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Abstract: This paper describes a new non-optimizing compiler for the ECMA-55 Minimal
BASIC language that generates x86-64 assembler code for use on the x86-64 Linux® [1]
3.x platform. The compiler was implemented in C99 and the generated assembly language
is in the AT&T style and is for the GNU assembler. The generated code is stand-alone
and does not require any shared libraries to run, since it makes system calls to the Linux®

kernel directly. The floating point math uses the Single Instruction Multiple Data (SIMD)
instructions and the compiler fully implements all of the floating point exception handling
required by the ECMA-55 standard. This compiler is designed to be small, simple, and easy
to understand for people who want to study a compiler that actually implements full error
checking on floating point on x86-64 CPUs even if those people have little programming
experience. The generated assembly code is also designed to be simple to read.
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1. Introduction

The Beginner’s All-purpose Symbolic Instruction Code (BASIC) language was invented by John G.
Kemeny and Thomas E. Kurtz for teaching at Dartmouth College in the early 1960’s [2,3]. Its simplicity
meant that even non-technical students could learn it quickly and use the language ([4], p. 106). As
its popularity grew, the various implementations’ dialects of BASIC ceased to be compatible with each
other [5–7]. This led to a standardization effort by American National Standards Institute (ANSI) [8,9],
which after many compromises became Minimal BASIC. The standardization effort was not successful
for a variety of reasons, and most implementations of the language that called themselves BASIC were
actually not fully compliant with the Minimal BASIC standard. If for no other reason, the lack of
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adequate string and file support meant that a strict Minimal BASIC implementation would not be a
commercially viable product.

Despite Dijkstra’s famous criticisms [10,11], BASIC proved to be a good language for use by normal
people who want to learn how to program [12]. The simple type of programming traditionally used
for introductory teaching seems to be absent from most schools today. While Microsoft®’s Small
Basic [13] was a response to Brin’s article, it implements something closer to Pascal than the traditional
style of BASIC. Ian Larsen’s BASIC-256 [14] is an open source interpreter that was also a response to
the article, but it does not really implement the traditional style of BASIC either.

Extensive research failed to reveal any available fully compliant Minimal BASIC implementation,
although clearly at least one must have existed which was used to create the National Bureau of Standards
(NBS) test suite [15,16]. Most early BASIC implementations were interpreters, even though the language
was always intended to be compiled ([4], p. 108; [17], p. 522). Also, no free and open source BASIC
compiler generating native 64 bit assembly code for x86-64 Linux® was found. Anthony Liguori’s GNU
Liberty BASIC [18] Compiler Collection compiles to C, not assembly code, requires GNOME and gcc
to be installed, and does not accept programs with line numbers. Line numbers are a requirement for
ECMA-55 Minimal BASIC. Andre Victor’s FreeBASIC [19] compiler does not support generating 64
bit programs at all. The commercial TrueBASIC [20] and Liberty BASIC [21] products do not run
on or generate code for x86-64 Linux®. In addition, neither comes with source code for the compiler,
so they are not useful for people wanting to learn how to build or modify a compiler. While Pure
BASIC [22] does generate 64 bit nasm assembly code for x86-64 Linux®, it does not support any
traditional line-numbered BASIC dialect, but instead is a compiler for a Pascal-derived language similar
to the dialect made popular by Microsoft®’s Visual BASIC® product. None of these five compilers is
designed for programs written in the Minimal BASIC dialect, although porting such a program to run on
TrueBASIC should be possible since their documentation says they still accept line numbered programs.
The absence of any working ECMA-55 Minimal BASIC compiler that would run on or generate code for
x86-64 Linux® motivated the creation of the compiler described in this paper which compiles Minimal
BASIC code into x86-64 assembly code for 64 bit Linux®. Intel® has called the x86-64 instruction set
other names including IA-32e, EM64T [23] and Intel® 64 [24] which is the name that company currently
uses. AMD has always referred to it as AMD64 [25].

The compiler described in the paper is designed as a simple example compiler. Many less rigorous
universities offer a one semester undergraduate compiler course to students with relatively weak
programming skills and experience. Complex modern production compilers are large code bases using
advanced techniques which include algorithms for optimization that require ability and skill beyond what
many beginning computer science students have. This compiler provides a simpler alternative while still
generating code for current, widely-available commodity consumer 64 bit hardware. This compiler
takes as input a classic language that was especially designed for teaching people outside of computer
science to harness the power of a computer. Rather that attempting to use complex algorithms and
generating production quality code, this compiler uses simpler algorithms and data structures to generate
correct, non-optimized code. It does not support multiple front or back ends, keeping the design simpler
and smaller. Compilation is accomplished without using any intermediate representation. That design
decision keeps it simple, which is one of the primary goals, but has the side-effect of making advanced
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data and control flow analysis impossible. As an introductory first compiler, this limitation is acceptable.
The goal of keeping things elementary enough for even students with introductory programming skill
means that this compiler is not appropriate for use in an advanced course. However, highly-skilled
students at academically challenging educational institutions are already well served by several existing
advanced open source compilers. This compiler attempts to address the requirements for the low end
of academia, where a more approachable, simple, entry-level, non-optimizing, free and open source
compiler that undergraduate students with a lower skill level can understand is needed. It achieves
this while still targeting modern commodity hardware, supporting floating point, and using an historic
computer science teaching language, warts and all, instead of something custom-designed to be easy
to compile.

When evaluating this compiler, it is important to keep in mind the target audience for this compiler.
The target audience of this compiler is not students at top-tier universities or advanced compiler
researchers, but ordinary undergraduate students with relatively poor programming and algorithmic skills
who nevertheless need to learn about how compilers work. This compiler is intended to do two things:

(1) Serve as a standards-compliant baseline compiler implementation for the classic ECMA-55
Minimal BASIC dialect that can be used on x86-64 Linux®.

(2) Serve as an example compiler for entry-level undergraduate compiler courses at institutions where
the students may possess only modest programming and algorithmic skill.

This compiler is not intended to serve as an example of the state of the art in compiler technology.
The two most well-known C compilers that actually generate x86-64 assembly for Linux® are

gcc [26] and the clang/LLVM [27] toolchain and both of these projects have huge1, complex
code bases and can be considered state-of-the-art examples of modern optimizing production quality
compilers. To understand them well enough to modify or extend them requires learning very complex
algorithms, learning a non-trivial intermediate representation language, learning a machine description
language, and more. The Free Pascal [28] fpc compiler can also generate assembly output, but it
is also part of a large, complex system. The simpler tcc [29] compiler cannot emit assembly code.
After the Minimal BASIC compiler was completed, another compiler called pcc [30] was found that
could generate assembly output. While pcc is simpler than clang/LLVM and gcc, the code is still
too difficult to grasp in one semester for many undergraduate students. In short, the well known free
and open source production-quality compilers capable of generating x86-64 assembly for Linux® have
a very steep learning curve and require a student to master an overwhelming amount of information
which is clearly too much for many undergraduate students attending colleges with less-than-stellar
academic standards who are just starting to learn about compiler construction. The compiler created
by this project, in contrast, is smaller, less complex and yet really is a complete implementation of a
programming language supporting full exception handling for floating point. To work with this Minimal
BASIC implementation a student still must learn x86-64 assembly, how to implement a deterministic

1 gcc version 4.9.1 has more than 4 million lines of source code, clang/LLVM version 3.4.2 has more than 2 million
lines of source code.
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finite state machine, how to implement top-down recursive-descent parsing, how to make Linux® kernel
calls, and how to debug machine code.

2. Experimental Section

2.1. Which Standard To Implement?

The first major problem was that despite being revoked, the ANSI X3.60-1978 Minimal BASIC
standard is still not freely available. The same is true for ISO’s corresponding version, ISO 6373:1984
Data processing—Programming languages—Minimal BASIC. Fortunately the Europeans are more
reasonable and the European Computer Manufacturers Association (ECMA) standards body allows free
access to the ECMA-55 Minimal BASIC standard [31], so the compiler described in this paper has been
written to process BASIC source code written for that standard.

2.2. Target Language

The next issue was choosing what assembler to target. The Netwide Assembler (nasm [32]) works
well on Linux® and is actively developed. It uses Intel®’s operand order making it easy to use with
Intel®’s documentation. However, it is an optional component for most Linux® distributions and may
not be present in a default installation. The GNU as assembler [33], however, must be present for GNU
gcc to generate executables, and gcc is included in all major Linux® distributions. GNU’s toolchain
uses the AT&T assembly dialect which reverses the operands, but is considered the standard on systems
that are UNIX®-like. The decision was made to use the GNU as assembler because it would avoid a
dependency on a possibly non-default nasm package.

The next thing to consider was what type of x86-64 assembly to emit. This compiler emits assembly
in a style that C compilers call large model ([34], p. 34). This model is easier to emit, since it does not
use RIP-relative addressing. Instead, full 64 bit addresses are used, together with indirect jumps and
calls. When using the large model, indirect jumps are necessary because the x86-64 instruction set lacks
any way to directly jump (or call) a literal 64 bit address, instead requiring the address to be loaded into
a register and then using the value in the register as the jump or call target. This is a design limitation of
the instruction set and is unlikely to ever change. Accessing global data also must be done by loading
the address in a register and then using a register indirect move.

2.3. Debugging Machine Code on x86-64 Linux®

Part of developing any compiler that generates assembly code is debugging the generated output.
Visual inspection can catch obvious problems, but anything subtle will usually only manifest itself at
runtime, and traditionally problems at runtime are handled by using a debugger.

Unfortunately there are no full-featured free debuggers for machine-level code available for x86-64
Linux® that even approach the usability of the venerable Borland® Turbo Debugger® [35] for
MS-DOS®. This makes debugging machine code quite difficult on that platform. While GNU’s
gdb [36] is a capable debugger, it’s curses interface (gdb-tui) is painful to use. No GUI interface is
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included with gdb. Various GUI front -ends have been created such as the Data Display Debugger [37]
(DDD), but these do not work well for machine code. The gdb debugger works well if DWARF [38]
debugging code is emitted by the compiler, but is very hard to use on executables that contain no
debugging information. This is not to say gdb is a bad debugger, it is just a very hard to use debugger
for executable machine code that has no source-level debugging information.

The best available tool was Evan Teran’s Debugger (edb [39]) which in 2013 did not show the SIMD
registers or flags at all. In February of 2014 those were added to the register display, but by then most
of the debugging of emitted floating point code had already been completed. Because of the difficult
debugging environment, a register dumping subroutine was written and calls to it were hand-inserted
into generated assembly code to aid in debugging the floating point expression evaluation code.

2.4. Compiler Structure

The compiler described in this paper uses a very traditional structure, with modules for a scanner, a
parser, the symbol table, code generation, a line number module, and a runtime library. This compiler
essentially has two passes: the first pass scans all the input and creates a token stream, and the second
parses the token stream, with code generation as a side-effect. Each of the compiler modules is described
in the following sections. See ?? to see how the modules interact.

2.4.1. Line Number Module

Since Minimal BASIC is true to the original BASIC language ([4], p. 109), it is both line-based and
it requires each line to have a line number. These features required creation of a line number module.
This module tracks all line numbers used. The line number module enables verifying that every branch
to a line number with IF, GOTO, ON .. GOTO, or GOSUB actually references an existing branch target
(line number) within the input BASIC program. This verification is done after completion of the parser.
To make it possible, the line number module has two lists: a list of all possible jump targets that
corresponds to each line number of the input Minimal BASIC program, and a list of all used jump
targets from IF, GOTO, GOSUB and ON .. GOTO statements. After the parse is complete, both lists
are fully populated and the verification to ensure every target in the second list exists within the first list
can be done. This is done after the parse is completed in order to accommodate forward jumps. Scope
of jump targets is also tracked and checked as described in paragraph 2.4.7.4 (FOR/NEXT loops).

2.4.2. Scanner Module

When deciding the approach to take for creating the scanner, the two possibilities considered were
using a scanner generator or writing a hand-coded scanner. While using a scanner generator would make
future maintenance easier, it would introduce a dependency on the scanner generator, and would require
people studying this compiler to learn yet another tool, and probably complex regular expression syntax
as well. Using a hand-coded scanner based on a deterministic finite state machine (DFSM) was simple
to implement and had the benefit of avoiding the need of a scanner generator.

First the DFSM diagram to handle all the Minimal BASIC tokens was drawn on paper, and then
this was converted to a matrix for inclusion in the C code. However, during development the scanning
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necessary for handling the rather bizarre rules for READ from DATA statements and INPUT from STDIN

required modifying the scanner several times, and ultimately a second DFSM machine had to be added.
This smaller DFSM can be seen in ??. By using unique state numbers, it was possible to keep the tables
for both DFSM implementations in the same array and use the same driver code. The DFSM has two
types of accept: a normal accept that consumes the last byte seen, and a special accept that does not
consume the last byte seen but instead lets that byte remain unprocessed so that it will be the first byte
seen in the search for the next token. The matrix used has 99 states and 45 character classes.

With this compiler, the input Minimal BASIC program source is scanned and converted into a token
stream before the assembly prologue is emitted, but the parse occurs after the prologue is emitted. This
is done because the parser emits code in one pass as a side-effect of the parse and any flags used for
conditional inclusion or exclusion of assembly support routines must be set before the compiler even
begins parsing an ECMA-55 Minimal BASIC dialect source file. The method used in this compiler to
determine whether to include support for things like READ/DATA, INPUT, etc. is to set flags during the
scan when those tokens are found.

This compiler does not attempt to recover from errors. It will exit on the first error encountered. This
keeps the design simpler and avoids the infamous cascading error problems exhibited by compilers that
do attempt to continue after an error.

