shape function is used to obtain better 
experimental results [14]. The statistic characteristic-based method has a good outcome for 
global matching of models, but it does not have good performance for local matching.  

(2) Geometry-based methods. This method is based on various frequency domain features of a 
model. By using a weighted point set to describe a 3D polyhedral model, the similarity between 
two shapes can be computed by employing the Earth Mover’s Distance to compare their 
weighted point sets [15]. The global properties of a 3D shape can be represented by the reflective 
value where all planes pass through the shape’s center of mass [16].  

(3) Projection-based methods. This method mainly does the projection transform processing of a 3D 
model in different directions, which can obtain a series of 2D projection images of 3D models for 
model retrieval. A comparison method has been proposed by Min et al., based on 2D contouring 
of 3D models [17]. However, this method can only describe the brightness distribution of models 
and cannot effectively reflect their topological features.  

(4) Topology-based methods. Most prior work has focused on skeleton graph or skeleton tree-based 
methods. The basic idea is as follows: first transform the skeleton or shape axis into an attribute 
(or relation) graph or a tree structure, called the skeleton tree. Then a graph or tree matching 
algorithm is used to measure the similarity between models. A detailed review of the skeleton-
based method is summarized in the next section. 

In this paper, we propose a method for measuring the similarity of 3D models. A skeleton tree 
constructed by a simple rule is used as a descriptor of a 3D model, which can completely retain its 
topological features. Based on the skeleton tree, we add topological and geometric information 
deriving from the model to node and branch features, and their respective feature distances are 
reasonably defined. The final overall similarity is defined by the weighted sum of topologic and 
geometric similarity, reflected by similarities in the node and branch features. Compared with related 
existing methods, our method considers the information on topology and geometry more 
comprehensively because of taking the node connection and orientation features and geometric 
feature of the skeleton’s points and branches into account, which contributes to high accuracy and 
good results. Our research work is a significant development in 2/3D model matching, recognition 
and retrieval. 

The remainder of the paper is organized as follows. The next section contains a summary of 
related work. Section 3 gives an overview of our proposed method. Section 4 develops the skeleton 
tree construction. Section 5 describes the details in node feature similarity. Section 6 presents the 
details in branch feature similarity. Section 7 offers overall similarity measurement. Section 8 involves 
experiment and discussion. Finally, Section 9 concludes and describes future research directions. 

2. Related Work 

The vast majority of methods in model recognition have concentrated on skeleton-based 
methods, which are usually based on graph or tree representations of skeletons. These have been well 
studied by many researchers. Below, we focus on research areas related to the efforts in this paper. 
For a broad introduction to model recognition method, please refer to any of References [18–22]. 

In early work, a large number of skeleton graph-based recognition methods were proposed and 
have achieved good performance on object recognition. Blum [23] transformed the skeleton or medial 
axis into attribute relation graphs (ARG). The similarity between two objects can be measured by 
matching their ARGs. Zhu and Yuille [24] used a branch bounding that is confined to animate objects 
to match the skeleton graphs of objects. Siddiqi et al. [25–29] proposed a kind of ARG, the shock 
graph, based on shock grammar. The similarity between two 2D objects can be measured by matching 
their shock graphs. Sundar et al. [30] first transformed skeletons into skeleton graphs by using a 
minimum spanning tree (MST) algorithm, then matching it to a skeleton graph. Sebastian et al. [31,32] 
performed the recognition of shapes by editing shock graphs, defining the cost of the least action path 
deforming one shape to another as the distance between two shapes. Ruberto [33] took medial axis 
characteristic points as an attributed skeletal graph (ASG) to model a shape. The matching process 
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for ASGs is based on a revised graduated assignment algorithm. This method can deal with the 
occlusion problem, but it cannot obtain an optimal matching result due to the heuristic rule. Torsello 
and Hancock [34,35] measured the similarity of 2D shapes with the help of a shock tree by using the 
rate of change of boundary length with distance along the skeleton to define this measure. 
Shokoufandeh et al. [36] described a topological index successfully developed from a shock graph in 
a large database. The eigenvalues of the adjacency matrices of their subgraphs are used to calculate 
the similarity between them. Aslan and Tari [37] developed an unconventional matching scheme for 
shape recognition using skeletons with disconnected branches in the course level. The presented 
matching algorithms can find the correct results of correspondences and generate a similarity value. 
Bai and Latecki [38] presented skeleton graph matching based on the similarity of the shortest paths 
between each pair of endpoints of the pruned skeletons. Xu et al. [39] matched skeleton graphs by 
comparing the geodesic paths between critical points (junction points and end points). Most of these 
skeleton graph-based recognition methods are time consuming because of the complexity of the 
shock grammar, graph matching algorithms, and calculation of eigenvalues. Moreover, these 
methods do not perform well for for 3D object recognition. 

