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Abstract:



Multiplication is the dominant operation for many applications implemented on field-programmable gate arrays (FPGAs). Although most current FPGA families have embedded hard multipliers, soft multipliers using lookup tables (LUTs) in the logic fabric remain important. This paper presents a novel two-operand addition circuit (patent pending) that combines radix-4 partial-product generation with addition and shows how it can be used to implement two’s-complement array multipliers. The circuit is specific to modern Xilinx FPGAs that are based on a 6-input LUT architecture. Proposed pipelined multipliers use 42%–52% fewer LUTs, and some versions can be clocked up to 23% faster than delay-optimized LogiCORE IP multipliers. This allows 1.72–2.10-times as many multipliers to be implemented in the same logic fabric and potentially offers 1.86–2.58-times the throughput by increasing the clock frequency.
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1. Introduction


Field-programmable gate arrays (FPGAs) are often used in signal processing systems for many applications, such as digital-signal processing (DSP), video processing and image processing. For these applications and others, computation of a sum-of-products is very common. As a result, multiplication is often the focus of efforts to reduce required resources, delay and power. For this reason, most contemporary FPGAs have embedded hard multipliers distributed throughout the fabric. Even so, soft multipliers using lookup tables (LUTs) in the configurable logic fabric remain important for high-performance designs for several reasons:

	
Flexible size and type: Embedded multiplier operands are fixed in size and type, e.g., [image: there is no content] two’s complement, while LUT-based multiplier operands can be any size or type.



	
Flexible placement: The number and location of embedded multipliers are fixed, while LUT-based multipliers can be placed anywhere, and the number is limited only by the size of the reconfigurable fabric.



	
Configurable: Embedded multipliers cannot be modified, while LUT-based multipliers can use techniques, such as merged arithmetic [1] and truncated-matrix arithmetic [2,3,4,5,6], to optimize the overall system.



	
Hybrids: LUT-based multipliers are often combined with embedded multipliers to make larger multipliers.








Parandeh-Afshar and Ienne discuss the importance of this topic and present techniques to improve the performance of soft multipliers in Altera FPGAs [7]. They present radix-2 Baugh–Wooley multipliers and radix-4-modified Booth multipliers that use generalized parallel counters (GPCs) in the logic fabric to reduce the partial-product matrix to two or three rows, which are then added using a carry-propagate adder (CPA). This builds on the previous work of Parandeh-Afshar et al. using GPCs for compressor trees for the more general case of multi-operand addition [8,9,10]. In other work, Parandeh-Afshar et al. suggest modifications to the FPGA logic fabric to improve soft multiplier implementations [11,12]. Matsunaga et al. have also published work on using GPCs for multi-operand addition [13,14,15]. De Dinechin and Pasca present methods for implementing large multipliers and squarers on Xilinx FPGAs using a combination of embedded multipliers and logic-based multipliers [16]. Gao et al. present a method for implementing large multipliers that combine embedded multipliers with GPCs [17]. Brunie et al. model a generalized weighted sum of bits as a bit heap and describe techniques for summing them using a combination of embedded multipliers and GPCs on Altera and Xilinx FPGAs [18]. Kumm and Zipf present novel GPCs for Xilinx FPGAs and use them with integer linear programming (ILP) in compressor trees [19]. Mhaidat and Hamzah compare the use of GPCs to Wallace and Dadda multipliers [20]. Kumm et al. use a method similar to this work to implement softcore multipliers [21].



Unlike much of the related work, this paper is specific to the Xilinx 6-input LUT architecture found in the Spartan-6, Virtex-5, Virtex-6, 7-Series, UltraScale and perhaps future generations. The underlying generate-add unit (patent pending) can be used for many purposes, but this paper focuses on its use in general-purpose array multipliers. Previous work describes a radix-4 partial-product generate-add structure and shows how it can be used to make array and tree multipliers [22,23,24]. This paper extends that work in several ways:

	
The generate-add unit is described in greater detail, and new optimizations are presented.



	
Proposed array multipliers are described in greater detail, and new optimizations are presented.



	
All new synthesis results are given using Vivado instead of the ISE toolchain; LogiCORE IP v12.0 multipliers are compared instead of v11.2; and more operand sizes are synthesized.








The new optimizations further reduce the number of required LUTs by approximately 10% and provide approximately a 1.5-times speedup compared to [22]. The proposed multipliers are believed to be the only designs to date that produce better results than LogiCORE IP LUT-based multipliers.



The paper is organized as follows. Section 2 gives background information. Section 3 discusses related work using GPCs. Section 4 describes the proposed two-operand adder, and Section 5 describes the proposed LUT-based array multipliers. Synthesis results are discussed in Section 6, and conclusions are given in Section 7.




2. Background


This section describes the details of the Xilinx logic fabric, two-operand addition in the Xilinx logic fabric, Altera logic fabric and radix-4-modified Booth multiplication.



2.1. Xilinx Logic Fabric


The main logic resource for implementing combinational and sequential circuits in a Xilinx FPGA is the configurable logic block (CLB). Each CLB has two slices. Figure 1 is a partial diagram of a 7-Series FPGA slice. Each slice has four 6-input lookup tables (LUT6s) designated A, B, C and D. Each LUT6 is composed of two 5-input lookup tables (LUT5s) and a two-to-one multiplexer. The two LUT5s are [image: there is no content] memories that share five inputs designated I5:I1. The memory values are designated M[63:32] in one LUT5 and M[31:0] in the other LUT5. The output of the M[31:0] LUT5 is designated O5. The sixth input, I6, is input to a multiplexer that selects one of the LUT5 outputs. The selected output is designated O6. The LUT6 is normally configured as either two LUT5s with five shared inputs and two outputs by connecting I6 to logic “1”, or as one LUT6 with six inputs and one output by connecting I6 to the sixth input [25,26].


Figure 1. Partial diagram of a Xilinx 7-Series CLB slice.
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A multiplexer and an XOR gate, indicated in Figure 1 as MUXCY and XORCY respectively, are associated with each LUT6. Inputs to the MUXCY associated with the A LUT6 are a select signal, [image: there is no content], a first data input, [image: there is no content], and a second data input, [image: there is no content]. The output of the MUXCY, [image: there is no content], is connected to the MUXCY associated with the B LUT6. These connections continue through the C and D LUT6s to form a fast carry chain within the slice. The [image: there is no content] output of the slice, COUT, can be connected to the [image: there is no content] input of the next slice, CIN, to form longer carry chains. The [image: there is no content] signal is driven by the O6 output of the corresponding LUT6. The [image: there is no content] signal is selected by a configuration multiplexer and is either the O5 output of the corresponding LUT6 or the bypass input, which is designated AX, BX, CX or DX. The fast carry logic in a slice, which includes four MUXCYs, four XORCYs and the fast carry chain, is called a CARRY4 [26].



Two flip-flops are associated with each LUT6. One flip-flop can be used to register O5 or the bypass input. The other flip-flop can be used to register O5, O6, the bypass input, the MUXCY output or the XORCY output.



