

An ECMA-55 Minimal BASIC Compiler

Targetting x86-64 Linux

by

John Gatewood Ham

Slides last updated on April 2, 2014.

Motivation

● BASIC was designed for teaching
● BASIC behavior is very close to real CPU behavior
● No standards-conformant free BASIC for 64bit Linux existed
● BASIC was designed to be compiled, although on

microcomputers most people used interpreters
● Most production compilers are so complex only a genius

student can understand them; a simpler compiler is needed
to teach people about compilers in a first course

● Most people today use JIT and bytecode – the art of actually
compiling all the way down to assembly is becoming a lost
skill and is a problem for operating system and compiler
development in the future

BASIC's Tarnished Reputation

Today, BASIC has a bad reputation which is
largely due to Dijkstra's famous criticisms. Those
unfair criticisms, combined with the vendors of
microcomputers no longer including BASIC for
free, led to the end of the language popularity.

In computers with 64KB or less of total RAM,
making everything global and coding in a
machine-code style makes sense. GOTO is not
intrinsically evil – today's current CPUs all use
unconditional branches, and every C and C++
compiler emits those branches.

10 REM NUMERIC INTEGRATION
20 DEF FNF(X)=COS(X)
30 LET A=0
40 LET B=1
50 LET N=100000
70 LET D=(B­A)/N
80 LET S=0
90 FOR I=A TO B STEP D
100 LET S=S+D*FNF(I)
110 NEXT I
120 PRINT S,SIN(B)­SIN(A)
130 END

ECMA-55 Minimal BASIC
Numeric Integration
Left Reimann Sum

This is a fairly
typical type of
program that
would be written
in BASIC for a
freshman
calculus or
numerical
analysis course.

 movabsq $S, %r15
 movsd (%r15), %xmm0
 comisd %xmm0, %xmm0
 jnp 1f
 # referenced scalar S was NaN, uninitialized
 movabsq $.Luninitialized_msg, %rsi
 movabsq $printstring, %rax
 callq *%rax
 # must create string in reverse order
 xorq %rdi,%rdi
 movb $'S',%dil
 shl $8,%rdi
 movb $32,%dil
 movabsq $printvarname,%rax
 callq *%rax
 movabsq $badxit, %rax
 jmpq *%rax
1: # OK
 pushxmm 0
 movabsq $D, %r15
 movsd (%r15), %xmm0
 comisd %xmm0, %xmm0
 jnp 1f
 # referenced scalar D was NaN, uninitialized
 movabsq $.Luninitialized_msg, %rsi
 movabsq $printstring, %rax
 callq *%rax

This is the beginning of
the code generated for
line 100 of the previous
example program. It is
quite involved at the
machine level, and
most of it is for error
handling. This is
typical of code
compiled with full error
checking, but C does
not support this style at
all. This is the reason
why the standard
advice to “just look at
the output of gcc or
clang” was not very
helpful when
developing this
compiler.

Overall Compiler Structure

Very complex
rules for READ
and INPUT
require rather a
correspondingly
complex finite
state machine.

Implementation

● Hand-coded deterministic finite state machine scanner

● Hand-coded top-down, recursive descent parser

● Pre-loaded symbol table with binary search lookups

● Parser driven, output to temporary files

● No intermediate representation

● Almost no optimization (simple peephole pass only)

● Written in standard C99 and GNU as (AT&T dialect)

● Uses a dedicated operand stack to implement
arithmetic expressions

The Runtime Library

● Naoki Shibata's SLEEF for elementary functions

● Bob Jenkins' ISAAC-64 for RND and RANDOMIZE
● David Gay's dtoa, g_fmt, and strtod functions for

conversion between ASCII and floating point

● INPUT subsystem

● PRINT/TAB support

Arithmetic Expressions

● SSE/SIMD math used since Intel claims x87
support is deprecated and going away. This
means generated code requires a CPU with SSE2
support. All known 64bit AMD64/x86-64 CPUs
have the necessary features.