2.4.3. Types Of Variables

Minimal BASIC supports three types of variables: scalar string, scalar numeric, and array numeric. In
this compiler, the scanner is used to determine the types of variables. Variable names cannot conflict with
reserved words due to the language design, so when a variable name is scanned it is possible to know it
is a variable name and not possibly a reserved word. String variable names consist of a single upper/case
letter followed by a dollar sign (‘$’) and the language only permits scalar string variables. Numeric
scalar variables can have names of a single upper-case letter optionally followed by a single Arabic digit.
Numeric array variables can have names of a single upper-case letter only, and they must be followed
by subscript specification that is within parenthesis. These characteristics of variable names allow the
scanner to determine the types of variables. For a variable name which is a single letter, the scanner will
assume it is a numeric scalar variable. However, if a token is accepted and it is a left parenthesis, and
the previous token is a numeric scalar variable, then the scanner will change that previous token id from
numeric scalar to numeric array.

2.4.4. Parser Module

After the scanner was completed, work on the parser began. Again a decision had to be made whether
to use a parser generator or write a hand-coded parser. Research revealed that the two most advanced free
and open source C compiler toolchains used for Linux® programming, clang/LLVM and gcc, both use
hand-coded recursive-descent parsers, which indicates that hand-coded recursive-descent parsing is an
accepted technique even in state-of-the-art production quality optimizing compilers. For the ECMA-55
Minimal BASIC compiler described in this paper, a hand-coded recursive-descent parser was written.
For people who use the source code of this compiler, this avoids any dependencies on a parser generator
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and the need to learn yet another language for input to a parser generator. Since Minimal BASIC is
line-based and not stream-based, and there is no requirement for declarations before code, learning the
type of variables might seem tricky. However, as explained previously, the scanner determines variable
types before the parse begins.

2.4.5. Numeric Support With Exceptions

While working on the scanner and parser, research on creating the required runtime library and
numeric expression evaluation took place in parallel. Because a strictly conforming Minimal BASIC
implementation must generate code that handles floating point exceptions [40], but C and C++ generated
code from gcc and clang/LLVM do not, learning how to deal with floating point took a long time.
The only book on x86-64 Linux® assembly available [41] simply ignored floating point exceptions
altogether. The freely available Intel® documentation [24] was thorough, but lacked any meaningful
examples. Internet searches turned up little practical advice, and the required techniques were learned
through tedious trial and error.

To complicate issues further, x86-64 processors have two different floating point units (FPUs),
the legacy 80 × 87 and the newer SIMD unit that was created for Multi-Media Extensions (MMX),
and later extended for Streaming SIMD Extensions (SSE). Both floating point units were designed to
implement the IEEE 754-1985 [42] standard. This SIMD FPU also supports the new Advanced Vector
Extensions (AVX) on Haswell and newer Intel® CPUs. Intel® has stopped short of removing the 80 × 87
instructions, but their documentation strongly encourages use of SIMD math. Since this compiler does
not attempt to auto-vectorize any code, either FPU would work. In the end, code generation using
SSE instructions was chosen since Intel® promotes them as the replacement for the legacy 80 × 87
instructions. This choice meant creating the runtime library was more difficult, since the SSE instruction
set does not include many of the features that made the 80 × 87 great, like support for transcendental
functions. Because only an old machine with an Intel® Core™ 2 Duo (E4700@2.60 GHz) was available
for development, no SIMD features greater than SSSE3 were used.2 The Conroe series processors do not
include support for SSE4.x or newer instructions, which was first made available for desktops in Core™
2 Duo Wolfdale processors in January of 2008 [43] as part of the Penryn 45mm feature set [44].

An initial attempt was made to write the required mathematical functions (SIN(), COS(), TAN(),
SQR(), EXP(), LOG()) using SSE instructions to implement Taylor series, then later minimax
polynomial approximations [45–47] were tried, but achieving the required accuracy turned out to be
quite tricky [48]. Some papers suggest other algorithms that might have worked better [49], but did
not have source code for implementations available for download. The Netlib FDLIBM [50] library
provides the functions for free in C form and was considered. However, this Minimal BASIC compiler
implementation required SSE assembly code. Hand-optimizing the compiled libm code would be
possible in theory, but the many routines in that library are tightly coupled and this was difficult to realize
in practice. This prompted the decision to use Naoki Shibata’s SIMD Library for Evaluating Elementary
Functions [51] (SLEEF [52]) code, which is well tested and is already optimized for SSE. It includes

2 Initial SSE4 support has now been implemented. See “New Developments” on page 101 for details.
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routines that were used as the basis for the following Minimal BASIC runtime library functions: SIN(),
COS(), TAN(), ATAN(), LOG(), EXP(), and POW(). While the SLEEF code was technically written
in C, it actually uses SSE intrinsics to generate good SSE code and the resulting assembly was relatively
easy to incorporate into the Minimal BASIC compiler’s runtime library.

After the difficult experience with the floating point, it was decided that for the runtime library it
would be wise to use code for the random number generation that was already known to be good. After
some searching, Bob Jenkins’ ISAAC-64 [53,54] was found. While ISAAC-64 is only available as
C code, converting it to assembler with a C99 compiler and then tweaking the generated code a bit
resulted in the required x86-64 assembly runtime library routines. This was the basis for the RND runtime
library function.

During initial testing of the transcendental functions printf() from GNU C library (glibc [55])
was used. However, to generate static executables that would be independent of the C standard library
required that the runtime library include routines for both input and output of floating point numbers.
Again, research revealed that writing correct code for either input [56] or output [57,58] is amazingly
complex and the best way forward was to use proven, maintained code from David M. Gay [59].
While Mr. Gay’s code [60] is freely available, documentation on how to use it is scant, and the default
settings did not result in behavior that matched the requirements for Minimal BASIC. It took a lot of
experimentation to ultimately discover how to adjust that code to work as required to meet the rules for
Minimal BASIC.

Ultimately the numeric conversion code had to be used twice with slightly different modifications,
once for use in the runtime library for support of the INPUT statement in generated executables, and
once again for the compiler itself when processing DATA statements. This was necessary to ensure
numeric constants were converted from ASCII to floating point values in the same way by the compiler
for DATA statements (used by READ statements) and by the runtime for INPUT statements. Mr. Gay’s
code is available in C, and a C version was used for processing the DATA statements, but an x86-64
assembler version was required for the runtime library. Like the SLEEF code and ISAAC-64 code, this
was created by compiling with a C99 compiler to assembly, and then modifying the generated assembly
code by hand. Changes were required because errno is a macro in GNU libc which was used by the
compiler, but was a normal integer when used in the runtime library. Also, the runtime library has no
dynamic memory support, so the use of malloc() and free() had to be removed from that version.

2.4.6. Symbol Table Module

The symbol table module is interesting since it was possible to take advantage of the fact that most
variables in Minimal BASIC are global (all but those used as single-line function parameters), and the
set of possible names of those variables is finite and small. Using that knowledge, it was possible to
create a module that pre-loaded entries for all possible global variable names in sorted order. Each
entry contained a row with a flags to indicate whether the variable was actually used in the program
initially set to false. The flags were updated during compilation. Also, variable names with a single
letter from A to Z could be used for either arrays or scalars, so the type of these variables was initially
indeterminate, and the type was determined during compilation by examining the context in the scanner
as described previously. The ECMA-55 Minimal BASIC standard recommends implementing detection
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of attempts to read a value from an uninitialized variable, and this compiler does this by using a signaling
not-a-number special value (SNaN) for numeric values initially, and a NAK (byte value of 21) as the
first byte of strings initially. Those values cannot be legally entered into a Minimal BASIC program, so
if they are encountered at runtime then they must be uninitialized variable references.

The compiler generates variables used in the FOR statement and also for the constants in DATA

statements. This is necessary because the limit and step for the loop are computed only once before
the loop begins, and those values are needed to determine when to exit the loop, and how to update
to the index variable for each iteration of the loop body. It also must generate constants for string and
numeric literal values. These are not in the same symbol tables with the global variables explicitly used
in the Minimal BASIC program, but are in separate, dedicated lists. This compiler uses linked lists for
this, which for large programs might be a bottleneck in compilation speed. Minimal BASIC is limited to
9999 line programs, so the O(n) search time is not bad in practice because n is small. Tail pointers are
used so actually adding entries is O(1). However, the lists are searched first since the compiler performs
constant merging for string literals, numeric literals, and DATA statement values. The entire test suite
runs in about 30 seconds on the author’s development machine (an ancient 2.6 GHz Intel® Core™ 2 Duo
E4700) so linked lists were deemed good enough for this initial implementation of the compiler. The
constant merging is done logically in three separate pools, one for numeric literals, one for string literals,
and one for DATA literals. Using three separate pools was easier than using one combined pool, but it
does mean that if a program has a string literal "HELLO" and a data item quoted string "HELLO" there
will still unfortunately still be two occurrences in the program. Combining the three pools was not done
because the DATA numeric literals are pre-converted to binary form, and all DATA literals have a type
and length that are stored in special blocks, so they do not generate the same assembly, and thus merging
between DATA and non-DATA literals was not attempted. The effect of this missed optimization was
deemed small enough that it was not worth the extra complexity to implement it.

This BASIC must have all variables initialized in order to detect use of uninitialized variables. Initially
this was done by explicitly initializing each variable and these were in the .data section. However, this
creates a larger executable. Now the compiler places numeric and string variables in the .bss section,
which is not actually included in the on-disk executable file. The required initialization is now done
automatically when the program begins.

2.4.7. Code Generation Module

The knowledge gained while working on the runtime library support helped when the code generation
module was written. However, occasionally there were strange floating point exception errors as a result
of assumptions made by the Naoki Shibata’s SLEEF code functions in the runtime library that did not
match the assumptions made by the code emitted by the code generator. The SLEEF code was designed
to be used in C where floating point exceptions are ignored, so the flags were not carefully managed by
the SLEEF code. Eventually with the help of some register dumping code, the problems were understood
and the necessary adjustments were made.

One fundamental difference between the 80 × 87 FPU instructions and the newer SSE instructions
is that the the 80 × 87 code uses stack-based math and the SSE code uses register-based math. Taking
full advantage of the register-based math would require implementing a complex register allocation and
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spilling algorithm. To sidestep the need for that due to the extremely short time available to finish the
compiler, it was decided that simple RISC-like stack-based math would be used. During implementation,
however, the stack-based method turned out to cause severe problems when using the system stack
because the AMD64 ABI [34] rules about the stack alignment are very strict and keeping the stack
aligned correctly while pushing and popping SSE registers on the system stack was difficult.

To solve this problem, a separate runtime stack dedicated solely to the numeric expression processing
code was created. This separate stack solution was simple to implement and works very well. The
benefits for the compiler author were that the easy to implement stack-based expression evaluation could
be used and unlike the real hardware 80 × 87 stack, the new runtime stack size was not artificially
limited in size. Using a dedicated operand stack has the added benefit that even bad stack errors with
math operands do not break the system stack used for returns and local variables, easing debugging
of the expression code generation. Arithmetic expression code is parsed and operands are pushed as
encountered, and the math is done using standard postfix evaluation.

There is a non-trivial runtime cost associated with the stack-based expression evaluation solution, and
this was an engineering compromise that traded runtime performance for implementation ease. Rather
than open-coding the push and pop actions, assembly language macros were used. Macros were also used
for the standard math operations add, subtract, multiply, divide, and power. The macros are used to keep
the generated assembly code easy to read. Each arithmetic floating point operation is complicated by the
necessary exception handling and if it was emitted directly then reading generated code for expressions
would become very tedious. By using macros instead of functions, the actual machine code emitted after
assembly has no runtime call/return penalty. The third-party libraries like SLEEF and David Gay’s code
do not use this private numeric operand stack.

2.4.7.1. Examining The Actual Translation

A traditional compiler is essentially a batch translator from some input language to some output
language. To explain the translation results of the compiler described in this paper, the following
sections will show snippets of code in the input language (ECMA-55 Minimal BASIC) followed by
the corresponding code in the output language (x86-64 instruction set assembly language for the GNU
assembler’s default AT&T dialect). Interspersed with the code snippets will be commentary describing
some of the details of the translation. This format is used to allow the reader to actually see the translation
occurring. Readers can view the assembly output together with the ECMA-55 Minimal BASIC input and
the correspondence between them can be more easily understood.

2.4.7.2. Arithmetic Expression Evaluation

To understand the arithmetic expression evaluation code that is generated by this compiler, consider
this Minimal BASIC program:

10 LET A=4

20 LET B=3

30 PRINT A/B+2/3

40 END
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The lines of generated assembly code for line 30 of the Minimal BASIC program show the use of the
private floating point operand stack, and also show the code for dealing with uninitialized variables.

1127 .LLINE0030:

1128 movabsq $.LCURLINENO, %rax

1129 movq $30, (%rax)

1130 floatmem_to_floatreg A,%xmm0,’A’

1131 pushxmm 0

1132 floatmem_to_floatreg B,%xmm0,’B’

1133 pushxmm 0

1134 binary_divide

1135 floatlit_to_floatreg .LFLIT0002,%xmm0,2

1136 pushxmm 0

1137 floatlit_to_floatreg .LFLIT0001,%xmm0,3

1138 pushxmm 0

1139 binary_divide

1140 binary_add

1141 popxmm 0

1142 movabsq $printfloat, %rax

1143 callq *%rax

1144 movabsq $outputbuf, %rax

1145 callq *%rax

Ideally the compiler would compute the value of 2/3 and avoid emitting the division for that part of the
expression, but this non-optimizing compiler does not implement constant folding.