The Spartan-6, Virtex-5, Virtex-6 and UltraScale families are similar to the 7-Series. One notable difference is that the Spartan-6 family does not have fast carry chains in every column of slices.




2.2. Two-Operand Addition


Suppose X and Y are to be added using the Xilinx fast carry logic. For the i-th column of the adder, [image: there is no content] and [image: there is no content] are the bits of X and Y, respectively; [image: there is no content] is the carry-in bit; [image: there is no content] is the carry-out bit; and [image: there is no content] is the sum bit. A truth table can be made for the adder; then, required values for [image: there is no content] and [image: there is no content] can be derived from the table.



Figure 1 shows that [image: there is no content], so [image: there is no content] must have the same value as [image: there is no content] to produce the correct value for the sum bit. When [image: there is no content], the generate signal becomes the carry out, so [image: there is no content] must have the same value as the expected value of [image: there is no content]. When [image: there is no content], the generate signal is not used, so it is a don’t-care. These values are given in Table 1. Next, [image: there is no content] and [image: there is no content] are expressed as functions of [image: there is no content] and [image: there is no content]. Inspection of the truth table shows that [image: there is no content] and that the generate signal can be either [image: there is no content] or [image: there is no content].



Table 1. MUXCY propagate and generate signals for addition.
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2.3. Altera Logic Fabric


The multipliers proposed in this paper are specific to the Xilinx LUT6 architecture and are not applicable to Altera FPGAs. The Altera logic fabric is briefly described here to give context to related work on generalized parallel counters (GPCs).



The main logic resource for implementing combinational and sequential circuits in an Altera Stratix V FPGA is the logic array block (LAB) [27]. Each LAB in the Stratix V has ten adaptive logic modules (ALMs). The ALM has evolved, but the general functionality described in this section applies to the older Stratix II family [28] through the latest family, the Stratix 10 [29].



The capabilities of an ALM can be compared to a Xilinx LUT6 and its associated MUXCY, XORCY and flip-flops. An ALM can be configured to implement two functions of six inputs, provided that four of the inputs are common, as shown in Figure 2. By comparison, a Xilinx LUT6 can implement one function of six inputs or two functions of five shared inputs.


Figure 2. Altera ALM configured as two 6-input LUTs.
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Each ALM includes two full adders and dedicated carry connections to implement fast addition. Figure 3 shows an Altera ALM in arithmetic mode.


Figure 3. Altera ALM configured for arithmetic.
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2.4. Radix-4-Modified Booth Multipliers


Suppose A and B are to be multiplied. If the multiplicand, A, is an m-bit two’s-complement integer and the multiplier, B, is an n-bit two’s-complement integer, then:


[image: there is no content]



(1)






[image: there is no content]



(2)







MacSorley’s modified Booth recoding algorithm works for both unsigned and two’s-complement multipliers [30]. First, [image: there is no content] is concatenated to the right of B and set to “0”. For two’s-complement multipliers, n must be even. If it is not, B is sign extended by one bit to make n even. For unsigned multipliers with odd values of n, B is zero-extended with one “0” to make n even. If n is already even, B is zero-extended with two “0”s.



Next, B is recoded two bits at a time using overlapping groups of three bits. For each [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are recoded as a radix-4 signed digit, [image: there is no content], where [image: there is no content] and [image: there is no content]. Each partial product, [image: there is no content], is [image: there is no content]. Digit recoding and partial-product selection are summarized in Table 2. Finally, the product is computed as:


[image: there is no content]



(3)







Table 2. Radix-4-modified Booth recoding and partial-product selection ([image: there is no content]).
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If a partial product is [image: there is no content], then the multiplicand, A, is selected. If a partial product is [image: there is no content], then the multiplicand is shifted left one bit before selection. If a partial product is [image: there is no content] or [image: there is no content], then A or [image: there is no content] is subtracted by complementing each bit and adding “1” to the least significant bit (LSB). Table 3 summarizes partial-product generation for each selection. There are [image: there is no content] bits in the partial product to provide for a left shift of A, with sign extension if A is not shifted. The operation bit, [image: there is no content], is set to “0” for addition or “1” for subtraction and is added to the LSB column of the partial product.



Table 3. Radix-4-modified Booth partial-product generation.
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Each partial product is sign extended to the width of the multiplier in order to provide for correct addition and subtraction. Sign extension can be accomplished by complementing the sign bit, adding a “1” in the same column, and extending with constant “1”s. The constants are pre-added to reduce the number of “1”s in the matrix. Figure 4 shows the simplified partial-product matrix for a [image: there is no content] multiplier [31,32,33].


Figure 4. Radix-4-modified Booth partial-product matrix, [image: there is no content].
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3. Related Work: Generalized Parallel Counters


The well-known Wallace tree [34] and Dadda [35] multipliers use full adders and half adders to reduce the partial-product matrix to two rows, which are then added using a final CPA. A full adder is sometimes called a (3;2) counter, because it adds three bits in the same column and outputs a two-bit result equal to the sum of the three bits. A GPC adds bits in one or more columns and produces an n-bit result equal to the sum of the bits, taking into account the weight of the columns [36]. For example, a (5,5;4) counter adds five bits in the [image: there is no content] column and five bits in the [image: there is no content] column and outputs a four-bit result equal to the weighted sum of the ten input bits. Figure 5 shows how several (5,5;4) counters could be used to reduce five rows of bits to two rows.


Figure 5. Matrix reduction using (5,5;4) counters.
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Parandeh-Afshar et al. are believed to be the first to look at using GPCs implemented using LUTs to build compressor trees for multi-operand addition in FPGAs [8,9,10]. They note that modern FPGAs, such as Altera Stratix II and newer and Xilinx Virtex-5 and newer, have 6-input LUTs. Therefore, they focus on GPCs that have up to six total inputs for efficient usage of the LUTs and show that (6;3), (1,5;3), (2,3;3) and (3,3;4) counters each map to two ALMs in modern Altera FPGAs. They use a heuristic to implement multi-operand adder compressor trees with GPCs in [8], use integer linear programming (ILP) to improve the results in [9] and improve the GPCs themselves by using the ALM fast addition resources in [10]. They note that both Altera and Xilinx have efficient ternary adders, so they use GPCs to reduce the matrix to three rows. Other work on GPCs that is based on work by Parandeh-Afshar et al. presents incremental improvements or additional applications for GPCs [13,14,15,17,20]. Kumm and Zipf present two novel GPCs, (6,0,6;5) and (1,3,2,5;5), that are specific to and optimized for Xilinx FPGAs [19].