● While SSE is register-based, this compiler uses an
operand stack in memory to avoid having to do
complex register allocation

● Full exception support required by the standard,
implemented using assembly macros to keep
generated code easy to read

Minimal BASIC Control Flow

● GOTO for unconditional branch

● IF with a line number target (but no ELSE) for
conditional branch

● FOR loops with index variable and NEXT are the
only looping construct, with optional STEP.

● Rules to prevent jumping into a loop are complex
to enforce

● ON expr GOTO line,line,... for multi-way branch

Compiler Assembly Output

● AT&T UNIX-style assembly code operands are
backwards from Intel documentation, and very
little useful example code exists on the Internet.

● Uses large model, to avoid the complexity of
computing RIP-relative addresses

● Uses macros for arithmetic operators
● Linux AMD64 ABI requires register-based

parameter passing

Generated Executables

● The generated assembly is linked with David
Gay's floating point I/O code and a static
executable is generated.

● Console I/O calls the kernel directly, so no libc
is required by the generated code.

● SLEEF and ISAAC-64 are included in the
executable, so no libm is required by the
generated code.

● Good style for stand-alone environments.

Automated Testing

● A simple test harness written in GNU bash shell using
standard UNIX tools

● Verifies compile output of every test with standard 'make
check' invocation (64bit) and 'make check32' (32bit)

● Verifies runtime output of every test that can be run
● Supports programs with different 32/64 bit output
● Source for all 208 NBS tests are provided
● 207 of 208 tests pass as of 2014/04/02, but test #131

cannot be automatically tested since it uses RANDOMIZE

Future Work
● Rewrite arithmetic expression handling to be register-

based, adding the required intermediate
representation and register allocation

● Add DWARF debugging support

● Support an alternative output style that uses RIP-
relative addressing and the small code model

● Use AVX math to simplify arithmetic expression
handling with the 3 operand RISC style (requires Haswell
CPU – my faculty insists I keep using a 2007 Core 2 Duo).

● Add better string support, file handling, etc. in a move
towards ECMA-116 BASIC­1.

Benefits

● Students can program in traditional BASIC to get a
better understanding of early computer
programming and how a CPU works.

● Much simpler than something like Java or C++ for a
first exposure to programming.

● People who want to implement true compilers (all
the way to assembly) for procedural, iterative
languages can start easily with this compiler.

● Simple overall structure, easy to understand, small
(less than 20,000 total lines of code, about half of
that is runtime library).

Benefits II

● People who want to know how to code x86-64
assembly, including floating point exception
handling, can look at the simple, non-optimized
output of this compiler and learn from it.

● Reasonable teaching compiler – people can
add statements, runtime library functions, long
variable names, or retarget to another
processor. No “OOP for OOP's sake” is used.

● Written in standard C99; no exotic languages
required.

Conclusion

Today many people get into computer science but
never learn how the CPU works. This results in a
shortage of people who can do low-level
programming which is required to generate
compilers, work on operating systems, and to
achieve good performance that takes full
advantage of hardware. It also makes learning
how to debug things like a bad compiler or linker a
lot more difficult since people without this
knowledge cannot read assembly at all, and have
no idea what correct output should be.

The decline of students learning about
implementing compilers is largely due to the
impossibly steep learning curve required to get
involved with today's production-level open source
compilers, the poor documentation of x86-64
assembly programming, and the fact that the
literature available for low-level programming on
x86 architecture is almost exclusively for 32bit.
Hopefully this project will help more people get
involved in creating low-level code for x86-64 so
they can help create the next generation of
programmer tools and operating systems.

Conclusion II

Resources
Compiler overview page:
http://buraphakit.sourceforge.net/BASIC.shtml

SourceForge project page (with tarball downloads and
mercurial VCS access):

http://sourceforge.net/projects/buraphakit

Some of Edsger W. Dijkstra's famous BASIC criticisms:

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html

EWD claims BASIC causes “mental mutilation”

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html

EWD claims “teaching of BASIC should be rated as a criminal offence: it mutilates the mind beyond
recovery”