2.4.7.3. IF Statement

To support conditional branching, Minimal BASIC has the IF statement. The target line number is
specified after the THEN keyword, and if the logical expression between the IF and THEN keywords is
true, the branch is taken. Otherwise, execution of the program continues with the next line following the
IF statement in the program. Consider this simple program:

10 INPUT X

20 IF X>50 THEN 50

30 PRINT "NOT MORE THAN 50"

40 GOTO 60

50 PRINT "MORE THAN 50"

60 END

Minimal BASIC does not support an ELSE but this sample program shows that ELSE is not actually
necessary to implement an either/or branch. The generated assembly code for line 20 is:

1175 .LLINE0020:

1176 movabsq $.LCURLINENO, %rax

1177 movq $20, (%rax)

1178 floatmem_to_floatreg X,%xmm0,’X’

1179 pushxmm 0

1180 floatlit_to_floatreg .LFLIT0000,%xmm0,50

1181 pushxmm 0

1182 popxmm 1 # rhs expression value

1183 popxmm 0 # lhs expression value

1184 comisd %xmm1, %xmm0

1185 jp 0f # LHS and/or RHS was NaN

1186 jbe 1f

1187 movabsq $.LLINE0050,%rax

1188 jmpq *%rax

1189 0:

1190 movabsq $.Luninitialized,%rax

1191 jmpq *%rax

1192 1:
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The left-hand expression “X” is processed and the result is left on the stack on lines 1178 through
1179. Then the right-hand expression “50” is processed on lines 1000 through 1013. The comparison
for the greater than logical operator “>” occurs on lines 1182 through 1184, and the branch for the
case when the logical expression evaluates to false is on line 1186, and the true branch is on lines 1187
through 1188. Lines 1185 and 1189 through 1191 are for error checking.

2.4.7.4. FOR and NEXT Statements

One statement pair exists in Minimal BASIC that is split across multiple lines, and that is the
FOR/NEXT pair. Minimal BASIC also has rules to prevent branching that violates a FOR/NEXT pair’s
scope. This was tricky to enforce since a jump from inside a FOR is permitted as long as the code flow
returns back to inside the same FOR loop before (or at) the corresponding NEXT statement. A GOSUB3

followed by a RETURN should be used instead of a pair of GOTO statements for this, but that is not
strictly required by the language specification. Also, jumping over the initial FOR and then hitting a
NEXT is an error. Keeping track of the loop index variable is done using a dedicated FOR stack. This
is also used to ensure that an inner FOR does not use any active index variable from an outer FOR loop.
Consider this simple program:

10 FOR I=1 TO 10 STEP 2

20 PRINT I

30 NEXT I

40 END

The generated assembly code for line 10 is:

1113 .LLINE0010:

1114 movabsq $.LCURLINENO, %rax

1115 movq $10, (%rax)

1116 # compute expression and push custom FOR loop with index I start value

1117 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1118 pushxmm 0

1119 # compute expression and push custom FOR loop with index I limit value

1120 floatlit_to_floatreg .LFLIT0001,%xmm0,10

1121 pushxmm 0

1122 # compute expression and push custom FOR loop with index I increment value

1123 floatlit_to_floatreg .LFLIT0002,%xmm0,2

1124 pushxmm 0

1125 beginfor I,.LFORINCREMENT0000,.LFORLIMIT0000,.LFORTEST0000,.LFORDONE0000

The FOR loop has three expressions that are evaluated when the loop begins. These are the start value,
the limit value, and the increment value. These are encountered in that order by the parser, so as each is
encountered the expression code is generated, which when run leaves the result of the expression on top
of the stack. The first thing the beginfor macro does is move those values from the stack to variables. The
start value is stored in the normal global loop index numeric variable. The other two values are stored
in numeric variables generated by the compiler that are not available to the Minimal BASIC program
source code. One is used for the loop limit in the pre-test, and the other is used for the loop increment.
The code generator is responsible for creating those two variables and the two required labels. The first

3 See “GOSUB and RETURN Statements” on page 85.
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label is for the loop pre-test which is the jump target used by the NEXT statement after incrementing the
loop index. The second label is used in the pre-test as a jump target when terminating the loop. These
generated variable names are returned to the parser and stored on the compile-time FOR stack so that
they can be used later when processing the NEXT statement. The generated assembly code for the loop
terminating NEXT on line 30 is:

1136 .LLINE0030:

1137 movabsq $.LCURLINENO, %rax

1138 movq $30, (%rax)

1139 endfor I,.LFORINCREMENT0000,.LFORTEST0000,.LFORDONE0000

As can be seen in the example, the beginfor and endfor macros are used to keep the assembly code
easier to read in the main program. The macros for use with 64 bit floats are:

243 .macro beginfor ndex_var:req,inc_var:req,limit_var:req,tst_lbl:req,done_lbl:req

244

245 .section .rodata,"a",@progbits

246

247 .type .Lbeginfor\@_msg, %object

248 .Lbeginfor\@_msg:

249 .asciz "\ndex_var\()"

250 .size .Lbeginfor\@_msg, .-.Lbeginfor\@_msg

251

252 .section .text,"ax",@progbits

253

254 popxmm 0

255 comisd %xmm0, %xmm0

256 jnp 0f

257 # referenced scalar \inc_var\() was NaN, uninitialized

258 movabsq $.Luninitialized_forinc_msg, %rsi

259 movabsq $printstring, %rax

260 callq *%rax

261 movabsq $badxit, %rax

262 jmpq *%rax

263 0:

264 movabsq $\inc_var\(), %rax

265 movsd %xmm0, (%rax) # store FOR loop with index \ndex_var\() increment value

266 # \inc_var\()

267 popxmm 1

268 comisd %xmm1, %xmm1

269 jnp 1f

270 # referenced scalar \limit_var\() was NaN, uninitialized

271 movabsq $.Luninitialized_forlimit_msg, %rsi

272 movabsq $printstring, %rax

273 callq *%rax

274 movabsq $badxit, %rax

275 jmpq *%rax

276 1:

277 movabsq $\limit_var\(), %rax

278 movsd %xmm1, (%rax) # store FOR loop with index \ndex_var\() limit value in

279 # \limit_var\()

280 popxmm 2

281 comisd %xmm2, %xmm2

282 jnp 2f

283 # referenced scalar \ndex_var\() was NaN, uninitialized

284 movabsq $.Luninitialized_forindex_msg, %rsi

285 movabsq $printstring, %rax

286 callq *%rax

287 movabsq $.Lbeginfor\@_msg, %rsi

288 movabsq $printstring, %rax

289 callq *%rax

290 movabsq $badxit, %rax

291 jmpq *%rax

292 2:

293 movabsq $\ndex_var\(), %rax

294 movsd %xmm2, (%rax) # store FOR loop index var \ndex_var\() initial value

295 \tst_lbl\(): # FOR loop with index var \ndex_var\() test code starts here

296 pxor %xmm3,%xmm3 # xmm3=0

297 movabsq $\ndex_var\(), %rax
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298 movsd (%rax),%xmm0 # xmm0=\ndex_var\() (FOR loop index variable)

299 comisd %xmm0, %xmm0

300 jnp 3f

301 # referenced scalar \ndex_var\() was NaN, uninitialized

302 movabsq $.Luninitialized_forindex_msg, %rsi

303 movabsq $printstring, %rax

304 callq *%rax

305 movabsq $.Lbeginfor\@_msg, %rsi

306 movabsq $printstring, %rax

307 callq *%rax

308 movabsq $badxit, %rax

309 jmpq *%rax

310 3:

311 movabsq $\limit_var\(), %rax

312 movsd (%rax),%xmm1 # xmm1=\limit_var\() (FOR loop with index \ndex_var\()

313 # limit value)

314 comisd %xmm1, %xmm1

315 jnp 4f

316 # referenced scalar \limit_var\() was NaN, uninitialized

317 movabsq $.Luninitialized_forlimit_msg, %rsi

318 movabsq $printstring, %rax

319 callq *%rax

320 movabsq $badxit, %rax

321 jmpq *%rax

322 4:

323 subsd %xmm1,%xmm0

324 # xmm0=\ndex_var\()-\limit_var\() (FOR loop index var \ndex_var\()

325 # FOR loop with index \ndex_var\() limit val)

326 movabsq $\inc_var\(), %rax

327 movsd (%rax),%xmm2 # xmm2=\inc_var\() (FOR loop with index \ndex_var\()

328 # increment value)

329 ucomisd %xmm3,%xmm2

330 jae 5f # if FOR loop with index \ndex_var\() increment \inc_var\()

331 # is non-negative then goto 0 (positive increment)

332 # else (negative increment)

333 movabsq $.LFLT_NEG_MASK, %r15

334 movsd (%r15), %xmm1

335 pxor %xmm1, %xmm0 # xmm0=(-xmm0)

336 5:

337 ucomisd %xmm3,%xmm0

338 # IF (FORINDEX-FORLIMIT)*SGN(FORINCREMENT)<=0 THEN

339 # GOTO FORLOOPBODY

340 jbe 6f # if ABS(\ndex_var\()-\limit_var\()) <=0 then goto 1

341 # (FOR loop with index \ndex_var\() body)

342 movabsq $\done_lbl\(),%rax

343 jmpq *%rax # else goto \done_lbl\() (exit FOR loop with

344 # index var \ndex_var\())

345 # FOR loop with index var \ndex_var\() test code ends here

346 6: # FOR loop with index var \ndex_var\() body begins here

347 .endm

348

349 .macro endfor ndex_var:req,inc_var:req,tst_lbl:req,done_lbl:req

350

351 .section .rodata,"a",@progbits

352

353 .type .Lendfor\@_msg, %object

354 .Lendfor\@_msg:

355 .asciz "\ndex_var\()"

356 .size .Lendfor\@_msg, .-.Lendfor\@_msg

357

358 .section .text,"ax",@progbits

359

360 # FOR loop with index var \ndex_var\() body ends here

361 # FOR loop with index var \ndex_var\() increment starts here

362 movabsq $\ndex_var\(), %rax

363 movsd (%rax),%xmm0

364 comisd %xmm0, %xmm0

365 jnp 1f

366 # referenced scalar \ndex_var\() was NaN, uninitialized

367 movabsq $.Luninitialized_forindex_msg, %rsi

368 movabsq $printstring, %rax

369 callq *%rax

370 movabsq $.Lendfor\@_msg, %rsi

371 movabsq $printstring, %rax
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372 callq *%rax

373 movabsq $badxit, %rax

374 jmpq *%rax

375 1:

376 pushxmm 0 # push FOR loop index variable \ndex_var\()

377 movabsq $\inc_var\(), %rax

378 movsd (%rax),%xmm0

379 comisd %xmm0, %xmm0

380 jnp 2f

381 # referenced scalar \inc_var\() was NaN, uninitialized

382 movabsq $.Luninitialized_forinc_msg, %rsi

383 movabsq $printstring, %rax

384 callq *%rax

385 movabsq $badxit, %rax

386 jmpq *%rax

387 2:

388 pushxmm 0 # push FOR loop with index \inc_var\()

389 # increment variable \ndex_var\()

390 binary_add

391 popxmm 0

392 # increment FOR loop index variable \ndex_var\()

393 movabsq $\ndex_var\(), %rax # \ndex_var\() = \ndex_var\() + \inc_var\()

394 movsd %xmm0,(%rax)

395 # FOR loop with index var \ndex_var\() increment ends here

396 movabsq $\tst_lbl\(), %rax

397 jmpq *%rax # goto FOR loop with index var \ndex_var\()

398 # test label \tst_lbl\()

399 \done_lbl\():

400 movabsq $\inc_var\(), %rax

401 movabsq $SNaN,%r15

402 movq %r15,(%rax) # \inc_var\() is now uninitialized again so

403 # illegal jumps into the FOR loop with index var

404 # \ndex_var\() can be detected.

405 .endm

Note that at the end of the endfor macro, the FOR loop index variable (called inc_var in the macro)
is set to the signaling NaN value ($SNaN). This ensures that if an attempt is made to jump into the
loop after the NEXT statement has executed, that jump will generate an error. The compiler must
generate slightly different macros when using 32 bit floats, but the macro invocation in the main program
remains unchanged.

The compile-time FOR stack is managed in the parser during compilation, and does not exist
in the generated assembly program. Each entry contains the index variable, the names of the
compiler-generated variables generated to hold the increment and limit (which are computed exactly
once at the beginning of the loop), the label for the test which is as the top of the loop, the label of the
first line after the next code used to exit the loop, and a scope variable. One thing the parser must do is
ensure that loops do not overlap. Consider this incorrect code:

10 FOR I=1 TO 10 STEP 2

20 FOR J=20 TO 5 STEP -5

30 NEXT I

40 NEXT J

The loops may nest, but not overlap. To enforce this the parser will use a scope entry on a dedicated
FOR stack in the parser. The compiler will emit an appropriate error message if someone attempts to
compile this example code, namely “NEXT I but expecting NEXT J on line 30”.

The scope variables contain a string that is reminiscent of a REXX (Restructured Extended Executor)
stem variable ([61], p. 328), with dots between the scope level names, with the innermost scope last.
The outermost scope is obviously ‘global’, but it is not stored. The parser module has a variable
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current_scope that contains the current scope level. After line 10 executes, the scope is logically
‘global.I’, but stored as ‘.I’. After line 20 executes, the scope is ‘global.I.J’. When line 30
is reached, the last component of the scope is ‘J’ but the variable specified in the NEXT is ‘I’ and the
compiler knows there is an error and it knows the expected value to use in the error message.

Finally, the FOR stack is used to detect the case where no FOR statement is active but a NEXT is
encountered. If current_scope is the empty string (logically ‘global’) and thus the FOR stack
is empty, NEXT is not possible and an error message is printed in the form “NEXT ? without

corresponding FOR on line ####” where the question mark is replaced by the loop index
variable name, and the pound signs are replaced by the line number in the BASIC source program where
the bad NEXT statement was encountered.