4. Proposed Two-Operand Adder


Suppose X and Y are to be added using the Xilinx fast carry logic. For the i-th column of the adder, [image: there is no content] and [image: there is no content] are the bits of X and Y, respectively; [image: there is no content] is the carry-in bit; [image: there is no content] is the carry-out ; and [image: there is no content] is the sum bit. The [image: there is no content] signal must be set to [image: there is no content], and the [image: there is no content] signal can be set to either [image: there is no content] or [image: there is no content] to add [image: there is no content] and [image: there is no content] [22]. If [image: there is no content] and [image: there is no content] together are a function of five or fewer inputs, then the LUT6 can be configured as two LUT5s, generating either [image: there is no content] or [image: there is no content] at O5, routing it to [image: there is no content] and generating [image: there is no content] at O6 to drive [image: there is no content]. If [image: there is no content] and [image: there is no content] together are a function of six inputs, then the LUT6 can be configured to generate [image: there is no content] at O6 to drive [image: there is no content] and [image: there is no content] or [image: there is no content] can be applied to the bypass input and configured to drive the [image: there is no content] input. A disadvantage of this configuration is that the bypass flip-flop cannot be used.



Normally, a LUT6 can be used to either generate a function of six inputs at O6 or to generate two functions of five inputs at O5 and O6 [25,26]. However, there are several useful cases where one function of six variables can be output at O6 and a separate function of five shared variables can be output at O5. Suppose [image: there is no content] is a function of one variable connected to I6 and [image: there is no content] is a function of five variables connected to I5:I1. The function [image: there is no content] is stored in M[31:0], so [image: there is no content] is output at O5. If [image: there is no content] is “0”, [image: there is no content] is also output at O6. If [image: there is no content] is “1”, the function stored in M[63:32] is output at O6. If [image: there is no content] is stored in M[63:32], then [image: there is no content] is generated at O6 and [image: there is no content] is generated at O5. This can be used to add [image: there is no content] and [image: there is no content] without using the bypass input when [image: there is no content] is a function of one variable and [image: there is no content] is a function of up to five variables. Figure 6 shows the connections for this configuration. This frees the bypass input to be connected to the bypass flip-flop to implement additional registers. Input I6 has the shortest delay path, and I1 has the longest [25], so this method also allows faster inputs to be used if [image: there is no content] is a function of less than five variables. The carry into the proposed adder, [image: there is no content], can be used to implement subtraction or to add an extra bit to the least significant column.


Figure 6. Proposed two-operand adder; computing [image: there is no content].
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5. Proposed Multipliers


This section describes how the proposed array multipliers are implemented and pipelined.



5.1. Partial-Product Selection and Generation


MacSorley’s algorithm adds zero when [image: there is no content] by generating [image: there is no content] and setting [image: there is no content]. In the proposed multiplier, [image: there is no content] is generated, and [image: there is no content] is set to “1”. This complements each bit in [image: there is no content] and adds “1” to subtract zero [32]. With this modification, the operation bit [image: there is no content], as opposed to MacSorley’s algorithm where [image: there is no content] is a function of three variables. This eliminates the logic resources and additional delay required to generate [image: there is no content] and simplifies the layout on the FPGA fabric. Table 4 shows the proposed partial-product selection (cf. Table 2), and Table 5 shows the proposed partial-product generation (cf. Table 3).



Table 4. Proposed partial-product selection ([image: there is no content]).
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Table 5. Proposed partial-product generation.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⋯

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
0

	
0

	
0

	
⋯

	
0

	
0

	
0

	
0




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⋯

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⋯

	
[image: there is no content]

	
[image: there is no content]

	
0

	
0




	
[image: there is no content]

	
1

	
1

	
1

	
⋯

	
1

	
1

	
1

	
1




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⋯

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
1




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⋯

	
[image: there is no content]

	
[image: there is no content]

	
1

	
1











5.2. Combined Partial-Product Generation and Addition


Partial-product generation and addition of a second value are combined into a generate-add unit, which is the main building block of the proposed array multipliers. The arithmetic operation is shown in Figure 7. Each unit generates one radix-4 partial product, [image: there is no content], with a leading “1” and the most-significant bit (MSB) complemented to implement sign extension. The operation bit, [image: there is no content], and the [image: there is no content] MSBs of the output from the previous generate-add unit, [image: there is no content], are added to produce an accumulated sum, [image: there is no content]. The two LSBs of [image: there is no content] are bits [image: there is no content] and [image: there is no content] of the final product, so they are not added in the next unit. The generate-add unit is shown in Figure 8. It is implemented using an [image: there is no content]-bit proposed two-operand adder as described in Section 4, with [image: there is no content] and [image: there is no content] as the X and Y addends, respectively.


Figure 7. Arithmetic for the partial-product generation and addition operation.
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Figure 8. Combined partial-product generation and addition unit.
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Bit i of partial product [image: there is no content], [image: there is no content], is a function of five inputs:


[image: there is no content]



(4)







The inputs for each bit, [image: there is no content], are connected to the I5:I1 inputs of a LUT6. [image: there is no content] is connected to I6 of the same LUT6. The M[31:0] LUT5 is configured to generate [image: there is no content], and the M[63:32] LUT5 is configured to generate [image: there is no content]. O6 then generates [image: there is no content] and drives [image: there is no content]. O5 generates [image: there is no content] and is selected to drive [image: there is no content]. This is done for all of the partial-product bits except the MSB, [image: there is no content]. The MSB is complemented for sign extension by generating [image: there is no content] in the M[31:0] LUT5 and [image: there is no content] in the the M[63:32] LUT5. O6 then generates [image: there is no content] and drives [image: there is no content]. O5 generates [image: there is no content] and is selected to drive [image: there is no content]. The leading “1”, [image: there is no content], is added by configuring the M[31:0] LUT5 to generate “1”, configuring the M[63:32] LUT5 to generate “0” and wiring “0” to I6, so that [image: there is no content] and [image: there is no content]. To summarize, the M[31:0] LUT5s generate the bits of [image: there is no content]; the M[63:32] LUT5s generate the complement of those bits; and the bits of [image: there is no content] to be added are wired to the I6 inputs. The operation bit, [image: there is no content], is added by wiring [image: there is no content] to [image: there is no content]. The sum produced at the XORCY output is [image: there is no content], which is added to [image: there is no content] in the next generate-add unit.



Table 6 is the truth table for a LUT6 that generates the partial product [image: there is no content] and adds it to the bit input to I6, e.g., [image: there is no content]. Note that the values for O6 are stored in M[63:32], and the values for O5 are stored in M[31:0].



Table 6. Truth table to generate [image: there is no content] and add it to the bit connected to the I6 input.
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5.3. Optimizations for the Generate-Add Unit


The most-significant LUT, shown in Figure 8, can be simplified and eliminated. Inspection of the circuit shows that the [image: there is no content] input to the MUXCY is always “1”. This means that the [image: there is no content] input to the MUXCY is never used, so it is a don’t-care. This could be implemented by storing all “1”s in the M[63:32] LUT5 and wiring “1” to the I6 input, which frees the M[31:0] LUT5 to be used for another purpose. When this is done, the Xilinx tools optimize the entire LUT6 away. The Verilog models used in this work simply assign “1” to the [image: there is no content] input of the CARRY4 primitive.