More recent work has developed a method for shape recognition that is relatively simple and 
efficient compared to the skeleton tree-based method. This method transforms the skeleton into a tree 
structure, called a skeleton tree, according to the construction rule. Hilaga et al. [40] constructed a 
multi-resolution Reeb graph (MRG) representing the skeletal and topological structure of a 3D model 
based on geodesic distance. The overall similarity calculation between different 3D models is 
processed using a graph matching algorithm. This method can cope well with loop structures and 
generates intuitive results. Nevertheless, this method merely depends on topological features when 
recognizing different shapes, which may fail in distinguishing different shapes with similar 
topologies. Pelillo et al. [41] developed a different framework for matching unrooted trees by 
constructing an association graph with maximal cliques. Liu et al. [42] constructed a free tree structure 
and used a tree matching scheme to calculate the similarity between two 2D shapes; their method can 
deal with articulations, stretching, and occlusions. This method does not require any editing of the 
skeleton graph, but merge, cut, and merge-and-cut operations are essential before matching the free 
trees. Liu et al. [43] proposed a similarity measurement framework by using the skeleton tree 
represented by tree descriptor. The similarity between two branches is defined as the weighted sum 
of the average curvature difference (ACD) and the average area difference (AAD). This approach has 
the time complexity of O(n3). As this approach only uses a branch to represent geometric features, it 
may not include all the geometry information of an object, though this limitation can be improved by 
taking inherent geometry properties into account. Demirci et al. [44] proposed an accurate matching 
algorithm by constructing a metric tree representation of the two weighted graphs, which can 
establish many-to-many correspondences between the nodes of two noisy objects. However, the 
transformation from graphs to trees has to go through the heuristic rule. In addition, how to choose 
an optimal root node needs to be considered as this has a great influence on matching results. Xiao 
[45] recognized microscopic images of diatom cells by using skeleton tree matching, defining 
topological and geometric differences to establish a similarity mode for microscopic images of 
Chaetoceros, but this method is only suitable for diatom cells recognition. Jiang et al. [46] presented 
a skeleton graph matching algorithm, namely an order-preserving assignment algorithm, based on a 
novel tree shape which considers both the positive curvature maxima and the negative curvature 
minima of the boundary. It has low computational complexity and good performance, but the shape 
tree does not consider topological structures. Garro and Giachetti [47] introduced a novel framework 
for non-rigid and textured 3D shape retrieval and classification with the help of TreeSha-based shape 
representation, which can offer better similarity recognition and better retrieval results than existing 
methods on textured and non-textured shape retrieval benchmarks and give effective shape 
descriptors and graph kernels. 

There are other new methods in shape recognition. Chen and Ming [48] proposed a 3D model 
retrieval system based on the Reeb graph, linked with preprocessing that can accelerate the graph-
matching step. Biasotti et al. [49] presented an efficient method for partial shape-matching based on 
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Reeb graphs. Goh [50] described some useful strategies for 2D shape retrieval. These strategies 
include dynamic part decomposition, local and global measurement, and weighting skeletal 
segments. The incorporation of these strategies significantly improves shape database retrieval 
accuracy. Biasotti et al. [51] devised an original framework for 3D model retrieval and classification. 
Similarity between shapes is measured by attractive features of size functions computed from skeletal 
signatures. Experimental results demonstrate that this method is efficient and effective. Tierny et al. 
[52] used a Reeb graph to represent shapes and developed a fast and efficient framework for partial 
shape retrieval, where partial similarity between two shapes is evaluated by computing their 
maximum common sub-graph. Zhang et al. [53] achieved 3D non-rigid object retrieval by utilizing 
integral geodesic distance. Their proposed coarse-to-fine process can reduce the large computational 
cost of matching. Barra and Biasotti [54] developed a new unsupervised method for 3D shape 
retrieval based on the extended Reeb graphs. Using kernels as descriptions to measure the similarity 
between pairs of extended Reeb graphs, their method has been tested on three databases to verify its 
good performance. Usai et al. [55] presented a novel method for extracting the quad layout of a 
triangle mesh guided by its accurate curve skeleton; t this quad layout is able to reflect the intrinsic 
characteristics of the shape. Also, this method has applications to semiregular quad meshing and UV 
mapping, which may provide good shape representation for 2/3D shape matching. Guler et al. [56] 
presented a SIFT-based image matching framework for 2D planar shape retrieval. Their shape 
similarity measurement is based on the number of matching internal regions. Yang et al. [57] 
proposed a novel 2D object matching method based on a hierarchical skeleton capturing the object’s 
topology and geometry, where determining similarity considers both single skeletons and skeleton 
pairs. Yasseen et al. [58] developed a 2D shape matching method, which can perform a part-to-part 
matching analysis between two objects’ visual protruding parts to measure the distance between 
them. Yang et al. [59] mentioned a new shape matching method based on the interesting point 
detector and high-order graph matching. It can consider geometrical relations and reduce 
computational costs for point matching. Shakeri et al. [60] devised a groupwise shape analysis 
framework for subcortical surfaces based on spectral marching theory. This spectral matching 
process can build reliable correspondences between different surface meshes and is likely to help to 
investigate groupwise structural differences between two study groups. Yang et al. [61] proposed a 
novel invariant multi-scale descriptor that can capture both local and global information 
simultaneously for shape representation, matching, and retrieval by adopting the dynamic 
programming algorithm to conduct shape matching. Since most of these new methods are applied to 
2D object recognition, they do not have good applicability and performance on 3D object recognition. 

To summarize: many previous methods either have operational complexity or cannot be well 
used for 3D models because they develop complicated rules for graphing (or tree definition) or pay 
more attention to 2D modeling. The motivation behind our work is to present a simple method of 
similarity measurement with high accuracy for 3D model matching, recognition, and retrieval. 

3. Overview of Method 

Our method easily and efficiently measures the similarity of 3D models. Compared with the 
skeleton graph or tree-based methods, we can construct an open and linear skeleton tree by a simpler 
rule. With the help of topologic and geometric information included in a skeleton tree, and by 
considering extra information on these two aspects, similarity measurements of 3D models can be 
successfully achieved for 2/3D model matching, recognition, and retrieval. 

Initially, a simple rule of skeleton tree construction is proposed with the help of a skeleton, which 
completely retains the topologic information of the model. Next, the node feature is described from 
two sides, the node connection feature and the node orientation feature. The former directly reflects 
how to connect with the sub-parts in the model. The latter has an ability to distinguish a model with 
similar topology but a different shape, which is usually overlooked by existing methods. Node 
connection distance and orientation distance are defined by 2-norm distance and tangent space 
distance, respectively. The final node feature distance is expressed by the dot product between them. 
Then the branch feature is used to depict the geometric features of the model, which mainly takes an 
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average regional feature that can reflect the contours of the model and an average bending degree 
feature that can take bending into account. In calculating average regional distance, we first define 
three geometric properties for skeleton points, including relative support angle, relative density, and 
relative anchor point distance. Then the generalized Hausdorff is used to compute the distance 
between two skeleton point sets. We take this distance as the average regional distance. Average 
bending degree distance is defined by the curvature of a skeleton branch. Final branch feature 
distance is expressed by the weighted sum of these two distances. Finally, the overall similarity of 
skeleton trees is defined as the weighted sum of topologic and geometric similarity, reflected by node 
and branch feature similarity. The weight of topology and geometry can be adjusted according to 
different models. If the difference in topology between two models is larger, we give topology a larger 
weight. If the difference in geometry is larger, we give geometry a larger weight. If topology and 
geometry have an equal effect on the model, we give them same weight (0.5). A flow chart of our 
method is shown in Figure 1. 