2.4.7.5. GOTO Statement

The ECMA-55 Minimal BASIC specifies two different statements using GOTO. The first is an
unconditional branch and is simply GOTO followed by a line number. It is not permitted to use anything
but an integer constant representing a line number that exists in the program as a jump target. Consider
this Minimal BASIC program:

10 GOTO 30

20 PRINT "NEVER HERE"

30 PRINT "DONE"

40 END

The corresponding assembly code for line 10 follows:

1113 .LLINE0010:

1114 movabsq $.LCURLINENO, %rax

1115 movq $10, (%rax)

1116 movabsq $.LLINE0030, %rax

1117 jmpq *%rax

Lines 1116 and 1117 implement the GOTO using a register indirect jump as required for x86-64 large
mode code.

2.4.7.6. ON .. GOTO Statement

To implement a multi-way branch the ON expression GOTO sequence is used. The arithmetic
expression between the ON and GOTO keywords is evaluated and rounded to an integer value. If the
value is 1, the program will branch to the first line number in the comma-delimited list of jump target
line numbers that follow the GOTO keyword. If the value is 2, the program will jump to the second
branch target, etc. If the value is less than one or greater than the number of specified jump targets then
a fatal error occurs. Consider this Minimal BASIC program:
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10 INPUT X

20 ON X GOTO 100,200,300

30 PRINT "UNREACHABLE"

40 STOP

100 PRINT "CHOICE 1"

110 GOTO 40

200 PRINT "CHOICE 2"

210 GOTO 40

300 PRINT "CHOICE 3"

310 GOTO 40

400 END

The corresponding assembly code for line 20 after passing through the peephole optimizer follows:
1175 .LLINE0020:

1176 movabsq $.LCURLINENO, %rax

1177 movq $20, (%rax)

1178 floatmem_to_floatreg X,%xmm0,’X’

1179 cvtsd2sil %xmm0, %eax

1180 stmxcsr .Lnewmxcsr

1181 testl $FE_INVALID,.Lnewmxcsr

1182 jz 0f

1183 jmp 1f

1184 0:

1185 decl %eax

1186 cmpl $2,%eax

1187 ja 1f

1188 jmp *.LJT0000(,%rax,8)

1189 1:

1190 movabsq $.Longotofail_msg, %rsi

1191 movabsq $.Lprint_error_message, %rax

1192 jmpq *%rax

1193

1194 .section .rodata,"a",@progbits

1195

1196 .LJT0000:

1197 .quad .LLINE0100

1198 .quad .LLINE0200

1199 .quad .LLINE0300

1200

1201 .section .text,"ax",@progbits

The generated assembly code uses a multi-way branch using a jump table. Each element in the jump
table is an assembly label for the generated code that corresponds to the Minimal BASIC source line
specified in the ON .. GOTO statement. The assembly line 1199 has the label for the code of the first
Minimal BASIC line number specified in the list of jump targets, “100”, etc. Careful checking is done
for the low-level conversion of the expression in the ON .. GOTO statement from a floating point value to
an integer value done by cvtsd2sil. A range check is performed on lines 1187 through 1189 with a single
test using the technique described in the section on arrays about array bounds checking to ensure that
expression values refer to entries in the table. For instance, if the expression on line 20 of the example
program evaluated to a value less than one or a value greater than three in this example, that would be
detected by the bounds checking.

2.4.7.7. GOSUB and RETURN Statements

Minimal BASIC supports simple subroutines that are parameter-less and are specified by line numbers
instead of by name. This permits coding practices that are considered unsafe today, including multiple
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entry points, using only global variables to pass parameters, and no support for local variables. However,
when the BASIC language was designed it was intended to be a simple alternative to assembly and even
today those practices are still considered normal when coding in assembly language.

The GOSUB keyword is followed by a jump target line number. When the statement is executed the
program saves the line number of the next line after the GOSUB statement and then branches to the
specified line number. When RETURN is executed, the program branches back to that saved line number.
GOSUB can be be called more than once without a RETURN, and this nesting requires the ability to save
many return addresses. In this compiler’s implementation, the GOSUB and RETURN sequence uses a
runtime private address stack and two assembly macros when generating the assembly code. Using a
private address stack allows detecting the case when a RETURN is attempted at runtime when no previous
GOSUB occurred. Macros are used to keep the assembly code easier to read. These are expanded during
assembly, and thus do not incur the additional runtime overhead of a function call. For example, consider
this simple program:

10 LET A=5

20 LET B=10

30 GOSUB 60

40 PRINT C

50 STOP

60 LET C=A+B

70 RETURN

80 END

Here is the code for the GOSUB 60 on line 30:

1127 .LLINE0030:

1128 movabsq $.LCURLINENO, %rax

1129 movq $30, (%rax)

1130 gosub 0f .LLINE0060

1131 0:

Lines 1128 and 1129 are used to store the line number in a global variable used by error messages.
The gosub macro call on line 1130 has two arguments, the first is the return address, and the second is
the jump target. By using a local label 0, the compiler leaves it to the assembler to compute the jump
location to push. The work with the address stack is abstracted away in the macro, leaving the code for
line 30 easy to read. The code for the RETURN on line 70 is also simple:

1157 .LLINE0070:

1158 movabsq $.LCURLINENO, %rax

1159 movq $70, (%rax)

1160 return

The BASIC RETURN statement is just translated into a call to the return macro on line 1160, again
abstracting away the ugly stack management and keeping the generated code easy to read.

2.4.7.8. DEF Statement

The only other type of user-defined subroutine available for Minimal BASIC is a numeric function
defined by the one-line DEF statement. Such a numeric function can optionally have one argument.
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Functions created with DEF that have an argument are the only way to create local variables in Minimal
BASIC; all other variables are global. A local variable created in this way will shadow any global that
exists with the same name.

To make emitting code for user-defined functions work even though all code generation occurs in
one pass as a side-effect of the parse, output is temporarily diverted to a special separate file used to
hold the code emitted for user-defined functions. Code for all user-defined functions will be appended
to the same temporary file. The contents of the temporary file are later appended to the emitted normal
assembly output file after the parse is complete and the entire input BASIC program has been processed.

Since nested functions are not supported, a simple global boolean flag in_udf_definition

exists to signal whether we are currently generating code for a user/defined function or not. This also
allows support for a parameter name which may conflict with a global of the same name by having the
g_nvar() and g_navar() routines in the parser check for the parameter name before attempting
to lookup a global numeric variable since the parameter name will shadow a global of the same name.
Those two routines are used to emit code for reading the values of scalar and array numeric variables
during expression handling and pushing those values onto the dedicated floating point stack.

Consider this Minimal BASIC example program:

10 DEF FNA(Y)=Y*Y*Y

20 PRINT FNA(1024)

30 END

Here is the code used on line 20 to call FNA with an argument of 1024 and display the answer (after the
peephole optimization):

1116 .LLINE0020:

1117 movabsq $.LCURLINENO, %rax

1118 movq $20, (%rax)

1119 floatlit_to_floatreg .LFLIT0000,%xmm0,1024

1120 movabsq $FNA,%rax

1121 callq *%rax

1122 movabsq $printfloat, %rax

1123 callq *%rax

1124 movabsq $outputbuf, %rax

1125 callq *%rax

The actual call to FNA is on lines 1120 and 1121. The function expects the value of the read-only
parameter to be passed in the %xmm0 register. The return value of the function will be passed back in
the same register. Here is the assembly that is generated in response to the user-defined function FNA on
line 10:

6618 .section .data,"aw",@progbits

6619

6620 .LFNA_Y:

6621 .quad SNaN # 8 bytes, actually double

6622 .size .LFNA_Y, .-.LFNA_Y

6623

6624 .section .text,"ax",@progbits

6625

6626 .type FNA, @function

6627 FNA:

6628 pushq %rbp

6629 movq %rsp, %rbp

6630 movabsq $.LFNA_Y, %r15

6631 movsd %xmm0, (%r15) # store function argument Y

6632 floatmem_to_floatreg .LFNA_Y,%xmm0,’Y’
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6633 pushxmm 0

6634 floatmem_to_floatreg .LFNA_Y,%xmm0,’Y’

6635 pushxmm 0

6636 binary_multiply

6637 floatmem_to_floatreg .LFNA_Y,%xmm0,’Y’

6638 pushxmm 0

6639 binary_multiply

6640 popxmm 0 # pop stack into xmm0 for return

6641 movq %rbp,%rsp

6642 popq %rbp

6643 retq

6644 .size FNA, .-FNA

First, on lines 6630 through 6631, the code for FNA will copy the argument to a compiler generated
variable whose name is created by using the user-defined function name and the parameter name.
In this example, that variable is named .LFNA_Y. This also frees up the %xmm0 register used in
arithmetic expression evaluation. Then the arithmetic expression that comprises the body of the function
is evaluated on lines 6632 through 6639. After the runtime expression evaluation is complete, the
function’s return value is left on top of the dedicated runtime floating point operand stack. This is
then popped into %xmm0 on line 6640 just before the function returns.

2.4.7.9. Arrays

Minimal BASIC has support for simple numeric arrays of one or two dimensions. In the DIM

statement, the dimensions must be specified by integer constants. Also, the standard requires that if
an array is specified with a DIM statement, no references to that array can be made before the DIM
statement. If the DIM statement is encountered a second time, it is ignored. If no DIM statement exists
but an array reference is used, then the required array is created with an upper bound of 10. The lower
bound is zero or one depending on the value specified in the OPTION BASE statement. If no such
statement exists, the lower bound will be zero for all arrays. Once an array has been created, its size
cannot be changed.

To ensure the array base limit is set only once, the parser has a global boolean flag
can_option_base that gets set to false after an array reference, DIM or OPTION BASE statement
is encountered. Another global boolean flag base_is_one is initialized to false, but set to true if an
OPTION BASE 1 is parsed. That flag is used by the code generator to indicate the proper lower limit
for the bounds checking code emitted for every array access. The code generated for array access is easy
to read. For an example showing this, consider the following Minimal BASIC program which has access
of a one-dimensional numeric array:

10 LET A(1)=9

20 LET A(A(1)-7)=A(1)*2

30 PRINT A(2)

40 END

The generated assembly code for line 20 after passing through the peephole optimizer is:

1123 .LLINE0020:

1124 movabsq $.LCURLINENO, %rax

1125 movq $20, (%rax)

1126 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1127 array_1D_to_floatreg A,%xmm0,’A’,0,10,%r8,%r15

1128 pushxmm 0
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1129 floatlit_to_floatreg .LFLIT0002,%xmm0,7

1130 pushxmm 0

1131 binary_subtract

1132 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1133 array_1D_to_floatreg A,%xmm0,’A’,0,10,%r8,%r15

1134 pushxmm 0

1135 floatlit_to_floatreg .LFLIT0003,%xmm0,2

1136 pushxmm 0

1137 binary_multiply

1138 popxmm 2 # RHS expression value

1139 popxmm 0 # array index expression value

1140 floatreg_to_array_1D A,%xmm2,%xmm0,0,10,%r8,%r15

This example shows two reads and one write to the vector array A as part of an assignment in a
Minimal BASIC LET statement. Array index bounds checking is performed for all three array accesses.
This program uses the default setting of zero for the first array subscript. Using OPTION BASE 1

will make array indices of zero invalid, and will change the generated code for the bounds checking
slightly. Note that the bounds checks are done with a single compare, even in the case where the
OPTION BASE 1 has been used. Consider this Minimal BASIC example code which has access of
a two-dimensional numeric array:

10 OPTION BASE 1

20 LET A(1,1)=9

30 PRINT A(1,1)

40 END

Since the bounds checking is done at runtime, code must be generated for that. The generated
assembly code for line 30 is:

1129 .LLINE0030:

1130 movabsq $.LCURLINENO, %rax

1131 movq $30, (%rax)

1132 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1133 pushxmm 0

1134 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1135 pushxmm 0

1136 popxmm 1 # column index

1137 popxmm 0 # row index

1138 array_2D_to_floatreg A,%xmm0,%xmm1,’A’,1,10,10,%r8,%r9,%r15

1139 pushxmm 0

1140 popxmm 0

1141 movabsq $printfloat, %rax

1142 callq *%rax

1143 movabsq $outputbuf, %rax

1144 callq *%rax

This example uses a two-dimensional array and the array’s first subscript for each dimension is
one and not the default zero because of the use of the OPTION BASE 1 on line 10 of the Minimal
BASIC program. The array indices are compared to 9 and not 10 since the subscript values have already
been decremented by one in an earlier line of the assembly. This technique of using a single unsigned
compare [62] allows generating shorter code with half the conditional branches of naively checking
the lower and upper bounds separately. The clang/LLVM and gcc compilers do not support simple
array bounds checking code generation.4 After completing the implementation in this compiler, the code

4 Compiling with bounds checking support with those compilers requires using the address sanitizer system.
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generated by the Free Pascal compiler (fpc) for range-checking of arrays using the -Cr option was
inspected and it too uses the same technique, but uses subq $1,%rX instead of decq %rX. That more
general code using a subtract makes sense for that compiler since arrays do not start only on zero and
one as in Minimal BASIC, and the $1 can be replaced by the lower bounds of the array specified in the
source program, but for Minimal BASIC the simpler decq instruction suffices.