Pipelined array multipliers reported in previous work [22] had an interesting result for delay. [image: there is no content] multipliers were slower than [image: there is no content] multipliers (2.402 ns vs. 2.144 ns), and [image: there is no content] multipliers were slower than [image: there is no content] multipliers (2.471 ns vs. 2.160 ns). These multipliers were implemented using the generate-add structure shown in Figure 8, which requires [image: there is no content] LUT6s. When [image: there is no content] is a multiple of four, [image: there is no content] slices are fully utilized. Inspection of Figure 1 shows that the XORCY output and the MUXCY output are registered using the same flip-flop. When [image: there is no content] is a multiple of four, such as for [image: there is no content] and [image: there is no content] multipliers, the [image: there is no content] output from the MUXCY cannot be registered within the same slice because the [image: there is no content] output and the other XORCY outputs use all of the available flip-flops. This forces [image: there is no content] to be routed outside of the slice to an available flip-flop, causing the additional delay due to longer and slower interconnect.



This problem is avoided by noting that [image: there is no content]. The [image: there is no content] output is used in the next row instead of [image: there is no content] so that the MUXCY output does not need to be registered. Figure 9 shows the arithmetic that is performed (cf. Figure 7). The optimized generate-add unit generates [image: there is no content] with a leading “1” and the MSB complemented to implement sign extension as in the original generate-add unit. The operation bit, [image: there is no content], and the ([image: there is no content]) MSBs of [image: there is no content], using [image: there is no content] instead of [image: there is no content], are added to produce an accumulated sum, [image: there is no content]. The MSB of the output, [image: there is no content], is not needed in the next row, so it is not produced.


Figure 9. Arithmetic for the optimized generate-add operation.
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The most-significant LUT6 of the optimized generate-add unit is configured differently than the other LUT6s. The MSB from the previous unit, [image: there is no content], is connected to one of the shared I5:I1 inputs, and “1” is input to I6. The M[31:0] LUT5 is configured to produce [image: there is no content] at O5 to drive the [image: there is no content] signal. The M[63:32] LUT5 is configured to produce the function [image: there is no content] at O6 to drive the [image: there is no content] signal. Since [image: there is no content],


[image: there is no content]



(5)







Table 7 gives the truth table the for the most-significant LUT6 of an optimized generate-add unit.



Table 7. Truth table for the most-significant LUT6 of an optimized generate-add unit.
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Figure 10 shows the optimized generate-add unit. The optimized generate-add unit uses only [image: there is no content] LUT6s and avoids the delay of routing a MUXCY output out of a slice to be registered.


Figure 10. Optimized generate-add unit.
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5.4. Array Structure and Pipelining


An array of [image: there is no content] optimized generate-add units is used to implement an [image: there is no content] multiplier. Optimized generate-add units are connected in an array structure as shown in Figure 11. Each generate-add unit requires [image: there is no content] LUT6s, so the number of LUT6s required to implement an [image: there is no content] array multiplier is:


[image: there is no content]



(6)






Figure 11. Array structure of proposed multiplier, [image: there is no content].
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The multiplier can be pipelined to reduce cycle time and increase throughput for applications that can tolerate increased latency. Figure 12 shows the connections for optimized generate-add units in a pipelined [image: there is no content] array multiplier with [image: there is no content] stages. The multiplier can be pipelined by placing a register after every two generate-add units to increase the maximum clock frequency with a modest increase in latency. All m bits of operand A and [image: there is no content] bits output from the second generate-add unit are registered at the end of the first stage. The three LSBs of operand B are not needed after the first stage, so only [image: there is no content] bits are registered. The two LSBs from the output of the first generate-add unit are also registered for a total of [image: there is no content] bits registered at the end of the first stage. In each subsequent stage, four fewer bits of B are registered while four additional LSBs from generate-add units are registered, so [image: there is no content] flip-flops are used to implement pipeline registers in each stage. There are [image: there is no content] pipeline registers, and [image: there is no content] flip-flops are needed to register the output, so the number of flip-flops required for an [image: there is no content]-stage pipelined array multiplier is:


[image: there is no content]



(7)






Figure 12. Pipelined [image: there is no content] array multiplier with [image: there is no content] stages.
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Each of the LUT6s used to implement the array multiplier has two flip-flops, so there are [image: there is no content] flip-flops available within the footprint of the multiplier. If [image: there is no content], there are enough flip-flops to implement an [image: there is no content]-stage pipeline with a significant number left over for other uses. This does not imply that all flip-flops used to implement the pipeline must be placed within the footprint of the multiplier. It does imply that a large number of multipliers can be densely placed on the FPGA fabric, and there will be enough flip-flops available within the logic of the multipliers for pipelining. Other designs that use the bypass input only have one flip-flop available per LUT6 and would not have enough flip-flops available for deep pipelining. If the product is truncated or rounded, the LSBs of the generate-add units do not need to be registered, and additional flip-flops are available for other uses.



The proposed array multipliers can also be pipelined with [image: there is no content] stages to further increase the maximum clock frequency. This is accomplished by placing pipeline registers after every generate-add unit. As with the [image: there is no content]-stage pipeline, this requires [image: there is no content] bits to be registered in each stage plus [image: there is no content] bits for the output register, so the number of flip-flops required for an [image: there is no content]-stage pipelined array multiplier is:


[image: there is no content]



(8)







There are not enough flip-flops available within the footprint of the multiplier to implement an [image: there is no content]-stage pipeline. Unused flip-flops in nearby logic can be used to make up the difference if available. The number of required flip-flops can be reduced by using shift-register LUTs (SRLs). A single SRL can be used to replace a number of flip-flops connected as a shift register, such as the least-significant bits of the product that are shifted through each stage. The two flip-flops associated with the SRL are available for use, so using SRLs increases the number of flip-flops available in the multiplier footprint while reducing the number that is required. When SRLs are used to replace chains of three or more flip-flops, the Vivado synthesis default, there are more than enough flip-flops within the multiplier footprint to implement the [image: there is no content]-stage pipeline. As noted earlier, this does not imply that pipeline flip-flops must be placed with the footprint. Routing into or out of an SRL may be longer than the longest route between two flip-flops in a chain that it replaces, so it may be on the critical path and increase the delay of the multiplier.



The proposed array structure is easy to layout. LUT6s are placed in the fabric much like a mirror image of how they are shown in the schematic of Figure 11, which simplifies routing, as well. Deeper pipelining, i.e., using [image: there is no content] instead of [image: there is no content] stages, reduces delay significantly.




5.5. Row 0 Generate-Add Estimation Unit


The generate-add unit in the first row, [image: there is no content], does not have an input value [image: there is no content] to add. The unit only needs to generate [image: there is no content] and add [image: there is no content] and [image: there is no content] to produce [image: there is no content], the input to the next generate-add unit. Figure 13 shows the arithmetic for the Row 0 generate-add unit. If a maximum absolute error of one unit in the last place (ulp) can be tolerated, the generate-add unit in the first row can be replaced with an estimation unit that uses only [image: there is no content] LUT6s instead of [image: there is no content]. Figure 14 shows the Row 0 generate-add estimation unit, which produces an estimate, [image: there is no content], instead of [image: there is no content].