 
Figure 1. The whole flow of our method. 

4. Skeleton Tree Construction 

The skeleton is an important foundation for skeleton tree construction. An extracted skeleton 
should retain the key topological information of model. Here, we use the mesh contraction method 
proposed by Au et al. [47] to effectively extract a smooth curve-skeleton with correct connectivity and 
topology. This method is simple to perform and insensitive to noise. The extraction of 3D model 
skeletons in both experiments uses this method. Next, we map the skeleton to a tree structure named 
the skeleton tree. 

Definition 1. If a skeleton point is only adjacent to one point on the skeleton, it is considered as an endpoint 
(EP); if a skeleton exists two or more adjacent points on the skeleton, it is considered as a junction point (JP). 

Branch feature

Average regional distance
Distance is defined by

Generalized Hausdorff distance 

Average bending degree distance
Distance is defined by

Curvature of skeleton branch

Branch feature distance is defined by their weight sum

Overall similarity

Overall similarity is defined by the weight sum of topology and 
geometry similarity reflected by node and branches feature similarity

Node feature

Node connection feature
Distance is defined by

2-norm

Node orientation feature
Distance is defined by

Tangent space

Node feature distance is defined by their dot product

Skeleton tree construction

3D models
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Definition 2. Linking any two connected skeleton points to form the sequence constitutes a skeleton branch. 

A simple and intuitive method of constructing the skeleton tree follows: 
The endpoint and the junction point are selected as the nodes of the skeleton tree. The skeleton 

branch is a branch of the skeleton tree. We select a skeleton point located as close as possible to the 
center of model as the top node of skeleton tree, because there is usually important location and shape 
information in the center of a model. For example, in Figure 2, according to Definition 1, skeleton 
points (JP1, JP2) are both junction points, and skeleton points (EP11, EP12, EP21 and EP22) are all 
endpoints. Selecting JP1 as the top node of skeleton tree and according to the skeleton’s topology, the 
corresponding skeleton tree can be constructed. 

(a) (b) (c) 

Figure 2. Mapping skeleton to skeleton tree and corresponding adjacent matrix: (a) skeleton and 
classification of skeleton point; (b) skeleton tree; (c) adjacent matrix. 

Before constructing the skeleton tree, we mark the endpoint and junction point by sign and 
number. The junction point is marked first, by a solid circle and is numbered JPi (i = 1, 2, …, n, n is 
the total number of junction points). Then, the endpoint is marked by the star shape and is numbered 
by EPij (i = 1, 2, …, n; j = 1, 2, …, k, k is the total number of endpoints connected with i-th junction 
point). In the skeleton tree, the number of nodes are the same as for the skeleton. The large solid circle 
represents the junction node and the small circle represents an end node. 

Definition 3. In a skeleton tree, the endpoint is considered an end node and the junction point is considered 
the junction node. 

Definition 4. In a skeleton tree, the junction node is considered a root node and an end node is considered a 
leaf node. From the top node, the level of the top node is 1, its next level is 2, and so on. The nodes belonging to 
the same layer have the same level number. The upper node is considered the root node of the lower node. 

In Figure 2b, JP1 is the 1st level root node, JP2 is the 2nd level root node, EP11 and EP22 are both 
2nd level leaf nodes, and EP21 and EP22 are both 3rd level leaf nodes. 

Definition 5. A skeleton tree is described by ST = (N, B), where N is the node set of the tree and B is the branch 
set of the tree. 

Ideally, skeleton trees are linear and open. However, according to the method described in 
Definition 2, a skeleton tree is likely to be closed. For a ring skeleton tree, at least one node exists for 
every two or more root nodes. Such a node needs special treatment: assuming that node P has n (n > 
1) root nodes, copy P to be n duplicates (P1, P2, ……, Pn), then connecting Pi with the i-th root node of 
P. Simultaneously, P1 inherits all the leaf nodes of P and it and Pi are both set as leaf nodes. After 
treating all such nodes by this approach, one open and linear skeleton tree can be obtained. 

5. Node Features 

In this section, we perform similarity measurements of the node features of the model. Here, the 
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node features include the node topology feature and node orientation feature. 

5.1. Node Topology Feature 

The Node topology feature directly reflects the connection between sub-parts in the model. From 
the skeleton shown in Figure 2a, the skeleton points diverge from the inside to the outside of model. 
The skeleton points like JP (JP1 and JP2) nearing the center of the model have a great influence on the 
topological divergence of the whole model, and skeleton points like EP (EP11, EP12, EP21 and EP22), 
nearing the edge of model, are relatively small. According to this characteristic, we set different 
weights to the skeleton points located at different positions. The nodes located in the skeleton tree 
from top to bottom are set adaptive weights from large to small. The adaptive weights can reflect the 
difference in influence of the whole topology or the divergence of different nodes from the model. 
The adaptive weight  of each junction node JPi is set as follows: 

1

deg( )
i

i i i

L i

P



 

  

 
 (1) 

where L  is the number of levels of the skeleton tree, 
i  is the weight of i-th level, and deg( )iP  is 

the number of in-degrees and out-degrees of JPi. Here, the in-degree is the number of root nodes in 
the upper level of JPi and the out-degree is the number of leaf nodes in the next level of JPi. For 
example, in Figure 2,  of JP2 is 3 (in-degree is 1 and out-degree is 2). 