2.4.7.10. Strings

Unlike modern languages, Minimal BASIC uses 7-bit ASCII as the character set for strings. The
original language only allowed upper-case letters, but this compiler, as a documented extension, allows
lower-case letters in strings and in comments as part of REM statements after the upper-case REM

keyword. This compiler implements strings as zero-terminated strings, often referred to as ASCIIZ
strings, and the runtime library includes subroutines for working with those strings called mystrlen,
mystrcpy, and mystrcmp which correspond to the well-known C standard library functions strlen(),
strcpy(), and strcmp() respectively. Consider this Minimal BASIC program fragment:

5 LET S$="HELLO"

10 PRINT S$

This example shows assignment of a string literal value on line 5, and then a read of a string variable
on line 10. The generated assembly for these lines is:

1113 .LLINE0005:

1114 movabsq $.LCURLINENO, %rax

1115 movq $5, (%rax)

1116 movabsq $.LSLIT0000, %rdi # %rdi=pointer to ’HELLO’

1117 pushsaddr

1118 popsaddr %rsi

1119 movq %rsi,%rdi

1120 movabsq $mystrlen, %rax

1121 callq *%rax

1122 cmpq $MAX_STRING_BYTES,%rax

1123 jbe 0f

1124 movabsq $.Lstring_too_long,%rax

1125 jmpq *%rax

1126 0:

1127 movabsq $S$, %rdi

1128 movabsq $mystrcpy, %rax

1129 callq *%rax

1130 .LLINE0010:

1131 movabsq $.LCURLINENO, %rax

1132 movq $10, (%rax)

1133 movabsq $S$, %rdi

1134 cmpb $NAK,(%rdi)

1135 jne 0f

1136 # referenced scalar was uninitialized

1137 movabsq $.Luninitialized_msg, %rsi

1138 movabsq $printstring, %rax

1139 callq *%rax

1140 # must create string in reverse order

1141 xorq %rdi,%rdi

1142 movb $’$’,%dil

1143 shl $8,%rdi

1144 movb $’S’,%dil

1145 shl $8,%rdi

1146 movb $32,%dil

1147 movabsq $printvarname,%rax

1148 callq *%rax

1149 movabsq $badxit, %rax

1150 jmpq *%rax

1151 0:

1152 pushsaddr
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1153 popsaddr %rdi

1154 movabsq $appendbuf, %rax

1155 callq *%rax

1156 movabsq $outputbuf, %rax

1157 callq *%rax

The code for string assignment calls the mystrlen and mystrcpy subroutines and uses the dedicated
string stack which contains the addresses of the string literals. Since the compiler does not support any
string operators or string functions, the code seems overly complex. However, once string expressions are
implemented (part of “Full BASIC”) this will be needed, and it was decided to go ahead and implement
this so it does not have to be redesigned later. At least the provided stand-alone, special-purpose peephole
optimizer can remove the redundant pushsaddr/popsaddr sequences. On line 1134 of the generated
assembly you can see the comparison of the first byte of the string with the ASCII NAK value. If it is not
equal, the code jumps to local label 0 and proceeds to append the value stored in the scalar string variable
S$ to the output buffer by calling the appendbuf subroutine, followed finally by calling the outputbuf
subroutine to terminate the output buffer and force an actual print to STDOUT. If the first byte of the
string is NAK, then an error message is displayed that includes the name of the variable. Lines 1152 and
1153 will be removed when this code is processed by the peephole optimizer program5.

2.4.7.11. INPUT Statement

As part of the support for INPUT, direct kernel system calls are made. This is done to avoid any
dependency on GNU libc. If this compiler is ever ported to another platform, or another operating system
using the same hardware, the system calls will have to be changed to match the host operating system.
Even 32 bit and 64 bit Linux® on x86 and x86-64 have different system call numbers and mechanisms
for the low-level read() and write() system calls.

The first implementation of the read() code used for INPUT statements failed when using shell
redirection, but the final version works correctly in that case. This was one of many problems detected
while using the helpful NBS test suite. Another problem was the fact that input typed as a response to
an INPUT statement must echo when input is redirected for batch mode execution, but must not echo
when input is typed interactively from the keyboard. Code for detection of whether the code is running
on a tty or not was added to solve this problem.

The semantic rules for the INPUT statement are non-trivial. Essentially, at runtime the program must
prompt the user for input and then wait for an entire line of input. After the line input is complete, the
program must then scan it into tokens. The tokens that can be valid are:

(1) number (integer or real)
(2) quoted string
(3) unquoted string
(4) comma
(5) end-of-line (newline)

5 See “Peephole Optimizer” on page 99
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The last token must be an end-of-line. The comma serves as the delimiter between input items, except
when it is within a quoted string. The number of items must match the number of variables specified in
the INPUT statement. Then the type of each item is checked to ensure it can actually be stored in the
corresponding variable specified in the INPUT statement. A number can always be stored in a scalar
string variable or a numeric scalar or array variable. Quoted and unquoted strings can be stored in scalar
string variables. But no input item can be stored in its corresponding variable until all type checking for
all input items is complete and no type errors were found. Only after all type checking is successful can
the input items be copied to the corresponding variables specified in the INPUT statement. If any error
in the number of items or type of items occurs, the program must flush the input buffer and re-prompt
the user for the input.

The method to actually generate code to implement those semantics uses two temporary output files
for assembly code. It also requires runtime temporary holding hidden variables for each of the items that
can be input, since the data cannot be stored in the variables specified in the INPUT statement until all
type checking is successful. Additionally, code for a DFSM scanner is required as part of the runtime
support (see ??). The generation of code in the g_inputstmt() function of the parser to implement
an INPUT statement works like this:

(1) Initialize the format string to the empty string and open two temporary files.
(2) For each variable in the INPUT statement do:

(a) For numeric variables, emit to the first temporary file code that converts the ASCIIZ holding
area string for this numeric item to a floating point representation and stores that back to the
temporary holding area, and if an overflow occurs during the conversion, then the code must
jump back to the start of the statement. Append an ’N’ to the format string. Emit to the
second temporary file code that copies the floating point value from the temporary holding
area to the actual variable.

(b) For string variables, append an ’S’ to the format string. Emit to the second temporary file code
that copies the ASCIIZ string value from the temporary holding area to the actual variable.

(3) Add the format string to the string literals list in the symbol table so that it will be emitted together
with other string literals after the parsing is finished.

(4) Emit code to the main output file to call a function to print a prompt the user for input, do the line
input to a buffer, and process that buffer, performing the scan into tokens left to right. As each
number or string token is encountered, if the type is compatible, the data is moved to a hidden
temporary storage area. Any time an error occurs, the code must jump back to the start of the
statement. The code in this phase verifies the type of each item matches the required type from the
format string created earlier. The assembly language routine that does all of this is called doinput,
and it will reset the input stack pointer itself before processing input. It will also verify that the
number of items input by the user matches the required number of variables, and if it does not,
then it will force a jump back to the start of the statement. This check is possible by using the
length of the ASCIIZ format string, since there is one byte for each variable.

(5) Rewind both temporary files.
(6) Append contents of the first temporary file to the main output file.
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(7) Append contents of the second temporary file to the main output file.
(8) Close and remove both temporary files.

The name of the structure for the temporary holding areas is .Lrt_nput_stack. The pointer used to
access elements in this stack is called .Lrt_nput_stack_top. The doinput subroutine uses that area
like a stack. However, the other code emitted will access the temporary holding areas directly by treating
the stack like a vector instead of popping the items. Consider this sample program line:

10 INPUT A,B$,C(1)

The generated assembly code for line 10 is:

1128 .LLINE0010:

1129 movabsq $.LCURLINENO, %rax

1130 movq $10, (%rax)

1131 movabsq $.LNFMT0010, %rdi

1132 movabsq $doinput, %rax

1133 callq *%rax

1134 # scalar numeric INPUT A (convert, check for overflow, save in temp slot)

1135 movabsq $.Lrt_nput_stack, %r15

1136 movabsq $0,%rax # slot number 0 on .Lrt_nput_stack

1137 movabsq $38,%r9 # width of a record on .Lrt_nput_stack

1138 mulq %r9

1139 leaq 1(%r15,%rax),%rdi # 1st arg is ASCIZ buffer

1140 xorl %esi, %esi # 2nd arg is NULL

1141 movabsq $strtod, %rax # call code to do actual conversion from ASCIIZ to floating point

1142 callq *%rax

1143 movsd %xmm0, %xmm1

1144 # if xmm1 is +Infinity then overflow

1145 movabsq $PInf,%r13 # move constant +INF into r13

1146 subq $8,%rsp # allocate scratch 8 byte area

1147 # it is a union location for

1148 # converting between 64 bit double and

1149 # unsigned 64 int

1150 movq %r13 ,(%rsp) # temp = +INF

1151 movsd (%rsp),%xmm0 # move +INF into xmm0

1152 addq $8,%rsp # deallocate scratch 8 byte area

1153 comisd %xmm1,%xmm0

1154 jne 0f

1155 # got overflow

1156 movabsq $.Loverflow_msg,%rsi

1157 movabsq $exception_non_fatal,%r13

1158 callq *%r13

1159 movabsq $.LLINE0010,%rax

1160 jmpq *%rax

1161 0:

1162 movabsq $.Lrt_nput_stack, %r15

1163 movabsq $0, %rax

1164 movabsq $38, %r9

1165 mulq %r9

1166 movsd %xmm1,1(%r15,%rax)

1167 # scalar string INPUT B$ (do nothing right now, already in temp slot)

1168 # array numeric INPUT C (convert, check for overflow, save in temp slot)

1169 movabsq $.Lrt_nput_stack, %r15

1170 movabsq $2,%rax # slot number 2 on .Lrt_nput_stack

1171 movabsq $38,%r9 # width of a record on .Lrt_nput_stack

1172 mulq %r9

1173 leaq 1(%r15,%rax),%rdi # 1st arg is ASCIZ buffer

1174 xorl %esi, %esi # 2nd arg is NULL

1175 movabsq $strtod, %rax # call code to do actual conversion from ASCIIZ to floating point

1176 callq *%rax

1177 movsd %xmm0, %xmm1

1178 # if xmm1 is +Infinity then overflow

1179 movabsq $PInf,%r13 # move constant +INF into r13

1180 subq $8,%rsp # allocate scratch 8 byte area

1181 # it is a union location for

1182 # converting between 64 bit double and

1183 # unsigned 64 int

1184 movq %r13 ,(%rsp) # temp = +INF
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1185 movsd (%rsp),%xmm0 # move +INF into xmm0

1186 addq $8,%rsp # deallocate scratch 8 byte area

1187 comisd %xmm1,%xmm0

1188 jne 0f

1189 # got overflow

1190 movabsq $.Loverflow_msg,%rsi

1191 movabsq $exception_non_fatal,%r13

1192 callq *%r13

1193 movabsq $.LLINE0010,%rax

1194 jmpq *%rax

1195 0:

1196 movabsq $.Lrt_nput_stack, %r15

1197 movabsq $2, %rax

1198 movabsq $38, %r9

1199 mulq %r9

1200 movsd %xmm1,1(%r15,%rax)

1201

1202 # INPUT ok, copy from temp locations to real locations

1203

1204 # scalar numeric INPUT A phase 2

1205 movabsq $.Lrt_nput_stack, %r15

1206 movsd 1(%r15),%xmm1

1207 movabsq $A, %r14

1208 movsd %xmm1, (%r14)

1209 # scalar string INPUT B$ phase 2

1210 movabsq $.Lrt_nput_stack, %r15

1211 movabsq $38, %rax

1212 leaq 1(%r15,%rax),%rsi # 2nd arg is source

1213 movabsq $B$, %rdi # 1st arg is destination

1214 movabsq $mystrcpy, %rax

1215 callq *%rax

1216 floatlit_to_floatreg .LFLIT0000,%xmm0,1

1217 pushxmm 0

1218 # array numeric INPUT C phase 2

1219 movabsq $.Lrt_nput_stack, %r15

1220 movabsq $38, %r9

1221 movabsq $2, %rax

1222 mulq %r9

1223 movsd 1(%r15,%rax),%xmm1

1224 pushxmm 1

1225 popxmm 2 # RHS expression value

1226 popxmm 0 # array index expression value

1227 floatreg_to_array_1D C,%xmm2,%xmm0,0,10,%r8,%r15

The code to call doinput is on lines 1131 and 1131. Lines 1134 through 1166 process A, a scalar
numeric variable, doing the conversion and overflow check. Lines 1168 through 1200 process C(1),
an array numeric variable, doing the conversion and overflow check. The copying back phase starts
on line 1204. The copy from the temporary hold area .Lrt_nput_stack[0] to A occurs on lines 1204
through 1208. The copy from the temporary holding area .Lrt_nput_stack[1] to B$ occurs on lines
1209 through 1215. Finally, the copy from the temporary holding area .Lrt_nput_stack[2] to C(1)

occurs on lines 1216 through 1227. The runtime library subroutines for supporting the INPUT statement
were first written in C99, then compiled to assembly for use as part of the runtime library.

2.4.7.12. PRINT Statement

Like the support for INPUT, the code for PRINT does direct kernel system calls to avoid any
dependency on GNU libc. The rules for PRINT statements to display numbers in Minimal BASIC,
inherited from the original Dartmouth BASIC design ([4], p. 109), made the implementation of
conversion between doubles and ASCIIZ strings non-trivial, so a slightly modified version of David
M. Gay’s code was used for that conversion. Essentially, numbers that fit in a print zone without using
an exponent are printed without an exponent, but numbers that have too many digits to fit are printed
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with an exponent. If the number is positive, it will have a leading space, otherwise it will have a leading
minus sign. When printing, a number will always have a trailing space.

The remaining rules for the PRINT statement are fully documented in the standard. In a nutshell, the
argument to the PRINT statement is a sequence of print items separated by either semicolons or commas.
Output is buffered and is output as entire lines. The output line width is 80 columns, and output will
wrap to new lines if necessary. There are 5 print zones, each with 15 columns. If a semicolon is used
as the separator between items, it means the items should be printed immediately after one another. If a
comma is used, the output position is moved to the next print zone, again wrapping if required. There is
a special built-in TAB() function that takes as an argument a column number, and instructs the runtime
output system to move the current output column to the argument specified to tab after rounding it to the
nearest integer value. If that column is less than the current output position, the current buffer is printed
and cleared, and then the column position is used. If the column position specified is larger than the
output width, then the new output position is computed by taking the remainder of integer division of
the tab subroutine argument by the output width.