Figure 13. Arithmetic for the Row 0 generate-add unit.
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Figure 14. Row 0 generate-add estimation unit.
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For any adjacent pair of bits in [image: there is no content], each bit is a function of four variables:


[image: there is no content]



(9)






[image: there is no content]



(10)







Together, [image: there is no content] and [image: there is no content] are a function of five variables,


(p0,i+1,p0,i)=f(b1,b0,ai+1,ai,ai-1).



(11)







The two bits can be computed using two LUT5s in the same LUT6, generating [image: there is no content] at O6 and [image: there is no content] at O5. This allows [image: there is no content] to be generated using only [image: there is no content] LUT6s instead of the [image: there is no content] LUT6s required for a generate-add unit, but does not allow the fast carry chain to be used. Table 8 gives the truth table for a LUT6 that generates adjacent partial products [image: there is no content] and [image: there is no content] in the top row, Row 0.



Table 8. Truth table to generate [image: there is no content] and [image: there is no content] in Row 0.
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The least-significant LUT6 can generate [image: there is no content] and [image: there is no content], but cannot properly add [image: there is no content] because there cannot be a carry-out to the next LUT6. One option is to discard [image: there is no content] and simply output [image: there is no content] and [image: there is no content]. Another option is to generate [image: there is no content] and [image: there is no content], add [image: there is no content] and output [image: there is no content] and [image: there is no content] if there is no carry out or [image: there is no content] and [image: there is no content] if there is a carry out. Another option is to output a function of [image: there is no content], [image: there is no content] and [image: there is no content] that has a desired statistical result, such as an average error of zero.



The LUT5s that output [image: there is no content] for [image: there is no content] generate [image: there is no content]. The sum of [image: there is no content] and the two constant “1”s is [image: there is no content]. The LUT5s that output [image: there is no content] and [image: there is no content] generate [image: there is no content] and [image: there is no content]. As described in Section 5.3, the generate-add unit in the second row uses [image: there is no content] for [image: there is no content] and complements it internally, so [image: there is no content] does not need to be generated. The only error introduced into [image: there is no content] is the error from the least-significant LUT6, so the maximum absolute error is easily constrained to 1 ulp. Although not shown in Figure 14, [image: there is no content] could be generated using a single LUT5 and used for [image: there is no content], [image: there is no content] and [image: there is no content].





6. Results


The proposed multipliers are compared to Xilinx LogiCORE IP v12.0 multipliers [37] for signed [image: there is no content]-bit units. Results for 6-, 8-, 10-, 12-, 14-, 16-, 20-, 24-, 32- and 64-bit operands are given for single-cycle and pipelined units. Results from other work on GPC-based tree multipliers are compared, and the differences are discussed.



6.1. Methodology


Version 2014.4 of the Xilinx Vivado Design Suite was used. Designs were synthesized with the strategy set to “Vivado Synthesis Defaults” and implemented with the strategy set to “Performance_Retiming”. The -shreg_min_size parameter was set to the default value of three to synthesize pipelined versions of the proposed multipliers using SRLs and set to 99 to synthesize versions using flip-flops only. Designs were synthesized for the Virtex-7 XC7VX330T-FFG1157 (-3 speed grade) device with a timing constraint of 1 ns on the inner clock. All results are post place-and-route.



LogiCORE IP multipliers were created using the IP Catalog in Vivado. Area-optimized and delay-optimized units were synthesized for each operand size. Structural models of the proposed multipliers were implemented in Verilog. Single-cycle versions for each multiplier were created. Pipelined versions were created for LogiCORE multipliers using the optimal number of stages specified in the IP customization dialog. Pipelined versions of the proposed designs were created using [image: there is no content] and [image: there is no content] stages. [image: there is no content]-stage versions were synthesized using flip-flops only (no SRLs). Flip-flop-only designs and designs using SRLs were synthesized for [image: there is no content]-stage versions. Input and output ports were double registered to reduce dependence on I/O placement [38]. CARRY4 primitives were placed manually using the RLOC constraint, which specifies the relative location of primitives in the FPGA fabric. Placement of LUTs was done by the tools with no constraints. Placement of flip-flops was also done by the tools, and they were not constrained to the footprint of the multiplier. A separate clock on the inner level was used to measure the delay through each multiplier.




6.2. Single-Cycle Multipliers


Table 9 and Table 10 show synthesis results for single-cycle multipliers. The total number of LUTs used and the delay in nanoseconds of each multiplier are reported. The LUT-delay product (LDP) is computed as the total number of LUTs multiplied by the delay. This is analogous to the area-delay product of a VLSI design and gives a metric for comparing overall design efficiency, with lower values indicating higher efficiency. The reciprocal of LDP gives a metric for comparing throughput.



Table 9. Synthesis results for LogiCORE IP single-cycle multipliers.







	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
LUTs

	
(ns)

	
LDP

	
LUTs

	
Delay

	
LDP






	
Xilinx

	
6

	
40 

	
2.581

	
103.2

	
1.000

	
1.000

	
1.000




	
Xilinx

	
8

	
72 

	
2.662

	
191.7

	
1.000

	
1.000

	
1.000




	
Xilinx

	
10

	
110 

	
3.533

	
388.6

	
1.000

	
1.000

	
1.000




	
Xilinx

	
12

	
158 

	
3.666

	
579.2

	
1.000

	
1.000

	
1.000




	
Xilinx

	
14

	
214 

	
3.728

	
797.8

	
1.000

	
1.000

	
1.000




	
Xilinx

	
16

	
280 

	
3.937

	
1102.4

	
1.000

	
1.000

	
1.000




	
Xilinx

	
20

	
431 

	
4.702

	
2026.6

	
1.000

	
1.000

	
1.000




	
Xilinx

	
24

	
617 

	
4.885

	
3014.0

	
1.000

	
1.000

	
1.000




	
Xilinx

	
32

	
1089 

	
5.514

	
6004.7

	
1.000

	
1.000

	
1.000




	
Xilinx

	
64

	
4261 

	
7.259

	
30930.6

	
1.000

	
1.000

	
1.000










Table 10. Synthesis results for the proposed single-cycle multipliers.