The adaptive weight ij  of each end node EPij is set as follows: 

i
ij k


   (2) 

where k  is the number of end nodes connecting with a junction node JPi. 
Using the above descriptions, the adaptive weight of each node in skeleton tree can be 

determined. At this time, the skeleton tree can be expressed by ST = (N, B, Tf( )). Tf represents the 
node topology feature. Given two skeleton tree ST1 = (N1, B1, Tf1( )) and ST2 = (N2, B2, Tf2( )), the 
topology feature distance (TFD) between two nodes ( q  and p , 

1q ST , ) is defined as 
follows: 

               
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f f
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     

   


  


  (3) 

where    fT u u ST   is the maximum node degree of skeleton tree,         1
( ) ( ) fT u

f fT u T u R
  

  

is the topology characteristic vector (TCV) [27] of any node, and  u u ST .      1 2
2

f fT q T p   is 

a 2-norm. In defining TCV, it should be pointed out that the adjacent matrix of the skeleton tree is the 
  n n  symmetric matrix, about  0,1 . If  ,i j B , the  ,i j th value of the adjacent matrix is 1; 

otherwise it is 0, as shown in Figure 2c. The smaller the value of TFD is, the larger the topology 
similarity between two nodes ( q  and p , 

1q ST , ) becomes. 

5.2. Node Orientation Feature 

Even if two skeleton trees have similar topologic features, their corresponding models are likely 
to be different. As shown in Figure 3, Models 1 and 2 have different structures but have the same 
skeleton trees. To distinguish them, we add orientation feature to node in the skeleton tree. This can 
be easily achieved by calculating the included angle between two vectors. One vector is formed by 
JP and an EP connecting with it, and another is formed by JP and another EP connecting with it. The 
direction of the vector is from JP to EP. In each calculation, setting JP as origin O  and establishing 
the coordinate system O XYZ . Supposing EP11 (

1 1 1, ,x y z ), EP12 (
2 2 2, ,x y z ) and JP1 (0,0,0), the included 

angle   between ܬ ଵܲܧ ଵܲଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ and ܬ ଵܲܧ ଵܲଶሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ can be calculated by the following formula. 

i

deg( )iP

2p ST

2p ST
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1 11 1 12 1 2 1 2 1 2
1 11 1 12 2 2 2 2 2 2

1 11 1 12 1 1 1 2 2 2

arccos , arccos arccos
JPEP JPEP x x y y z z

JPEP JPEP
JPEP JPEP x y z x y z


  

   
     

  
   (4) 

The orientation feature will only appear in each level of skeleton tree. Therefore, we cannot use 
TFD formula between two nodes to calculate the distance between two levels. We adopt the tangent 
space method to figure out the distance between included angles. The basic idea is as follows: 

Supposing that a level of a skeleton tree has included anglesሺߠଵ, ,ଶߠ  and	ଵߠ ଷሻ. Starting fromߠ
defining ߮ଵ as rotation angle between ߠଵ and ߠଶ, then ߠଶ ൌ ଵߠ ൅ ߮ଵ; similarly, ߠ௜ ൌ ௜ିଵߠ ൅ ߮௜ିଵ. We 
define the tangent space description of the included angle as ߴሺ݈ሻ. The horizontal axis represents the 

normalized skeleton length, and 
1

k

k i
i

l L L


 , 
iL  is the sum of two skeleton branch lengths forming 

one included angle  . The vertical axis represents the acceleration of the rotation angles
 1 12 2, ,k k k k n       , as shown in Figure 4a,b. Through the normalized skeleton length, the 

domain of the tangent space of included angles is adjusted to 1, which means ߴሺ݈ሻ is a function with 
a domain of [0,1] in R space. ߴሺ݈ሻ is a monotonic function. The starting point is a value  and the end 
point is a value + 2π. 

 

Figure 3. Using the included angle to distinguish the same skeleton tree. 

(a) (b) (c) 

Figure 4. Tangent space description of included angles: (a) included angle; (b) tangent space; (c) shape 
distance. 

After the included angles are described by the tangent space, we can use shape distance to 
calculate the distance between included angles. Let A( ) and B( ) be two matching levels. They 
can respectively be represented by ߴ஺ሺ݈ሻ and ߴ஻ሺ݈ሻ after the tangent space description, as shown in 
Figure 4c. The tangent space distance (TSD) between ߴ஺ሺ݈ሻ and ߴ஻ሺ݈ሻ is defined as follows: 
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        
    

1

0
, 1

max ,
A B

A B
A B

l l
D l l dl

l l

 
 

 

 
  
 
 
  (5) 

From the definition of tangent space, we can see that tangent space ߴሺ݈ሻ will be different if the 
starting point v is different. It is more meaningful for the tangent space to consider the included 
angle   with minimal change. The smaller the value of     ,A BD l l   is, the greater the shape 

similarity of the models respectively represented by A( ) and B( ) becomes. 

5.3. Node Feature Distance 

In determining the TFD of the node, we should choose two nodes with minimum TFD, and 
setting this minimum TFD as TFD of the node. The basic idea is as follows: According to the root 
node priority principle described in the next subsection, we search for two nodes q  and p (

1q ST

, 
2p ST ) with minimum TFD and calculate     1 2

min

,f fT q T p . The TFD of each level in the skeleton 

tree is the accumulation of the TFD of all nodes in this level. 

       1 2 1 2 1 2
1 min

( ), ( ) ( ), ( ) ( 1,2, , ) ,
k

f i f i f i j f i j
j

T q T p T q T p i L q ST p ST


 
      

 
     (6) 

where k  is the number of nodes in i-th level. If there are some nodes marked ∅ in the i-th level, 
  0  ; otherwise, . 

The node feature distance of each level in the skeleton tree is defined as the dot product between 
the TFD and TSD of each level. The specific formula is as follows: 

        1 21 2 1 2, ( ), ( )   ,
f i f if i f i f i f i T TTdist T T T q T p D l l    (7) 

The node feature distance of the skeleton tree should be the accumulation of that of each level. 
Given two skeleton trees ST1 and ST2, the steps of calculating  are as follows: 

1. Initialize  1 2, 0f fTdist T T  ; 

2. Calculate the value of TFD     1 2,f fT q T p  between the 1st level of root node q  in ST1 and 

that p  in ST2,         1 2 1 2 1 2, , ,f f f f f fTdist T T Tdist T T T q T p  ; 

3. From top to bottom along the skeleton tree, calculate      1 2 1 2 1 2, , ,f f f f f i f iTdist T T Tdist T T Tdist T T  . 