The runtime library code for the PRINT support was implemented in C99 first, and then compiled to
assembler and used in the runtime library. The appendbuf procedure is used to display a string value.
The print�oat procedure is used to display a numeric value. The nextzone procedure is used to move
to the next PRINT zone to implement the comma separator. The outputbuf procedure is used to force
output of the buffer when all of the items in the list have been displayed, except in the case where the
final item is followed by a comma or semicolon. The tab procedure is used to implement the TAB()
function. To see how these low-level library functions are used, consider this trivial program:

10 LET P=1.234

20 LET Q$="DEMO"

30 PRINT "00000000011111111112"

40 PRINT "12345678901234567890"

50 PRINT "P is";P,Q$;TAB(5);"FIVE"

60 END

Here is the actual output when this program is run:

00000000011111111112

12345678901234567890

P is 1.234 DEMO

FIVE

As you can see, the comma moved the output to column 16, the second print zone. The call to
TAB(5) forced the current line buffer to be output and cleared, and the final string literal "FIVE" starts
in the fifth column of a new line. Here is the generated code for line 50 after being run through the
simple peephole optimizer:

1151 .LLINE0050:

1152 movabsq $.LCURLINENO, %rax

1153 movq $50, (%rax)

1154 movabsq $.LSLIT0003, %rdi # %rdi=pointer to ’P is’

1155 movabsq $appendbuf, %rax

1156 callq *%rax
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1157 floatmem_to_floatreg P,%xmm0,’P’

1158 movabsq $printfloat, %rax

1159 callq *%rax

1160 movabsq $nextzone, %rax

1161 callq *%rax

1162 movabsq $Q$, %rdi

1163 cmpb $NAK,(%rdi)

1164 jne 0f

1165 # referenced scalar was uninitialized

1166 movabsq $.Luninitialized_msg, %rsi

1167 movabsq $printstring, %rax

1168 callq *%rax

1169 # must create string in reverse order

1170 xorq %rdi,%rdi

1171 movb $’$’,%dil

1172 shl $8,%rdi

1173 movb $’Q’,%dil

1174 shl $8,%rdi

1175 movb $32,%dil

1176 movabsq $printvarname,%rax

1177 callq *%rax

1178 movabsq $badxit, %rax

1179 jmpq *%rax

1180 0:

1181 movabsq $appendbuf, %rax

1182 callq *%rax

1183 floatlit_to_floatreg .LFLIT0001,%xmm0,5

1184 cvtsd2si %xmm0,%rdi

1185 movabsq $tab, %rax

1186 callq *%rax

1187 movabsq $.LSLIT0004, %rdi # %rdi=pointer to ’FIVE’

1188 movabsq $appendbuf, %rax

1189 callq *%rax

1190 movabsq $outputbuf, %rax

1191 callq *%rax

This shows output of the initial string literal on lines 1154 through 1156 using the appendbuf

procedure. Then, because a semicolon separator was used, output continues in the next column for
the numeric value of the P variable which is output using the print�oat on lines 1157 through 1159.
Since the next separator is a comma, the code moves output to the next output zone using the nextzone
procedure on lines 1160 through 1161. The output position then moves to the second zone which starts
in column 16. Next the string variable Q$ is checked to ensure it is initialized on lines 1162 through
1180. If it is, then it is displayed using the appendbuf procedure on lines 1181 through 1182. The next
separator is a semicolon, so output will continue with the next available column. The call to move to
column 5 with TAB(5) is done on lines 1183 through 1186. Since that column is less than the current
output column, the currently buffered line will be output, the buffer will be re-initialized, and the output
position will only then be moved to column 5 of the now blank output line. The next separator is a
semicolon, so, the final string literal "FIVE" is output using the appendbuf procedure on lines 1187
through 1189. Since the PRINT statement has no trailing separator, the outputbuf procedure is called
on lines 1190 through 1191 to print the buffer contents and re-initialize the print system again.

2.4.7.13. READ, DATA, and RESTORE Statements

Minimal BASIC allows embedding literal data into a program which can be conveniently accessed
as an alternative to input from STDIN or a file. Comma-delimited literal values are stored in DATA

statements. If executed directly the statements do nothing and control flow continues to the following
statements. All the literals in all the DATA statements get placed into one internal list in the order in
which they appear in the BASIC program source. To retrieve these values at runtime, a READ statement



Computers 2014, 3 97

is used. The READ has a similar form to the INPUT statement, with a list of variables that will receive
data immediately following the READ keyword. The compiled program keeps a hidden pointer that
initially points to the first literal, and is advanced each time a variable is filled with data in a READ
statement. It is a fatal error to issue a READ after all DATA elements have been read, so the programmer
writing the BASIC program is responsible for keeping track of the number of literals stored in DATA

statements. However, there is one special BASIC statement, called RESTORE, that can be used to reset
the hidden internal pointer (.Ldata_item_ptr) used with READ back to the beginning of the list of
literal values that were specified by DATA statements. Consider this example program:

10 DATA 5,"HELLO",1,1,2,"HELLO"

20 READ C

30 FOR I=1 TO C

40 READ S$

50 PRINT S$

60 NEXT I

70 RESTORE

80 REM READ IT ALL AT ONCE

90 READ C,A$,B,C,D,E$

100 PRINT A$,B,C,D,E$

110 END

This example uses a common BASIC technique of storing the number of data elements as the first
literal value in the DATA statement. BASIC allows any literal stored in a DATA statement to be read into
a string variable as a string. On line 70 the pointer is reset, and on line 90 the numeric values are read
into numeric variables. While any numeric literal can be read into a string variable, it is a fatal error to
read a string literal into a numeric variable. In this example “HELLO” and the value 1 are duplicated in
the DATA statement. The constant merging will remove the duplicate data blocks, and the list of pointers
just has both “HELLO” items point the the same data block and both 1 values point to the same data
block. The list of pointers still has 6 pointers, so everything works. The code generation for the READ
on line 20 is shown here:

1131 .LLINE0020:

1132 movabsq $.LCURLINENO, %rax

1133 movq $20, (%rax)

1134 # scalar numeric READ C

1135 movabsq $.Ldata_item_ptr, %rax

1136 movq (%rax), %rax

1137 movabsq $.Ldata_item_count, %rbx

1138 movq (%rbx), %rbx

1139 cmpq %rbx, %rax

1140 jb 0f

1141 movabsq $.Lout_of_data, %rax

1142 jmpq *%rax

1143 0:

1144 movabsq $.Ldata_items, %rbx # base of data_items array of struct pointers

1145 movq (%rbx,%rax,8),%rax # load pointer value in slot rax

1146 cmpb $2,(%rax)

1147 je 1f

1148 movabsq $.Lbad_number_read, %rax

1149 jmpq *%rax

1150 1:

1151 movsd 1(%rax),%xmm0 # ok, load double 2 bytes into that structure into xmm0
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1152 movabsq $C, %rax

1153 movsd %xmm0,(%rax)

1154 movabsq $.Ldata_item_ptr, %rax

1155 incq (%rax) # increment data_item_ptr in memory but not register

1156 movabsq $PInf,%r15

1157 subq $8,%rsp # allocate scratch 8 byte area

1158 # it is a union location for

1159 # converting between 64 bit double and

1160 # unsigned 64 int

1161 movq %r15 ,(%rsp) # temp = +INF

1162 movsd (%rsp),%xmm1 # xmm1 = +INF

1163 ucomisd %xmm1,%xmm0

1164 jne 2f

1165 jmp 3f

1166 2:

1167 movabsq $NInf,%r15

1168 movq %r15 ,(%rsp) # temp = -INF

1169 movsd (%rsp),%xmm1 # xmm1 = -INF

1170 ucomisd %xmm1,%xmm0

1171 jne 4f

1172 3:

1173 # overflow message

1174 movabsq $.Loverflow_msg,%rsi

1175 movabsq $exception_non_fatal,%r15

1176 callq *%r15

1177 4:

1178 addq $8,%rsp # deallocate scratch 8 byte area

Because SSE2 lacks support for the PINSRQ instruction, to move data into the SSE register it must
go through memory. To avoid using a global variable for this, on line 1157 a temporary is created
on the system stack for the conversion to allow loading positive and negative infinity values used
in overflow checking. That temporary storage is de-allocated line line 1178. In the 32 bit narrow
mode, the same problem exists due to the lack of support for the PINSRD instruction. The table of
pointers (.Ldata_items) used for the data items shows how the data item constant merging works. Each
duplicated item from the DATA statement points to an already existing data block:

7220 .align 16

7221 .type .Ldata_items, @object

7222 .Ldata_items:

7223 .quad .LDATA0000

7224 .quad .LDATA0001

7225 .quad .LDATA0002

7226 .quad .LDATA0002

7227 .quad .LDATA0003

7228 .quad .LDATA0001

7229 .size .Ldata_items, .-.Ldata_items

On line 7226 which corresponds to the second numeric value 1, it uses .LDATA0002 so that it points
to the data block created for the first instance of the numeric value 1 in the list. Similarly, on line 7228
it uses .LDATA0001 for the second “HELLO”, and that is a pointer to the block created for the first
“HELLO” that was the second item in the list as shown on line 7224.

The data block for a numeric item actually contains both string and numeric representations, as shown
here for the first DATA item in the example, “5”, from the Minimal BASIC source line number 90:

7182 .LDATA0000S: # string represenatation

7183 .asciz "5"

7184 .LDATA0000:

7185 .byte 2 # Type is: UQSTR

7186 .double 5 # numeric representation

7187 .byte 2 # length of ASCIIZ string pointed to by .LDATA0000S including NULL byte

7188 .quad .LDATA0000S # pointer to string representation

7189 .size .LDATA0000, .-.LDATA0000

7190 .type .LDATA0000, @object
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This avoids any need for conversion for numeric data items at runtime for the generated executable. The
2 on line 7185 represents the unquoted string type, which can be read into either a numeric or a string
variable. The 2 on line 7187 is the length of the ASCIIZ string representation including the terminating
NULL byte.

The other type of data block is for a quoted string:

7191 .LDATA0001S: # string represenatation

7192 .asciz "HELLO"

7193 .LDATA0001:

7194 .byte 0 # Type is: QSTR

7195 .byte 6 # length of ASCIIZ string pointed to by .LDATA0001S including NULL byte

7196 .quad .LDATA0001S # pointer to string representation

7197 .size .LDATA0001, .-.LDATA0001

7198 .type .LDATA0001, @object

The 0 on line 7194 represents the quoted string type, and the 6 on line 7195 is the length of the ASCIIZ
string representation including the terminating NULL byte. Note that for type 0, no floating point version
exists, because a quoted string cannot be read into a numeric variable.

2.5. Peephole Optimizer

In addition to the main compiler, a separate, stand-alone, special-purpose peephole optimizer [63]
called peephole was implemented to remove redundant push/pop sequences on the dedicated
runtime floating point and string address operand stacks. For the numeric expression evaluation code,
pushxmm 0 followed immediately on the next line by popxmm 0 is removed. For the similar string
expression evaluation code, pushsaddr followed by popsaddr %rdi sequences are removed. This
trivial optimization pass works on the assembly code and thus allows the main compiler to generate
easy to understand expression code, but still allows improving the actual executable that results. The
optimizer is primitive and the window size is only two lines, but it works well enough to remove
unnecessary assembly code macro sequences where something is pushed from a register onto one of
the special-purpose operand stacks and then immediately popped back into exactly the same register.

In ?? the unoptimized code emitted from the compiler is in the left-hand column, and the
corresponding code after passing through the special-purpose stand-alone peephole optimizer is in the
right-hand column. The difference between the code before and after is the removal of the superfluous
push/pop sequence. Those removed commands are macro invocations, not single instructions, so
their removal has a more significant effect on performance and executable code size than it might at
first appear.

3. Results and Discussion

3.1. Testing The Compiler

Since no other ECMA-55 Minimal BASIC compiler exists for x86-64 Linux® , no performance
comparisons with alternative implementations are possible. However, the National Bureau of Standards
(NBS) created a Minimal BASIC test suite and parts of it were available online. For the parts that were
not, the author was able to obtain paper copies from Mr. Emmanuel Roche. The test suite contains 208
programs and running these helped with debugging of the compiler. After compiler development was
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feature-complete, six tests still did not pass. Several of the failures were a result of negative constants
being interpreted differently with ECMA-55’s grammar than with the ANSI grammar for which the tests
were designed6. One test had a string longer than the maximum 18 bytes7. One test was for overflow
at ±(π/2) in the TAN() function, but the SLEEF tangent function implementation never overflows in
that case8. Two tests used uninitialized variables, which ECMA-55 recommends should be detected and
flagged as errors, but ANSI may not care9. Those six tests were fixed, and a test harness was created
using GNU bash shell in combination with file, diff, and GNU make. This allowed easily running
the entire test suite every time a change was made, ensuring no regressions would occur. In retrospect
it may have been better to implement the automatic test system earlier so bugs could have been noticed
immediately instead of much later in the project.

One issue with using the NBS test suite is that it was written for 32 bit processors, not 64 bit
processors. This means that the floating point constants do not have as many digits or cover as wide
a range as is really possible for a machine using a 64 bit FPU. The initial version of the compiler was
designed to generate output that would match the NBS test suite, but later a ’wide’ mode was added that
generates wider output possible when using 64 bit floating point values. Wide mode uses a 132 column
output buffer and the five print zones use 25 columns each in that case. For wide mode, numeric output
that uses exponents has three digit exponents instead of two digit exponents, and up to 16 significant
digits instead of only 7. Since Minimal BASIC is a dead standard, and the NBS no longer exists,
there will never be a 64 bit version of that test suite and conformance for the 64 bit case can never be
definitively verified.