	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
LUTs

	
(ns)

	
LDP

	
LUTs

	
Delay

	
LDP






	
New

	
6

	
21 

	
2.649

	
55.6

	
0.525

	
1.026

	
0.539




	
New

	
8

	
36 

	
3.594

	
129.4

	
0.500

	
1.350

	
0.675




	
New

	
10

	
55 

	
4.250

	
233.8

	
0.500

	
1.203

	
0.601




	
New

	
12

	
78 

	
5.248

	
409.3

	
0.494

	
1.432

	
0.707




	
New

	
14

	
105 

	
5.820

	
611.1

	
0.491

	
1.561

	
0.766




	
New

	
16

	
136 

	
6.875

	
935.0

	
0.486

	
1.746

	
0.848




	
New

	
20

	
210 

	
8.509

	
1786.9

	
0.487

	
1.810

	
0.882




	
New

	
24

	
300 

	
10.509

	
3152.7

	
0.486

	
2.151

	
1.046




	
New

	
32

	
528 

	
13.956

	
7368.8

	
0.485

	
2.531

	
1.227




	
New

	
64

	
2080 

	
26.323

	
54751.8

	
0.488

	
3.626

	
1.770










The area optimization for LogiCORE IP multipliers is most effective when both operands are unsigned [38]. Signed area-optimized LogiCORE multipliers were found to use more LUTs and to have a higher LUT-delay product than delay-optimized units for each of the operand sizes tested, so delay-optimized multipliers are used as the baseline for comparison. The total number of LUTs, maximum delay and LUT-delay product for each design are normalized to the delay-optimized LogiCORE multiplier of the same size.



The proposed single-cycle designs use 47%–51% fewer LUTs than the baseline LogiCORE multipliers, which allows approximately twice as many to be implemented in the same logic fabric. They are slower than baseline multipliers, and the normalized delay generally increases as n increases. For [image: there is no content], the decrease in LUTs is more significant than the increase in delay, so those units have a 12%–46% lower LUT-delay product than baseline multipliers.




6.3. Pipelined Multipliers


Table 11, Table 12, Table 13, Table 14 and Table 15 show synthesis results for pipelined multipliers. The number of pipeline stages and the number of flip-flops (FFs) are reported. The number of flip-flops includes pipeline registers and one output register, but does not include the input registers or the second set of registers used to reduce dependence on I/O placement. Values are normalized to Xilinx LogiCORE IP multipliers reported in Table 11.



Table 11. Synthesis results for LogiCORE IP pipelined multipliers.







	

	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
Stages

	
LUTs

	
(ns)

	
FFs

	
LUTs

	
Delay

	
FFs

	
LDP






	
Xilinx

	
6

	
3

	
40 

	
1.413

	
55

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
8

	
3

	
72 

	
1.518

	
81

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
10

	
4

	
113 

	
1.338

	
150

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
12

	
4

	
161 

	
1.416

	
192

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
14

	
4

	
217 

	
1.516

	
253

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
16

	
4

	
283 

	
1.506

	
305

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
20

	
5

	
440 

	
1.639

	
517

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
24

	
5

	
626 

	
1.694

	
694

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
32

	
5

	
1099 

	
1.836

	
1154

	
1.000

	
1.000

	
1.000

	
1.000




	
Xilinx

	
64

	
6

	
4288 

	
2.358

	
4418

	
1.000

	
1.000

	
1.000

	
1.000










Table 12. Synthesis results for the proposed multipliers, [image: there is no content]-stage pipeline, no SRLs.







	

	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
Stages

	
LUTs

	
(ns)

	
FFs

	
LUTs

	
Delay

	
FFs

	
LDP






	
New

	
6

	
2

	
21 

	
1.984

	
31

	
0.525

	
1.404

	
0.563

	
0.737




	
New

	
8

	
2

	
36 

	
2.038

	
41

	
0.500

	
1.343

	
0.506

	
0.671




	
New

	
10

	
3

	
55 

	
1.943

	
82

	
0.487

	
1.452

	
0.547

	
0.707




	
New

	
12

	
3

	
78 

	
2.108

	
98

	
0.484

	
1.489

	
0.510

	
0.721




	
New

	
14

	
4

	
105 

	
1.988

	
157

	
0.484

	
1.311

	
0.621

	
0.635




	
New

	
16

	
4

	
136 

	
2.176

	
179

	
0.481

	
1.445

	
0.587

	
0.694




	
New

	
20

	
5

	
210 

	
2.232

	
284

	
0.477

	
1.362

	
0.549

	
0.650




	
New

	
24

	
6

	
300 

	
2.347

	
413

	
0.479

	
1.385

	
0.595

	
0.664




	
New

	
32

	
8

	
528 

	
2.396

	
743

	
0.480

	
1.305

	
0.644

	
0.627




	
New

	
64

	
16

	
2080 

	
2.855

	
3023

	
0.485

	
1.211

	
0.684

	
0.587










Table 13. Synthesis results for proposed multipliers, [image: there is no content]-stage pipeline, no SRLs.







	

	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
Stages

	
LUTs

	
(ns)

	
FFs

	
LUTs

	
Delay

	
FFs

	
LDP






	
New

	
6

	
3

	
21 

	
1.119

	
50

	
0.525

	
0.792

	
0.980

	
0.416




	
New

	
8

	
4

	
36 

	
1.175

	
91

	
0.500

	
0.774

	
1.123

	
0.387




	
New

	
10

	
5

	
55 

	
1.232

	
144

	
0.487

	
0.921

	
0.960

	
0.448




	
New

	
12

	
6

	
78 

	
1.283

	
209

	
0.484

	
0.906

	
1.090

	
0.439




	
New

	
14

	
7

	
105 

	
1.312

	
286

	
0.484

	
0.865

	
1.130

	
0.419




	
New

	
16

	
8

	
136 

	
1.402

	
375

	
0.481

	
0.931

	
1.230

	
0.447




	
New

	
20

	
10

	
210 

	
1.465

	
589

	
0.477

	
0.894

	
1.139

	
0.427




	
New

	
24

	
12

	
300 

	
1.700

	
851

	
0.479

	
1.004

	
1.226

	
0.481




	
New

	
32

	
16

	
528 

	
1.667

	
1519

	
0.480

	
0.908

	
1.316

	
0.436




	
New

	
64

	
32

	
2080 

	
2.083

	
6111

	
0.485

	
0.883

	
1.383

	
0.429










Table 14. Synthesis results for the proposed multipliers, [image: there is no content]-stage pipeline, using SRLs.







	

	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
Stages

	
LUTs

	
(ns)

	
FFs

	
LUTs

	
Delay

	
FFs

	
LDP






	
New

	
6

	
3

	
23 

	
1.193

	
46

	
0.575

	
0.844

	
0.836

	
0.485




	
New

	
8

	
4

	
42 

	
1.176

	
77

	
0.583

	
0.775

	
0.951

	
0.452




	
New

	
10

	
5

	
65 

	
1.251

	
116

	
0.575

	
0.935

	
0.773

	
0.538




	
New

	
12

	
6

	
92 

	
1.318

	
163

	
0.571

	
0.931

	
0.849

	
0.532




	
New

	
14

	
7

	
123 

	
1.292

	
218

	
0.567

	
0.852

	
0.862

	
0.483




	
New

	
16

	
8

	
158 

	
1.349

	
281

	
0.558

	
0.896

	
0.921

	
0.500




	
New

	
20

	
10

	
240 

	
1.441

	
431

	
0.545

	
0.879

	
0.834

	
0.480




	
New

	
24

	
12

	
338 

	
1.674

	
613

	
0.540

	
0.988

	
0.883

	
0.534




	
New

	
32

	
16

	
582 

	
1.824

	
1073

	
0.530

	
0.993

	
0.930

	
0.526




	
New

	
64

	
32

	
2198 

	
2.050

	
4193

	
0.513

	
0.869

	
0.949

	
0.446










Table 15. Synthesis results for the proposed multipliers, [image: there is no content]-stage pipeline, using SRLs, estimated [image: there is no content].