Determine whether there are some nodes marked  	in current level; if yes,   0  ; if no, 
. 

4. Repeat the above steps until all levels in ST1 and ST2 are accessed. 

5.4. Root Node Priority Principle 

In the calculation of TFD, it is more meaningful for us to search for two nodes ( q  and p ) with 
minimum TFD. The root node is actually a junction node. We give priority to junction nodes, and 
then end nodes connecting with them, which can reduce the overall search and calculation time. 
Before searching for two junction nodes with minimum TFD, all junction nodes are listed in 
descending order by weight except the first level of junction node. Through descending order, the 
junction nodes with important topologic features are put into the front, which is beneficial to search 
for two junction nodes with minimum TFD. 

As shown in Figure 5, given two skeleton trees ST1 and ST2, the adaptive weight of each node is 
calculated. All junction nodes are listed in descending order by weight except the first level of 
junction node, as shown in Figure 5c1. Then we calculate the TFD between every junction node in ST1 
and all junction nodes in ST2, and determine the two junction nodes with minimum TFD, as shown 
in Figure 5c2. We call such nodes matching nodes and call the branch formed by linking with them 



  0 

 1 2,f fTdist T T

  0 
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the matching branch. In addition, we call the level including these matching nodes the matching level. 
The rest of the junction nodes are marked by  , which means these junction nodes have no matching 
node. Next, we calculate TFD between end nodes that connect with the junction nodes with minimum 
TFD, as shown in Figure 5c3. The rest of the end nodes are marked by   as well. We call the branch 
formed by linking one node with the node marked by   an empty branch. If there are one-to-more 
or more-to-one or more-to-more situations, like (EP51, EP52 and EP53 in ST1 correspondent to EP51 in 
ST2), we first calculate TFD between any two nodes, then calculate the average and regard it as the 
TFD of this situation. 

Figure 5. Root node Priority principle: (a) ST1; (b) ST2; (c) searching for two nodes with minimum 
TFD. (c1) descending order for junction nodes in ST1 and ST2, (c2) searching for two junction nodes 
with minimum TFD, (c3) calculating TFD between two end nodes corresponding to two junction 
nodes in (c2). 

Determining the Value of  

If there are some nodes marked by ∅ in the i-th level of skeleton tree, it means   0  , 

which will increase the TFD of the i-th level. In this subsection, we determine the value of   . 

The node distance density N  is defined as follows: 

JP1(18)

EP11(9) EP12(9)

EP31(8) EP32(8)

EP51(2.7) EP52(2.7)

EP41(9)

EP53(2.7)
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JP3(16)
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JP1(21)

EP11(15.5) EP12(15.5)

EP31(10) EP32(10)

EP41(12)

JP2(18)

JP3(20)

JP4(12)

JP5(9)

EP21(18)

EP51(9)

EP61(2) EP62(2)

JP6(4)

(a) (b) 

JP3(16) JP2(10) JP4(9) JP5(8)

JP3(16) JP2(18) JP4(12) JP5(9) JP6(4)
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EP11(15.5) EP12(15.5) EP21(18)

EP31(8) EP32(8)

EP31(10) EP32(10)

EP41(9)

EP41(12)

EP51(2.7)
EP52(2.7)
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EP61(2)
EP62(2)
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JP1(21)

JP1(18)

JP1(21)

JP1(18)

(a) ST1

(b) ST2

(a) ST1

(b) ST2

Searching for two junction nodes with 
minimum TFDDescending 

order
Calculating TFD between every junction 
node in ST1 and all junction nodes in ST2. 

Two junction nodes with minimum TFD
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 ,top bottomu u
N

N 
  (8) 

where   ,top bottomu u u ST  represents the TFD between the top root node and the bottom in the 

skeleton tree. N  is the number of nodes in the skeleton tree. 
The value of    is defined as follows: 

 

i

total

ij

total

average

total

N n

N n

N n



















 




   


  


  (9) 

where n  is the number of nodes marked by   in the i-th level, 
i  and ij  respectively are the 

weight of the junction node and end node marked by   in the i-th level, and 
total  is the total weight 

of all nodes in the skeleton tree. If there are only some junction nodes marked by  , choose the first 
formula; if there are only some end nodes marked by  , choose the second formula. If there are both 
junction nodes and end nodes marked by  , choose the third formula. The average weight of 
junction nodes and end nodes is expressed as average :  

i ij
average

k m

k m

 


  



 (10) 

where k  is the number of junction nodes marked by   in the i-th level and m  is the number of 
end nodes marked by   in the i-th level. 

6. Branch Feature 

Given a 2/3D model, we can extract its skeleton by using a relevant algorithm. Certainly, we can 
also figure out a model from the topological and geometrical information included in the skeleton, 
which means that the model and skeleton are inverses of each other. In other words, there is a one-
to-one relationship between a skeleton branch and a sub-part in the model. The length and bending 
of a skeleton branch can express the geometry of a sub-part in the model. Therefore, similarity 
measurements of geometric features between models can be computed by comparing skeleton 
branches. 

6.1. Geometry Featurse of Skeleton Points and Branches 

6.1.1. Geometry Features of Skeleton Points 

Take a maximum inscribed sphere 
xMS  with any skeleton point x as the center of the ball and 

the boundary surface having at least two tangent points. These tangent points are regarded as anchor 
points of skeleton point x . As shown in Figure 6, ܣ௫ and ܣ௫∗  are the anchor points of skeleton point 

. 

 The support angle x  of skeleton point x  is the minimum angle that takes x  as the center 
and rotates from one anchor point of skeleton point x  to the other. We define the relative 
support angle '

x  of skeleton point x  as  ' ' 0    1x x x      . The larger the relative 

support angle is, the higher the symmetry of x  becomes. 
 We define the relative density '

xr  of skeleton point x  as  ' '
max 0    1x x xr r r r   , where 

xr  

is the radius of 
xMS  and 

m axr  is the radius of the maximum inscribed sphere in model. 
 We define the relative anchor point distance of x  as  ' ' 0    1x x xd d L d   , where 

xd  is the 

geodesic distance between two anchor points and L  is the minimum circumference of a box 

x
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bounding the model. The larger the relative density and relative anchor point distances are, the 
higher the support range of skeleton point becomes. 