Once the compiler was stable and the NBS test suite passed, special care was taken to test the
compiler itself using Valgrind’s Memcheck [64] to verify there were no dynamic memory errors. The
clang/LLVM address sanitation [65] implementation was used to verify there were no out of bounds
array accesses. Also all integer types were converted to use the C99 fixed-width integer types in
inttypes.h ([66], pp. 198–200) after some 32 versus 64 bit bugs were found in the compiler while
testing with integer values too large to fit in 32 bits. Since the NBS tests were written for implementations
without 64 bit support, these bugs were not seen while running the NBS Minimal BASIC test suite.

3.2. Late Developments

The author learned of the pcc compiler after the Minimal BASIC compiler was completed. It is
another open source C compiler that can generate assembly code. It is directly descended from Stephen
C. Johnson’s 1970’s-era compiler, but now has C99 and x86-64 support. The pcc compiler was used as
an alternative to gcc by the BSD community, which prefers non-GPL licensed tools, before the recent
dramatic rise in popularity of the LLVM toolchain. The assembly output of the pcc compiler is actually
much easier to read than the output of gcc or clang/LLVM, and might have provided an easier method

6 NBS Test programs 26 & 38.
7 NBS Test program 100.
8 NBS Test program 129.
9 NBS Test programs 134 & 136.
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of generating runtime assembly language routines from C99 source code. As expected, the ECMA-55
Minimal BASIC compiler functions correctly when compiled with pcc.

While writing this document the author learned that the Intel® Xeon Phi™, while touted as x86-64
compatible, actually cannot operate on XMM registers and lacks the CMOV instruction ([67], p. 659).
Code was added to the program prologue emitted by the code generator to verify that SSE2, SSE3,
SSSE3, and CMOV features are available and if they are not to exit with an error message before even
attempting to do anything else. Now that Intel has implemented a CPU with an “extended subset” once,
it may happen again, so these new extra checks are necessary as a safety measure.

In response to reviewer comments on drafts of this document, the code generation for arithmetic
expressions was modified to use macros to abstract away the repetitive error checking when loading
values from and storing values to memory. The actual machine code after expanding those macros is
equivalent to the previous versions of code the compiler generated, and still verifies values are initialized
and valid. These changes resulted in much easier to read assembly code.

In September of 2014 the author of this paper received a new machine with a Haswell refresh
processor, which finally allowed adding SSE4 features to the compiler described in this paper. This was
done by adding a -4 switch to the compiler to trigger use of the PINSRQ and PEXTRQ instructions for
64bit floating point data transfer. These instructions avoid the need to use a temporary stack variable to
move data between general-purpose registers and SIMD registers. Performance measurements showed
that no discernible difference in runtime between the two methods exists on a machine with an Intel®

Core™ i7-4790 CPU. However, the assembly code using SSE4 is easier to read and understand. The
correspondingPINSRD andPEXTRD are used for 32 bit floating point data transfer. Since the compiler
was designed and implemented before the new machine was available, the examples in this document
were created without using the -4 switch.

3.3. Teaching with the MinimalBASIC Compiler

Many textbooks are available which discuss creating compilers, but few actually target real, modern
CPUs. Often compiler courses emphasize creating a compiler for a ‘nice’ input language generated
for some ‘ideal’ CPU, or they target CPUs that have reasonable instruction sets but are not widely
used for new general-purpose machines today, such as MIPS64. Some books detail a full production
compiler, which is too complex for most students in an introductory course [68]. Other books are highly
theoretical [69]. Real CPUs still in use today tend to be ugly, non-orthogonal, sensitive to memory
alignment, etc. Intel’s x86-64 has few general-purpose registers and only one instruction in 64 bit mode
that can actually take a 64 bit literal, yet despite being truly awful to program in assembly, x86-64 is
the dominant 64 bit instruction set in use today. Once students learn to generate code for the worst case
x86-64 instruction set, any other stack-based CPU will be easy for them.

This compiler is intentionally much simpler than production compilers, yet accepts as input a simple,
line-based, historical computer language and targets a real CPU for an operating system kernel that
is in use on many servers today. It avoids the complexity inherent in a retargetable compiler by just
compiling one input language for one target, and generating unoptimized code directly as a side-effect
of the parse. No explicit abstract syntax tree or intermediate language is used, and no graph analysis is
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used. This makes it a good first compiler for students with no previous compiler experience to examine,
since it works, the input and output are not idealized languages, and it targets the widely-used and ugly
x86-64 instruction set for systems running a modern Linux 3.x kernel. The compiler itself is written in
C99, which is available for almost any platform, and keeps things simple by avoiding object-oriented
programming or any explicit graph representation of the parse tree.

One concern some instructors may have is that the design of this compiler does not allow for any
data or control flow analysis and thus makes implementing almost any optimization impossible. This is
a feature, not a fault, since this compiler is designed for teaching students with weak algorithmic and
programming skills, not researchers or excellent students attending elite institutions. If the instructor’s
students are truly ready to learn about optimization, then they are ready for one of the many open source
optimizing compilers like clang/LLVM, gcc, pcc, fpc, etc. The compiler featured in this paper
is designed to teach people sustainable compiler skills that may not be optimal, but that are definitely
practical, easy to remember, easy to use, implementation language agnostic, and good enough in practice
for common small problems like processing configuration files, writing small expression evaluators for
interactive applications, etc.

The compiler described in this paper is easily used for student projects. Examples of projects of
varying difficulties for students would include:

• Add support for AND, OR, and NOT logical operators.
• Adding a WHILE/ENDWHILE loop statement pair.
• Modifying the symbol table, runtime library, and scanner by adding support for longer variable

names.
• Adding runtime support, updating symbol table support, and changing the grammar for full string

support from ECMA-116.
• Changing the code generator by targeting another operating system using the same CPU, for

example Apple®’s OS X®.
• Improving the compiler by replacing linked lists with more scalable alternatives.

These tasks would have students begin with a known working compiler and then they would use
techniques learned in class to change the parser, symbol table management, code generation, etc. For
undergraduate compiler courses usually there is only one semester available and the students often
lack experience programming non-trivial projects. There is rarely enough time to start from scratch
implementing a compiler, but by using this already-debugged simple compiler as a starting point, many
techniques can be explored. While many of the methods used in this compiler are not appropriate for
a production compiler, an optimizing production compiler is not appropriate for average students at
schools with modest academic standards for their first exposure to compiler technology. By avoiding the
use of a compiler kit, scanner generator, or parser generator, the amount of black-box programming is
minimized. The skills learned can be used with any iterative, procedural language on any platform.

This compiler does not support optimization at all, and could not be easily modified to support it.
The design decision to keep things simple has the disappointing side-effect that using it to teach about
optimization is not practical. However, beginners first learning about compilers should have as their
primary goal generating a correct, verifiable translation. The assembly output of a fully optimizing
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compiler that re-arranges code, removes dead code, etc. is not trivially easy to match up to the input
program. Students who have completed their study of this compiler will be ready to move on to the next
step, which would be studying one of the many available FOSS optimizing production-quality compilers,
should they wish to continue their study of compiler technology. Consider the case of a Formula 1 driver.
Most of them do not begin their career driving a Forumula 1 car in competition. Instead, they build their
skills driving simpler, lower performance vehicles. Most recommendations suggest starting very young
with kart racing. Yet for compiler study, some people expect new students to start at the highest level,
a production, optimizing compiler. This compiler is intended to fill the gap where a student wants
to learn about compilers but has no experience with them. Is it better to have students learn 100%
of a simple compiler or a tiny percentage of some complex compiler? Ultimately, the answer to that
question is a matter of opinion. The author of this compiler and paper posits that a complete, usable
understanding of a simple system is better than a vague understanding of giant project when the goal is
to learn about compilers, but freely admits that it is doubtful that this position can ever be definitively
proved or disproved. This compiler provides a viable alternative for exposing new students to compiler
technology, and is not intended as a replacement for more rigorous instruction for higher-level study, but
instead as an additional introductory first step to ease students into the compiler writing discipline a bit
more gently than is usually done today.

Since Algol-derived languages tend to be stream-based, one might reasonably ask the question “Why
is the capability of processing a line-based language still relevant today?” It is still relevant because
many languages which remain in use today are line-based, including Bourne-style shells, nroff, COBOL
and REXX. The FORTRAN and python languages are both still actively developed, and they are also
line-based languages. The input for the common make project build tool, and the assemblers used for
low-level programming are line-based. Even the C language preprocessor cpp is line-based. As in
the case of the x86-64 CPU, if students develop the skills necessary to handle the syntax of line-based
languages, then working with the syntax of stream-based languages will be easy for them.

3.4. Future Work

This section details several areas where improvements could be made to this compiler. This includes
adding more BASIC language features, improving code generation, and improvements that could be
made now that current hardware is available for development and testing. Implementing a Minimal
BASIC compiler has been a vital first step in resurrecting traditional BASIC as a compiled language for
a modern Linux® platform. The term ‘traditional BASIC’ in this case means a BASIC that requires line
numbers for every statement, and not the completely incompatible, numberless, Pascal-like language
made popular by Microsoft® with its Visual BASIC® product line that shares little besides the name
with the original BASIC language. The feature set of Minimal BASIC is not complete enough for
general-purpose programming. Implementing just some of Full BASIC’s features would result in a
BASIC dialect capable of string and file processing, yielding a BASIC that is suitable for doing most
entry-level, general-purpose, text-mode, single-threaded, non-networked programming.
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3.4.1. Full BASIC

The most useful logical next step in the development of the compiler is to enhance it to support
features from ANSI’s “Full BASIC” [70]. The ANSI version of the Minimal BASIC specification,
the ANSI X3.113-1987 “Programming Languages Full BASIC” specification, despite being revoked,
remains non-free. Fortunately the similar ECMA-116 BASIC-1 BASIC standard [71] is freely available.

Updating the compiler to support Full BASIC could be done incrementally by adding different parts
of the Full BASIC feature set individually. The first piece to add would be full support for string
processing. While this was available in 1966 for Dartmouth BASIC ([17], p. 528), unfortunately it was
not included in the Minimal BASIC standard. Other pieces to add include support for files, matrix math
operations with MAT, the new additional built-in functions, and DECIMALmath. Another area of changes
would be the changes to support ELSE, compound conditionals, DO loops, CASE statements, multi-line
functions, multi-line subroutines, the CHAIN feature, PRINT USING, etc. BASIC-2 requires support
for a third type of floating point, FIXED. Since the x86-64 instruction set no longer supports BCD
(binary coded decimal) math, implementing the required default OPTION ARITHMETIC DECIMAL

math mode would require updating the runtime library to supported emulated decimal math.

3.4.2. Code Generation Improvements

The Minimal BASIC compiler described in this paper emits unoptimized large model code. Since no
BASIC program that can fit in the 9999 line limit of Minimal BASIC would actually require 64 bit jumps
or calls, a more ideal but also more complex solution would be to use small model code.

This compiler avoids the complexity of register allocation by using a dedicated floating point stack at
a non-negligible runtime cost. Rewriting the expression evaluation code to use registers directly should
result in higher quality code generation and improved performance of generated executables, but would
probably also increase compilation time.

The string functions could be improved to check for a maximum length like the standard
strnlen(), strncpy(), and strncmp() functions. In addition, no attempt was made to reorder
instructions to accommodate the CPU pipeline as suggested in Intel®’s optimization manuals [72].
Actually modifying the compiler to do that kind of instruction scheduling would improve runtime
performance, but only at a considerable cost in compiler complexity.

More assembly macros could be created to make the generated code sequences for INPUT and READ
statements easier to read. It would also be possible to use macros for abstracting away the string error
checking in string expressions in a fashion similar to the recent changes made to arithmetic expression
processing. While such macro changes would not improve performance or add features, they would
definitely make reading the generated code easier for novices, and less tedious for the more adept.

3.4.3. Adding Debugging Support

Another feature that would be nice to have is generation of DWARF format debugging information.
This would allow normal use of the GNU gdb debugger on compiled Minimal BASIC programs.
DWARF format debugging data is complex to add to code generation, and there is no specific BASIC
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language support in the DWARF standard, so adding DWARF support to this compiler would certainly
be a challenge.

3.4.4. Adding AVX Support

Even though this compiler does not attempt any vectorization, using AVX instruction support would
be beneficial for future development because it includes a compiler-friendly three operand format
for SIMD math operations ([73], p. 2) and has relaxed alignment requirements ([74], p. 6) for data
access. For a compiler writer this makes implementing register-based expression evaluation much easier
compared to x86-64 processors without AVX support. For the Minimal BASIC compiler described in
this paper, using the three operand AVX math features will make it much easier to update the compiler to
use register-based numeric expression evaluation. The SLEEF library already can use AVX instructions
and can provide drop-in support for the necessary elementary functions.

4. Conclusions

4.1. Results

The Minimal BASIC compiler this paper describes is a complete and faithful implementation of a
simple, non-optimizing compiler to assembly language for a standard traditional BASIC dialect. Since
it is a free and open source implementation, anyone can use parts of it as a base to create their own
custom compiler. The compiler is also simple enough that undergraduate students with a meager set of
programming skills can study, understand, and modify it. The compiler is intended to be a compiler
good for teaching issues often not covered in beginning courses, including code generation for an actual
mainstream 64 bit CPU, floating point exception handling, and dealing with line-based languages. By
refraining from using scanner and parser generators and complete compiler kits, students can actually
learn how the algorithms work instead of relying on black-box tools. Every respectable compiler
textbook covers DFSM scanners and recursive-descent parsers, and this compiler uses those well-known,
time-tested, proven techniques.

The aim of this project was to create a compiler that conforms 100% to the ECMA-55 Minimal
BASIC standard. Correctness was the primary concern, and a secondary objective was simplicity so that
even mediocre students can easily understand how it works. The target was x86-64 assembly language in
the AT&T dialect used by GNU binutils’ as assembler, and one requirement was to make the resulting
executables stand-alone so they would not depend on any external shared libraries. The time allotted for
development was one year. All of the design goals were met in roughly nine months.