	

	

	

	
Total

	
Delay

	

	
Normalized




	
Type

	
n

	
Stages

	
LUTs

	
(ns)

	
FFs

	
LUTs

	
Delay

	
FFs

	
LDP






	
New

	
6

	
3

	
22 

	
1.294

	
42

	
0.550

	
0.916

	
0.763

	
0.504




	
New

	
8

	
4

	
38 

	
1.233

	
75

	
0.528

	
0.812

	
0.926

	
0.429




	
New

	
10

	
5

	
60 

	
1.279

	
114

	
0.531

	
0.956

	
0.760

	
0.508




	
New

	
12

	
6

	
86 

	
1.290

	
161

	
0.534

	
0.911

	
0.839

	
0.487




	
New

	
14

	
7

	
116 

	
1.333

	
216

	
0.535

	
0.879

	
0.854

	
0.470




	
New

	
16

	
8

	
150 

	
1.368

	
279

	
0.530

	
0.908

	
0.915

	
0.481




	
New

	
20

	
10

	
230 

	
1.424

	
429

	
0.523

	
0.869

	
0.830

	
0.454




	
New

	
24

	
12

	
326 

	
1.465

	
611

	
0.521

	
0.865

	
0.880

	
0.450




	
New

	
32

	
16

	
566 

	
1.775

	
1071

	
0.515

	
0.967

	
0.928

	
0.498




	
New

	
64

	
32

	
2166 

	
2.076

	
4191

	
0.505

	
0.880

	
0.949

	
0.445










Table 12 shows proposed multipliers using an [image: there is no content]-stage pipeline and no SRLs. These versions use 47%–52% fewer LUTs than the baseline LogiCORE multipliers, which allows 1.90–2.10-times as many to be implemented in the same logic fabric. These versions use fewer flip-flops than LogiCORE multipliers. The LUTs used to implement each proposed multiplier have more associated flip-flops available for use than are used in the design because the bypass inputs are not used. These versions are generally slower than LogiCORE multipliers.



Table 13 shows proposed multipliers using an [image: there is no content]-stage pipeline and no SRLs. These versions use 47%–52% fewer LUTs and are 0%–23% faster than the baseline LogiCORE multipliers. These versions use more flip-flops than LogiCORE multipliers, and more flip-flops than are available from the associated LUTs used in the designs. If extra flip-flops are available from nearby logic, these versions offer LUT-delay products that are 52%–61% lower than baseline LogiCORE multipliers.



Table 14 shows proposed multipliers using an [image: there is no content]-stage pipeline and SRLs to save flip-flops. These versions use 42%–49% fewer LUTs and are 1%–22% faster than the baseline LogiCORE multipliers. These versions use fewer flip-flops than LogiCORE multipliers, and enough flip-flops are available from the associated LUTs. They have a 46%–55% lower LUT-delay product than baseline multipliers, indicating a potential 1.86–2.21-times increase in throughput for a fixed number of LUTs.



Table 15 shows proposed multipliers using an [image: there is no content]-stage pipeline, SRLs and a Row 0 estimation unit instead of a generate-add unit. These versions use 45%–49% fewer LUTs and are 4%–19% faster than the baseline LogiCORE multipliers. These versions use fewer LUTs and flip-flops than versions that use a generate-add unit, but may have slightly longer delay. They have a 49%–57% lower LUT-delay product than baseline multipliers, indicating a potential 1.97–2.33-times increase in throughput for a given number of LUTs.




6.4. Layout


Figure 15 shows a screen capture of the implementation of a proposed [image: there is no content] single-cycle array multiplier (cf. the mirror image of Figure 11). Nine slices are shown in the screen capture, and primitives in the lower-right slice are annotated (cf. Figure 1). The four MUXCYs, four XORCYs and the fast carry chain for the slice are instantiated as a single Xilinx primitive called a CARRY4. Primitives that are used are indicated by a cyan background color. Note that in Figure 11, carries propagate from the right side of the figure to the left side, so that the most-significant bit of the product is on the left side and the least-significant bit is on the right side. In the screen capture, carries propagate from the bottom of the image to the top. The two slices in the left column of slices correspond to the generate-add unit that generates [image: there is no content] and outputs [image: there is no content]. The two slices in the middle column of slices correspond to the generate-add unit that generates [image: there is no content] and adds it to [image: there is no content] to output [image: there is no content]. The two slices in the right column of slices correspond to the generate-add unit that generates [image: there is no content] and adds it to [image: there is no content] to output [image: there is no content]. The flip-flops that are indicated as used are part of the registers used for the input and output ports to reduce dependence on I/O placement as noted in Section 6.1.


Figure 15. Implementation of the proposed [image: there is no content] single-cycle array multiplier.



[image: Computers 05 00020 g015]






Figure 16 shows a screen capture of the implementation of a proposed [image: there is no content] pipelined multiplier, with an eight-stage pipeline using SRLs. The image on the left shows wiring from the I/O pads used for the bits of operand A to the first register for operand A. The flip-flops for the first register are generally located near the corresponding I/O pad. The wiring from the first register for operand A to the second register for operand A is not shown. Most of the flip-flops used for the second register for operand A are located near the multiplier logic at the top of the image. The image on the right shows the wiring from the second register for the output P to the I/O pads used for the bits of P. The flip-flops for the first output register for P are generally located close to the logic for the multiplier at the top of the image. This figure shows the importance of double-registering the input and output ports. If they were not double-registered, delays from long routing lines from I/O pads to the multiplier would give misleading results for the speed of a multiplier when used as part of a larger unit, such as a finite impulse response (FIR) filter that is not connected directly to I/O pads.


Figure 16. Implementation of the proposed [image: there is no content] pipelined multiplier (with an eight-stage pipeline using SRLs) showing wiring from the I/O pads for operand A on the left and wiring to the I/O pads for output P on the right.



[image: Computers 05 00020 g016]






Figure 17 shows a screen capture of the implementation of the same [image: there is no content] eight-stage pipelined multiplier shown in Figure 16. This image shows a close-up view the multiplier logic shown at the top of the images in Figure 16. The eight generate-add units of the multiplier each occupy five slices in a column. The SRLs used in the multiplier are implemented using LUT6s in nearby slices. Most of the flip-flops in the slices are used for generate-add units, showing that the bypass inputs are indeed available and the bypass flip-flops can be used. The implementation was not constrained to use only those flip-flops. The tools implemented most of the pipeline registers using them, but left some of them unused and available while using some flip-flops in nearby slices.