 
Figure 6. Maximum inscribed sphere and anchor points of a skeleton point. 

Relative support angle, relative density, and relative anchor point distance constitute the 
elements that describe the geometric features of a skeleton point. They have characteristic 
independence with respect to the directions and scales of skeleton. 

Given two skeleton branches 
1  and 

2 , the geometry feature difference     1 2,q p    

between two skeleton points  1q q ST  and  2p p ST  can be calculated by Hausdorff [62]. The 
Hausdorff distance is able to efficiently measure distance between two point sets O  and E . We 
define  1 2, , , mE e e e   as the set of skeleton points. The Hausdorff distance between O  and E  is 

represented by  ,H O E . To avoid the influence of a disturbance point, we use a generalized 
Hausdorff distance. 

      , max , , ,H O E h O E h E O  (11) 

where 

 , min
e Eo O

h O E kth o e


   (12) 

 , min
o Oe E

h E O lth e o


  (13) 

The geometry feature distance     1 2,D q p   between two skeleton points  1q q ST  and 

 2p p ST  can be calculated by the following formula: 

               1 2 1 2 1 2, exp , ,f fD q p T q T p q p      (14) 

6.1.2. Geometric Features of a Skeleton Branch 

The geometric features of a skeleton branch consist of an average regional feature and an average 
bending degree feature. Their feature distances are defined as the average regional distance and 
average bending degree distance, respectively. The former can depict the difference in contour 
between models. The latter can depict the difference in curvature between sub-parts represented by 
skeleton branches. 

Defining the average regional distance of a skeleton branch as the sum of the distance between 
skeleton points in that branch. As we only know two endpoints of a skeleton branch, we cannot 
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directly calculate the sum. A good method is to distinguish skeleton branches through the equal-
distance method. The average regional distance of skeleton branch     1 2_ ,B D q p   can be 
calculated by the following formula: 

         1 2 1 2
0

1
_ , ,

m

j j
j

B D q p D q p
L 

      (15) 

where     1 2,j jD q p   represents the geometric feature distance between two discrete skeleton 

points  1j jq q ST  and  2j jp p ST  in a certain skeleton branch and   1 2 2L L L L   is the 

average length of two skeleton branches 1  and . 
The average bending degree distance can be calculated by the following formula: 

      1 2

1 2 1 20 0

1
_ ,

L L
B curvature l dl l dl

L
       (16) 

where  1 l  and  2 l  are curvatures of skeleton branch 
1  and 

2 , respectively, and l  is the 
arc-length parameterization of the skeleton branch. 

6.2. Branch Feature Distance 

We define the branch feature distance as the weighted sum of the average regional distance and 
the average bending degree distance. In fact, the branch feature distance is equal to the geometry 
feature distance (GFD). 

        
  

1 2 1 1 2 2 1 2

1 2 1 2

_ , _ , _ ,

1 , 0,1

B Gdist B D q p B curvature 

   

       

  
 (17) 

where 
1  and 

2  indicate the importance of the average regional feature and the average bending 
degree feature. 

The GFD of each level in a skeleton tree is the accumulation of that of all skeleton branches in 
this level. 

      1 2 1 2
1

_ , _ , _
k

i i ij ij
j

B Gdist B Gdist B Gdist


        (18) 

where  _B Gdist   represents the GFD between empty branches. The GFD of a skeleton tree should 
be the accumulation of that of each level. Given two skeleton trees ST1 and ST2, the steps of calculating 

 1 2_ ,B Gdist    are as follows: 

 Initialize  1 2_ , =0B Gdist   ; 
 The GFD of the first level equals zero,  1 2_ , =0B Gdist   ; 
 From the second level to the bottom along the skeleton tree, calculate 

     1 2 1 2 1 2_ , = _ , _ ,i iB Gdist B Gdist B Gdist       . Determine whether there are some empty 
branches in the i-th level: if yes,  _ 0B Gdist   ; if no,  _ =0B Gdist  . 

 Repeat the above steps until all levels in ST1 and ST2 are accessed. 

Determining the Value of  _B Gdist   

If there are some empty branches in the i-th level of skeleton tree, it means  _ 0B Gdist   , 
which will increase the GFD of the i-th level. In this subsection, we determine the value of 

 _B Gdist  . The branch distance density B  is defined as follows: 

 ,top bottomu u
B

M 
  (19) 

2
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where   ,top bottomu u u ST  represents the TFD between the top root node and the bottom in the 

skeleton tree and M  is the number of branches in the skeleton tree. 
The value of  _B Gdist   is defined as follows: 

 _

i

total

ij

total

average

total

B m

B Gdist B m

B m



















 




   


  


 (20) 

where m  is the number of empty branches in the i-th level. Other parameters are the same, with 
descriptions in Section 5.4. 

7. Overall Similarity Measurement 

We define the overall similarity of skeleton trees as the weighted sum of topologic and geometric 
similarity reflected by node and branch feature similarity. 

The topologic similarity of skeleton trees can be calculated by the following formula: 

   1 2

1 2

1
,

,f f

Tsim ST ST
Tdist T T

  (21) 

The geometric similarity of skeleton trees can be calculated by the following formula: 

 
 1 2

1 2

1
,

_ ,
Gsim ST ST

B Gdist


 
 (22) 

The overall similarity of skeleton trees can be calculated by the following formula: 

     
  

1 2 1 2 1 2, , ,

1 , 0,1

T f f G

T G T G

Osim ST ST Tdist T T Gsim ST ST 

   

 

  
 (23) 

where 
T  and 

G  are the adaptive weights of the topologic and geometric features. They can be 

adjusted according to different models. The larger the value of  1 2,Osim ST ST  is, the higher the 
similarity of the models becomes. 