The compiler passed the majority of the NBS test suite without problems, and the few failures have
been analyzed and it was determined that the remaining cases were test case errors for the ECMA-55
standard (although they may be valid for the paywalled ANSI standard) of Minimal BASIC. All
required exception handling for the floating point math was implemented for expression evaluation.
The recommended optional uninitialized variable detection was also implemented. The generated static
executables run well without any dependency on external libraries like libc or libm. This feature means
that compiled Minimal BASIC programs are easy to distribute as a single static executable. The total
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number of lines used for the compiler and runtime is less than 25 thousand lines, and only a C99 compiler
(gcc, clang/LLVM, and pcc all will work), the GNU as assembler, and the GNU ld linker are
actually required to build it.

Since it has already been stated that this compiler eschews advanced techniques in order to maintain
simplicity, one obvious question to consider is “While this compiler is definitely new, does it really
provide anything that can be considered novel?” First I will reiterate the novel teaching and learning
approach it is designed to both enable and encourage, which is somewhat subjective. Then I will list the
unique technical features which in contrast are verifiable facts.

This compiler enables an innovative instructional approach for introducing people to the world of
compilers. Most compiler instruction is designed for advanced students and researchers. Many people
have the belief that compilers need to be complex, production quality, optimizing implementations
in order to be relevant. That elitist attitude keeps the number of people studying compilers much
smaller than it should be. Compiler courses tend to gain a reputation as GPA killers, and in many
programs the compiler course is an elective, so the number of people who actually enroll is small. This
compiler allows younger, less experienced programmers to safely begin studying compilers earlier in
their careers, and succeed doing it. This implementation is much less exclusive than full production
quality implementations, since anybody who can learn simple C, basic assembly language, and can use
arrays and linked lists has all the necessary skills to work with this code base. Compiler writing can
now finally cease to be the exclusive domain of advanced computer scientists. When more people start
studying compilers sooner, they will realize that a pragmatic and simple approach allows them to create
a working compiler that runs on and targets a modern platform. Students will see that learning how
an entire simple compiler works is something a normal programmer can achieve even early in their
career. This will allow them to change from fearing compiler technology to realizing that it’s just one
more area of computer science to consider. At many institutions teachers are faced with the hard choice
of either demanding genius if they want a student to understand the entire compiler, or giving up and
having the students modify something they have no hope of understanding. Since most students are
not geniuses, most programs just teach some small percentage of the entire compiler. The compiler
described in this paper is designed for teachers and students who want a complete, working traditional
compiler to machine code that they can fully comprehend. This lowers the entry barrier to the study
of compiler technology to not only allow more people to get involved, but also to allow more people to
actually understand the entire process, from scanning the input to actual code generation, with a concrete
implementation. In short, this compiler enables beginners to learn about compilers as just another area
of computer science equivalent with operating systems, databases, networking, etc. instead of as an
advanced topic only for the chosen few. Of course people intending to pursue compiler research or a
commercial career with compilers would have to learn much more, but this compiler provides a solid
foundation for the basic concepts that ordinary students at average schools can fully master, in contrast
to just studying a small part of some huge, complex compiler.

What technological features does this non-optimizing compiler implementation provide that make it
stand out from other alternatives?

(1) This compiler includes a complete runtime library, so the behavior of generated executables
remains uniform even if the system libraries are different on different Linux distributions.
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(2) The generated executables are statically linked and have no embedded paths, so they can be moved
both within a filesystem and between machines and they still work, only requiring a Linux 3.X
x86-64 kernel.

(3) This is the only fully-compliant implementation of ECMA-55 Minimal BASIC targeting x86-64
Linux.

(4) This is the the first and only 64 bit version of a fully compliant ECMA-55 Minimal BASIC for any
platform.

(5) This compiler generates floating point code with full exception checking, something that gcc,
clang/LLVM , pcc, and tcc cannot even optionally do.

No other FOSS compiler targeting x86-64 Linux® exists that accepts a traditional line-numbered
BASIC, uses 64-bit floating point code, and generates assembly. The only commercial BASIC compiler
available for that platform, Pure BASIC [22], does not support any traditional line-numbered BASIC
dialect. The compiler described in this paper is not merely a trivial enhancement or simple add-on to
some existing compiler toolchain. This compiler is actually an all-new, from scratch implementation.
This results in a compiler that is small and only includes what is required. In fact, the compiler itself,
together with the runtime library which it embeds, can be distributed as a single static executable of only
740KB when linked against musl [75] libc. The peephole optimizer adds another 22KB. A complete
binary package with documentation is only 790KB.

4.2. Performance of Generated Executables

The compiler is already fast enough to compile hundreds of programs in less than a minute even on
obsolete hardware. But what about the generated executables? Runtime performance of the generated
executable programs is fast enough for the kinds of non-production work that can be done in ECMA-55
Minimal BASIC. To prove this, the DUMBSINE.BAS program was created that does hundreds of
thousands of calculations of the sin() function using a naive Taylor series expansion and then compares
the results to the built-in SIN() function. On an Intel® Core™ 2 Duo CPU (E4700@2.60 GHz)
the compiled ECMA-55 Minimal BASIC program runs in about 44.5 seconds. A roughly equivalent
C99 program dumbsine.c takes about 19.0 seconds when compiled without optimization. The C99
program attempts to do some exception checking so that the comparison is at least approximately fair.
The ECMA-55 Minimal BASIC program is about 42.6% of the speed of the C99 version. The ECMA-55
Minimal BASIC compiler makes no attempt at any instruction scheduling, and that, combined with the
stack-based expression evaluation, is more than likely responsible for much of the difference in runtime
even when comparing against unoptimized output of a C99 compiler. The code for both programs was
meant to exercise floating point math functions, not to be a serious attempt at calculating values for the
sin() function. The source code for the programs discussed here is included in the appendix. The
standard Whetstone [76] benchmark for floating point performance could not be ported since it requires
integer support which is not available in ECMA-55 Minimal BASIC.

4.3. Availability
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The compiler and included runtime are open source, and both read-only Mercurial version control
repository access and standard tar files compressed with xz are freely available and can be downloaded
from the following SourceForge project URL: http://sourceforge.net/projects/buraphakit/.

The compiler itself is licensed under the GNU General Public License Version 2 [77] only, and
the third party runtime modules have a variety of free and open source licenses noted in the
accompanying documentation.
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A. Benchmark Programs

Reviewers of a draft of this paper requested some performance information. Since no other ECMA-55
Minimal BASIC compiler exists for the x86-64 Linux® platform, one program was written in ECMA-55
Minimal BASIC and then another corresponding program was written in C99. The programs are not
quite equivalent since by default C99 has no floating point exception checking and that had to be added,
but it was not practically feasible to exactly match the semantics of the original ECMA-55 Minimal
BASIC program.

A.1. ECMA-55 Minimal BASIC DUMBSINE.BAS Program Source

This program computes values for the sine function using a Taylor series expansion and compares the
results to the built-in SIN() function. This is done repeatedly for various angles in order to benchmark
the performance of the code generated by the compiler.
10 REM THIS IS A PROGRAM DESIGNED TO BURN A LOT OF CPU

20 REM TO GIVE A ROUGH MEASURE OF RUNTIME PERFORMANCE.

30 REM Z IS ARRAY TO HOLD RESULTS FOR SINE(0.0001) THROUGH SINE(PI/8)

40 REM IN STEPS OF 0.001 FOR 1000 VALUES, PI=3.141592653589793

50 DIM Z(4000)

60 DEF FNP=3.141592653989793

65 FOR K=1 TO 1000

70 FOR X=0.0001 TO FNP/8 STEP .0001

80 LET A=X

90 GOSUB 1000

100 LET Z(1000*X)=R

110 NEXT X

120 REM PRINT RESULTS

130 FOR X=0.0001 TO FNP/8 STEP .0001

140 PRINT "MY SIN(";X;") IS";Z(1000*X);"ACTUAL IS";SIN(X);

141 PRINT "DIFF";ABS(SIN(X)-Z(1000*X))

150 NEXT X

155 NEXT K

160 STOP

1000 REM THIS IS A SINE SUBROUTINE.

1010 REM THE ANGLE IN RADIANS SHOULD BE IN GLOBAL VARIABLE

1020 REM A, AND THE SIN(A) WILL BE RETURNED IN GLOBAL VARIABLE

1030 REM R. A TAYLOR SERIES EXPANSION WITH 5 TERMS IS USED.

1040 LET R=0

1045 REM S IS SIGN FLAG, AND 0 MEANS SUBTRACT, 1 MEANS ADD

1050 LET S=0

1060 FOR I=1 TO 5 STEP 1
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1070 REM T IS ONE TERM

1080 LET T=1

1090 REM N IS THE NUMERATOR A^I

1100 LET N=1

1110 FOR J=1 TO I*2-1 STEP 1

1120 LET N=N*A

1130 NEXT J

1140 REM D IS THE DENOMINATOR I!

1150 LET D=1

1160 FOR J=1 TO I*2-1 STEP 1

1170 LET D=D*J

1180 NEXT J

1190 LET T=N/D

1200 IF S=1 THEN 1240

1210 LET R=R+T

1220 LET S=1

1230 GOTO 1260

1240 LET R=R-T

1250 LET S=0

1260 NEXT I

1270 RETURN

1300 END

A.2. C99 dumbsine.c Program Source

This is an attempt to port the DUMBSINE.BAS program to C99. It is roughly equivalent except that
it will of course use proper register-based arithmetic expression evaluation.

/*
gcc -Wall -Wextra -pedantic -std=c99 -D_GNU_SOURCE -O0 \

-m64 -march=core2 -mtune=core2 -frounding-math -mno-recip \

-mcmodel=large -mno-recip -fno-associative-math -fmerge-constants \

-fno-inline -fno-builtin dumbsine.c -o dumbsine -lm -static

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <fenv.h>

static double Z[4000], A, D, I, J, K, N, R, S, T, X;

static int set_excepts;

static double FNP(void) { return 3.1415926535989793; }

static void mysin(void) {

double temp;

R=0.0; S=0.0; I=1.0;

while (1) {

if (I>5.0) break;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

I=INFINITY;

}

T=1.0; N=1.0; J=1.0;

while (1) {

temp=I*2.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

temp=temp-1.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

if (J>temp) break;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

J=INFINITY;

}

if (set_excepts & FE_UNDERFLOW) {

fprintf(stderr,"FE_UNDERFLOW exception\n");

J=0.0;
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}

N=N*A;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

N=(A<0?-INFINITY:INFINITY);

}

if (set_excepts & FE_UNDERFLOW) {

fprintf(stderr,"FE_UNDERFLOW exception\n");

N=0.0;

}

temp=J+1.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

J=temp;

}

D=1.0; J=1.0;

while (1) {

temp=I*2.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

temp=temp-1.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

if (J>temp) break;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

J=INFINITY;

}

if (set_excepts & FE_UNDERFLOW) {

fprintf(stderr,"FE_UNDERFLOW exception\n");

J=0.0;

}

D=D*J;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

D=(J<0?-INFINITY:INFINITY);

}

if (set_excepts & FE_UNDERFLOW) {

fprintf(stderr,"FE_UNDERFLOW exception\n");

D=0.0;

}

temp=J+1.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

J=temp;

}

T=N/D;

set_excepts = fetestexcept(FE_INVALID | FE_UNDERFLOW | FE_DIVBYZERO);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_UNDERFLOW) {

fprintf(stderr,"FE_UNDERFLOW exception\n");

T=0.0;

}

if (set_excepts & FE_DIVBYZERO) {

fprintf(stderr,"FE_DIVBYZERO exception\n");

goto fail2;

}

if (S==0) {

R=R+T;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

R=INFINITY;

}

S=1.0;
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} else {

R=R-T;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

R=-INFINITY;

}

S=0.0;

}

temp=I+1.0;

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

I=temp;

}

return;

fail2:

fprintf(stderr,"FE_DIVBYZERO exception\n");

goto gameover;

fail:

fprintf(stderr,"FE_INVALID exception\n");

gameover:

abort();

}

int main(void) {

double temp;

//#pragma STDC FENV_ACCESS ON // No support for this on Fedora 20

// initialize global data

for (X=0;X<4000;X++) Z[(unsigned int)round(X)]=NAN;

A = NAN; D = NAN; I = NAN; J = NAN; K = NAN;

N = NAN; R = NAN; S = NAN; T = NAN; X = NAN;

set_excepts = 0;

feclearexcept(FE_INVALID|FE_OVERFLOW);

K=1.0;

while (1) {

if (K>1000.0) break;

X=0.0001;

while (1) {

temp=FNP();

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

temp=temp/8.0;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

if (X>FNP()/8.0) break;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

X=INFINITY;

}

A=X;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

A=(X<0?-INFINITY:INFINITY);

}

mysin();

Z[(unsigned int)round(1000.0*X)]=R;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

Z[(unsigned int)round(1000.0*X)]=(R<0?-INFINITY:INFINITY);

}

temp=X+0.0001;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
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if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

X=temp;

}

X=0.0001;

while (1) {

temp=FNP();

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

temp=temp/8.0;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

if (X>temp) break;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

X=INFINITY;

}

printf("MY SIN( %17.15lg ) IS %17.15lg ACTUAL IS %17.15lg",

X,Z[(unsigned int)round(1000.0*X)],sin(X));

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

abort();

}

printf(" DIFF %17.15lg\n",fabs(sin(X)-Z[(unsigned int)round(1000.0*X)]));

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

abort();

}

temp=X+0.0001;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

X=temp;

}

temp=K+1.0;

set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) goto fail;

if (set_excepts & FE_OVERFLOW) {

fprintf(stderr,"FE_OVERFLOW exception\n");

temp=INFINITY;

}

K=temp;

}

return EXIT_SUCCESS;

fail:

fprintf(stderr,"FE_INVALID exception\n");

return EXIT_FAILURE;

}
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