Figure 17. Implementation of the proposed [image: there is no content] pipelined multiplier (with an eight-stage pipeline using SRLs) showing the usage of LUT6s, CARRY4s and flip-flops.



[image: Computers 05 00020 g017]






Figure 18 shows a screen capture of the same multiplier shown in Figure 17, plus the wiring from the pipeline register between the third and fourth pipeline stage to the inputs of the generate-add unit in the fourth stage. It can be seen that many of the flip-flops in the pipeline register are bypass flip-flops. However, some are not, and some are not in slices occupied by generate-add units. If many of the proposed [image: there is no content]-stage multipliers using SRLs were located next to each other, there would be enough flip-flops associated with the generate-add units and SRLs to implement all of the pipeline registers and an output register for each multiplier. However, without constraining the placement of those flip-flops, the tools would likely place some of the flip-flops for one multiplier in slices occupied by another multiplier. Further research is needed to determine if constraining flip-flops for a multiplier to the logic used to implement the same multiplier would yield any improvements in delay.


Figure 18. Implementation of the proposed [image: there is no content] pipelined multiplier (with an eight-stage pipeline using SRLs) showing wiring from the third pipeline register to the fourth-stage generate-add unit.



[image: Computers 05 00020 g018]







6.5. GPC-Based Tree Multipliers


Brunie et al. [18] present a data structure called a bit heap, which is similar to a BitMatrix object [4,39,40]. Bit heaps and BitMatrix objects treat a set of operands to be summed as a collection of individual weighted bits instead of a collection of operand vectors. The FloPoCo [41] arithmetic generator operates on bit heaps, applying embedded multipliers, GPCs and [image: there is no content] multipliers [42] to compute the sum. FloPoCo targets Altera and Xilinx FPGAs. Kumm and Zipf present two novel GPCs specific to Xilinx FPGAs that exploit the slice structure and are more efficient than previous work in terms of the ratio of the number of bits removed from the bit heap to the number of required LUTs. They then use ILP to select GPCs to reduce a bit heap to two rows and report improvements over the previous FloPoCo heuristic [19]. Mhaidat and Hamzah [20] present results for a Xilinx Spartan-6 FPGA, which uses a 6-input LUT architecture. They report that their [image: there is no content] multiplier uses 1133 LUTs, which is 2.15-times the number used by the proposed multipliers that do not use SRLs and 1.95-times the number used by the proposed [image: there is no content]-stage pipelined multipliers that use SRLs. They do not compare their results to LogiCORE IP, so normalized results for LUTs or delay are not available for comparison to proposed multipliers.



Two Altera ALMs can be used to implement a (6;3), a (1,5;3), a (2,3;3) or a (3,3;4) counter. (6;3) and (1,5;3) counters are favored because they eliminate three partial-product bits per counter, compared to (2,3;3) and (3,3;4) counters, which only eliminate two bits per counter. In Xilinx, three LUT6s would be required to implement a (6;3) or a (1,5;3) counter, because only five inputs can be shared between the LUT5s. A (2,3;3) counter could be implemented using two LUT6s, because there are only five inputs, so LUT5s can be used. A (3,3;4) counter would require four LUT6s. (6;3) and (1,5;3) counters can be used in Altera to eliminate 1.5 bits per ALM, but they would only eliminate one bit per LUT6 in Xilinx. The differences between Xilinx and Altera are too great to assume that results for GPC-based multipliers on Xilinx FPGAs would be comparable to results for Altera FPGAs presented in other work.



Parandeh-Afshar et al. compare LUT-based multipliers using GPCs to MegaWizard multipliers in Altera FPGAs in [7] and give a graph of the results. Numerical results are estimated from their graphs and tabulated in Table 16. Their radix-4 Booth multipliers have the best overall results. They are faster than MegaWizard multipliers at the expense of additional LUTs for most operand sizes. The normalized LUT-delay product ranges from 0.67 to 1.08. By contrast, the proposed multipliers are significantly smaller and have a much lower LUT-delay product than Xilinx LogiCORE IP multipliers when pipelined with [image: there is no content]-stages. This indicates that the proposed method has a larger improvement on Xilinx than [7] has on Altera.



Table 16. Results for GPC-based multipliers on Altera [7].







	

	
[7] Radix-4 Booth

	
[7] Baugh-Wooley




	

	
Normalized to

	
Normalized to




	

	
Altera MegaWizard

	
Altera MegaWizard




	
n

	
LUTs

	
Delay

	
LDP

	
LUTs

	
Delay

	
LDP






	
10

	
1.00

	
0.67

	
0.67

	
1.12

	
1.28

	
1.43




	
12

	
1.00

	
0.79

	
0.79

	
1.10

	
1.02

	
1.12




	
14

	
1.07

	
0.82

	
0.88

	
1.13

	
1.10

	
1.24




	
16

	
1.22

	
0.84

	
1.02

	
1.26

	
0.95

	
1.20




	
20

	
0.97

	
0.83

	
0.81

	
1.03

	
0.92

	
0.95




	
24

	
0.97

	
0.83

	
0.81

	
1.05

	
0.94

	
0.99




	
32

	
1.21

	
0.89

	
1.08

	
1.25

	
0.98

	
1.23




	
64

	
1.16

	
0.82

	
0.95

	
1.16

	
0.98

	
1.14












7. Conclusions


This paper presents a novel two-operand adder that combines radix-4 partial-product generation and addition and shows how it can be used in FPGAs based on 6-input LUTs to implement two’s-complement array multipliers. Synthesis results are compared to Xilinx LogiCORE IP multipliers. The proposed array multipliers use approximately one-half of the LUTs needed by comparable LogiCORE IP multipliers, which allows approximately twice as many to be implemented in the same logic fabric. When deeply pipelined, the proposed multipliers are also faster than LogiCORE IP multipliers in most cases. SRLs can be used so that there are more flip-flops associated with the logic of the multiplier than required for pipelining, which allows a large number of deeply pipelined multipliers to be densely placed in the FPGA fabric. If a maximum absolute error of 1 ulp is tolerable, the number of required LUTs can be reduced further. The proposed multipliers are well suited for multiply-intensive applications, such as digital-signal processing, image processing and video processing, where they can be modified further using techniques, such as merged arithmetic and truncated-matrix arithmetic, to optimize the overall system.
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Abbreviations


The following abbreviations are used in this manuscript:





	ALM
	adaptive logic module



	CLB
	configurable logic block



	CPA
	carry-propagate adder



	DSP
	digital signal processing



	FIR
	finite impulse response



	FPGA
	field-programmable gate array



	GPC
	generalized parallel counter



	ILP
	integer linear programming



	LAB
	logic array block



	LDP
	LUT-delay product



	LUT
	lookup table



	LUT5
	5-input lookup table



	LUT6
	6-input lookup table



	LSB
	least-significant bit



	MSB
	most-significant bit



	SRL
	shift register LUT



	ulp
	unit in the last place
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