8. Experiments and Discussion 

8.1. Experiment One 

Table 1 shows 10 typical 3D models and their skeletons. Table 2 shows their similarity results. 
The results were obtained by using an Intel Pentium-M 3.0 GHz processor notebook PC with a 2.0 G 
memory and VC++6.0 and OpenGL software. The skeletons of the models were extracted by mesh 
contraction [63]. The data in Table 2 were treated by normalizing the similarity results of the two 
models named in the rows and columns. Normalization processing means the data in a row divides 
the maximum data in this row, which can make data in [0,1]. The larger the data is, the more similar 
a model becomes. Completely dissimilar is expressed as 0 and 1 means totally similar. The numbers 
in bold represent the similarity of a model very similar to a model in this row except itself. From 
Table 2, we can see that the models with similar topology and different geometry, like 1 Dog and 5 
Man I, 7 Man II and 9 Horse, can be distinguished well by our proposed method. 
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Table 1. The models and their skeletons for experiment. 

Number 
and Name 

1 Dog 2 Dolphin 3 Table 4 Statue 5 Man I 

Model and 
skeleton 

 
 

   
Number 

and Name 
6 Pillar 7 Man II 8 Pipeline 9 Horse 10 Chair 

Model and 
skeleton 

 

 

 

Table 2. The similarity results between different models (
1 0.6  , 

2 0 .4   and 0.5T G   ). 

Number and Name 1 Dog 2 Dolphin 3 Table 4 Statue 5 Man I 6 Pillar 7 Man II 8 Pipeline 9 Horse 10 Chair
1 Dog 1.000 0.246 0.325 0.083 0.442 0.064 0.462 0.228 0.852 0.284 

2 Dolphin 0.308 1.000 0.062 0.249 0.314 0.103 0.288 0.886 0.316 0.076 
3 Table 0.323 0.058 1.000 0.064 0.236 0.103 0.220 0.102 0.226 0.925
4 Statue 0.102 0.305 0.058 1.000 0.084 0.858 0.109 0.263 0.051 0.401 
5 Man I 0.472 0.306 0.261 0.062 1.000 0.063 0.953 0.256 0.454 0.243 
6 Pillar 0.072 0.082 0.072 0.831 0.060 1.000 0.072 0.064 0.063 0.102 

7 Man II 0.466 0.294 0.208 0.085 0.968 0.054 1.000 0.252 0.434 0.214 
8 Pipeline 0.283 0.837 0.107 0.227 0.238 0.078 0.248 1.000 0.241 0.092 
9 Horse 0.894 0.323 0.234 0.038 0.483 0.074 0.413 0.207 1.000 0.186 
10 Chair 0.307 0.057 0.906 0.486 0.227 0.087 0.187 0.103 0.204 1.000 
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In this experiment, 1 0.6   and 2 0 .4  . The differences in contour are obvious, which 
increases the weight of the average regional features. The skeleton curve of the models is relatively 
straight, which makes the average weights of the bending degree small. In addition, we consider the 
topologic features and geometric features as having an equally important influence on the models, 
which means 0.5T G   . We can flexibly adjust 1 , 2 , T  and G  according to different 
models. 

Furthermore, we offer the experiment of similarity measurements of the same model with 
different postures, namely deformation, which is a key component of skinning animation [64]. It is 
important to note that we do not need to compute TSD because we are using the same model. This 
means the item TSD should be removed from Equation (7) and Equation (7) becomes as follows: 

   1 2 1 2, ( ), ( )f i f i f i f iTdist T T T q T p  (24) 

Table 3 shows five different postures of a man and their skeletons. Table 4 shows the similarity 
results. In this experiment, we need to reduce the difference in bending degree of skeleton branches, 
which can be done by giving the average bending degree feature a smaller weight ( 1 0.8   and 

2 0 .2  ). From Table 4, we can find that the similarity value is almost more than 0.945, which 
satisfies our expectation. 

Table 3. Five different postures of man and their skeletons. 

Name Man I Man II Man III Man IV Man V Man VI

Model 
and 

skeleton 

 
 

Table 4. The similarity results between different postures of man ( 1 0.8  , 2 0 .2   and 
0.5T G   ). 

Name Man I Man II Man III Man IV Man V Man VI
Man I 1.000 0.953 0.947 0.950 0.962 0.956 
Man II 0.968 1.000 0.971 0.963 0.957 0.959 
Man III 0.955 0.964 1.000 0.945 0.974 0.968 
Man IV 0.944 0.946 0.967 1.000 0.982 0.951 
Man V 0.961 0.952 0.975 0.950 1.000 0.948 
Man VI 0.954 0.967 0.948 0.966 0.975 1.000 

8.2. Experiment Two 

To further demonstrate the retrieval performance of the proposed method, a test dataset was 
constructed and used to carry out the matching and classification of the models. This dataset had the 
same number of elements of each class and consisted of regular 3D models with six classes of five 
elements, as shown in Table 5. Most of the models represented articulated objects, and five elements 
in same class showed different complex poses, to make the matching work sufficiently complex. The 
original models of our dataset were collected from Shape Retrieval Contest 2014 (SHREC’14) [65]. 
Each model was uniformly scaled in a unit sphere, centered in the origin of the Cartesian coordinate, 
to make results independent of scale operations. 
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Table 5. Our testing dataset. 

Name Snake I Snake II Snake III Snake IV Snake V

3D 
Model  

    

Name Puppet I Puppet II Puppet III Puppet IV Puppet V

3D 
Model 

 
 

   

Name Animal I Animal II Animal III Animal IV Animal V

3D 
Model 

     

Name Mickey I Mickey II Mickey III Mickey IV Mickey V

3D 
Model 

     

Name Jellyfish I Jellyfish II Jellyfish III Jellyfish IV Jellyfish V

3D 
Model 

     

Name Hand I Hand II Hand III Hand IV Hand V

3D 
Model 

 
  

  

Several retrieval evaluation measures have been used to model matching tasks including nearest 
neighbor (NN), the precision-recall plot, first tier (FT), and second tier (ST) [66]. The basic information 
of precision-recall is introduced as follows. 

The precision-recall plot is one of the most popular evaluation criteria used to measure the 
performance of retrieval systems [67]. Its ordinate is accuracy or precision and abscissa is recall. 
Precision is the ratio between the number of correct models returned from a system and that of all 
models returned from that system, and recall is the ratio between the number of correct models 
returned from a system and that of the relevant models returned from that system. In general, both 
precision and recall are related to the number of models returned from system. Recall and the number 
of models returned from a system are in direct ratio, and precision and that are in inverse ratio. 
Assume that A  is a collection of all relevant models and B  is a collection of all models returned 
from system. Precision and recall can be expressed by the following formulas: 

A B
precision

B


  (25) 
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A B
recall

A


  (26) 

Precision and recall become higher and better. From overall consideration of these two 
criterions, the area surrounded by the plot and the axis is larger, which means that the retrieval 
performance is better. 

For 3D model matching and classification, we ran the proposed method and the methods with 
the best performance in the SHREC’14 on our testing dataset and compared the results obtained by 
the former and the results obtained by the latter in terms of NN, FT and ST. The performance of the 
latter has been shown in Reference [47]. The comparative performance results between methods are 
shown in Table 6.  

Table 6. The comparative performance results between methods. 

Evaluation Measures 
Methods NN FT ST 

GG2 0.958 0.383 0.504 
Gi2 0.909 0.430 0.559 
Gi3 0.963 0.436 0.562 
Ve1 0.918 0.398 0.499 

The proposed method 0.908 0.448 0.572 
The numbers in bold represent the method has the best retrieval performance in one certain 
evaluation measure compared to other methods. 

Our method provides the best results in the scores of FT and ST and is greater than 0.9 in the 
score of NN, which shows a good ability to match and classify models. 

Precision-recall plots for six selected classes in our testing dataset and averages over all models 
for SHREC’14 are shown in Figure 7. The classes snake, hand, and jellyfish have the best results, 
though the classes puppet, Mickey, and animal obtain good results as well, which verifies the good 
matching performance of the proposed method. 

 
Figure 7. Precision-recall plots for six selected classes in our testing dataset and average over all 
models for SHREC’14. 

Next, we use our dataset to compare the retrieval performance of the proposed method with 
respect to the MRG-based method [40]. Table 7 summarizes the capability comparison. The precision 
and recall of the proposed method are both higher than those of the MRG-based method. So the 
retrieval accuracy of the former is higher under the same conditions. 
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Table 7. Capability comparison. 

Retrieval Method Average Recall (%) Average Precision (%)
The MRG-based method 63.5 66.5 

The proposed method 65.2 69.8 

Figure 8a compares the average rank [68] for our testing dataset using the proposed method 
with the values obtained by the MRG-based method. The average rank was obtained by following 
two steps: first, every model in the testing dataset was performed as a query. Then the retrieval ranks 
of all elements in the class of the query were computed. The proposed method has the lowest value; 
note that the lower the average rank value is, the better the performance. 

Another measure, the average last place ranking [69], was also adopted to evaluate performance. 
It is defined as 

 
1  

 
l

n

Rank n
L

N n


 


 (27) 

where 
lR ank  represents the rank at which the last relevant model is found, n is the number of 

relevant models, and N  is the size of the overall dataset. Figure 8b shows the average last place 
ranking of values obtained by two methods, respectively. This value represents the expectation that 
the user has retrieved all relevant models from the dataset. The higher this measure value in the range 
[0,1], the more the number of relevant models to find, indicating better results. 

  

 (a) (b) 

Figure 8. Comparison between the proposed method and the MRG-based method: (a) average rank; 
(b) average last place ranking. 

Finally, Figure 9 shows the precision-recall plots for four selected classes—snake, hand, animal 
and puppet—computed by the proposed method and the MRG-based method, respectively. It is 
worth remembering that curves moved upwards and to the right represent better retrieval 
performance. The curves obtained by the proposed method are higher than the curves obtained by 
the MRG-based method, which means the proposed method has a better retrieval performance and 
higher retrieval accuracy under the same conditions. 



Computers 2017, 6, 17  20 of 24 

Figure 9. The precision-recall plots for four selected classes computed by the proposed method and 
the MRG-based method, respectively. 

9. Conclusions and Further Work 

The main contribution of this paper is that it proposes a simple method of similarity 
measurement of 3D models by using skeleton trees as descriptors of 3D models. The improvements 
of the proposed method are as follows: 

 Using skeleton trees is simpler and more efficient than other methods of model expression such 
as attributed-relation graph, shock graphs, and so on. Compared to them, the skeleton tree 
construction rule is relatively simple, and it carries complete topological information of a model. 

 The node feature contains both connection features, reflecting topology, and orientation 
features, distinguishing different modes with similar topology by their included angles. It uses 
2-norm and tangent space to reasonably define TFD and TSD, respectively. The final node 
feature distance is expressed by the dot product between them. 

 The branch feature can depict the geometric features of a model. It consists of the average 
regional feature and average bending degree feature. Their feature distances can reflect 
differences in contour and bending, and are computed by generalized Hausdorff distance and 
curvature of branches, respectively. Final branch feature distance is expressed by their weighted 
sum. These two weights are adaptive. 

 Overall similarity is defined by the weight sum of topologic and geometric similarity. These two 
weights can be adjusted according to different models. This method is able to produce good 
results for different models and for the same model with different postures, as proven by 
experiment. 

 Several enhancements can be added to our algorithm: 
 The skeleton tree-based descriptor of a 3D model can be optimized by using skeleton pruning 

algorithms and constructing multi-level skeleton trees. 
 Geometric features can be more fully described by taking more geometric properties into 

account, such as minimum bounding box, circularity, eccentricity and so on. 
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 The efficiency of similarity measurements of whole skeleton trees can be improved by the 
maximal isomorphic subtree formation algorithm or level clustering algorithm. 

We believe that this method will greatly expand the application of 2/3D model matching, 
recognition, and retrieval. 
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