
Computers 2014, 3, 36-57; doi:10.3390/computers3010036

computers
ISSN 2073-431X

www.mdpi.com/journal/computers

Article

A Scalable and Highly Configurable Cache-Aware Hybrid Flash
Translation Layer

Jalil Boukhobza *, Pierre Olivier and Stéphane Rubini

University Bretagne Occidentale, UMR 6285, Lab-STICC, F-29200 Brest, France;

E-Mails: pierre.olivier@univ-brest.fr (P.O.); stephane.rubini@univ-brest.fr (S.R.)

* Author to whom correspondence should be addressed; E-Mail: boukhobza@univ-brest.fr;

Tel.: +33-2-98-01-69-73; Fax: +33-2-98-01-80-11.

Received: 23 January 2014; in revised form: 7 March 2014 / Accepted: 18 March 2014 /

Published: 24 March 2014

Abstract: This paper presents a cache-aware configurable hybrid flash translation layer

(FTL), named CACH-FTL. It was designed based on the observation that most

state-of-the-art flash-specific cache systems above FTLs flush groups of pages belonging to

the same data block. CACH-FTL relies on this characteristic to optimize flash write

operations placement, as large groups of pages are flushed to a block-mapped region, named

BMR, whereas small groups are buffered into a page-mapped region, named PMR. Page

group placement is based on a configurable threshold defining the limit under which it is

more cost-effective to use page mapping (PMR) and wait for grouping more pages before

flushing to the BMR. CACH-FTL is scalable in terms of mapping table size and flexible in

terms of Input/Output (I/O) workload support. CACH-FTL performs very well, as the

performance difference with the ideal page-mapped FTL is less than 15% in most cases and

has a mean of 4% for the best CACH-FTL configurations, while using at least 78% less

memory for table mapping storage on RAM.

Keywords: NAND flash memory; hybrid-mapping; flash translation layer; cache;

solid state drives

1. Introduction

Semiconductor-chip-based nonvolatile memories (NVM) are becoming more widely used and are no

longer confined to embedded systems. According to MarketResearch.com [1], the NVM market will

OPEN ACCESS

Computers 2014, 3 37

increase by a mean of 69% annually until 2015. This is partly due to the extensive usage of flash

memories, but is also caused by the emergence of new NVM technologies, such as ferroelectric RAM

(FeRAM), phase change RAM (PCRAM), and magneto-resistive RAM (MRAM). Even though some

firms are beginning to move toward mass production of MRAM, the most mature and commonly used

NVM for data storage in various consumer electronics is still NAND flash memory.

Its attractive performance, energy efficiency and shock resistance features have made NAND flash

memory increasingly popular in smartphones, tablet PCs, multimedia players and even in enterprise

storage systems. In fact, the growing adoption of flash memories is considered the most important

technology change relevant to the field of data-centric computing [2]. As the gap between the processing

power of computer systems and the performance of traditional storage systems continues to grow, it

becomes necessary to insert a new memory technology into the traditional memory hierarchy to carry

on feeding the growing number of processing elements with data. The current best candidate is flash

memory, as it gives a very interesting performance-per-cost ratio.

Even though NAND flash memory presents some very interesting characteristics, it also has some

limitations caused by its internal intricacies. Basically, the smallest addressable data unit in flash

memory is a page (two to 8 KB), and a fixed set of pages (usually 64) composes a block. Some NAND

flash memory operations can be executed on pages, while others are executed on blocks. The main

constraints are: (1) write/erase (W/E) asymmetry; writes are performed on pages, whereas erasures are

realized on blocks; (2) erase-before-write limitation; a costly erase operation is necessary before data

can be modified; (3) limited number of W/E cycles; the average number is between 5,000 and 105,

depending on the technology used.

From the performance point of view, it is commonly accepted that flash memories often outperform

traditional secondary storage hard disk drives (HDD), except for random write operations, where

performance depends highly on the flash memory internals. Random write operation performance is the

Achilles’ heel of flash memory: if not efficiently managed, it can even be worse than that of HDDs.

The flash translation layer (FTL) is a hardware/software layer intended to overcome the

aforementioned limitations: (1) The erase-before-write and the W/E granularity asymmetry constraints

imply that data updates should be performed out-of-place. Hence, the logical-to-physical mapping

scheme, which is a critical issue, is used to manage these updates. Mapping tables are stored in an

embedded RAM. (2) Out-of-place data updates require the use of a garbage collector to recycle blocks

enclosing invalid pages in order to recover free space. (3) To minimize the limitation on the number of

W/E cycles, FTLs try to evenly distribute the wear over the memory cells. This wear leveling prevents

some memory cells from wearing out more quickly than others.

FTL mapping schemes depend on the granularity with which mapping information is managed. They

can be classified into three groups: page, block and hybrid mappings [3]. (1) The page-mapping scheme

maps each logical page into a physical page independently of the other pages of the same block. It is

very flexible and gives good performance, but it requires too large of a mapping table to fit into the

embedded RAM. (2) The block-mapping scheme considers the granularity of a block rather than a page.

The logical page address is composed of the logical block number and a fixed page offset that is not

modified by the mapping process. The block-mapping scheme is more feasible in terms of table size;

however, its main drawback is that a page update systematically triggers a whole block erase operation

and several valid page copies to another block. (3) The hybrid-mapping scheme was proposed to

Computers 2014, 3 38

overcome the above-mentioned shortcomings by combining both types of mapping. It is generally based

on a block-mapping scheme and uses page-mapping for a small number of blocks (see the Related Work

section below). Throughout this scheme, designers try to get as close as possible to the performance of

a page-mapping scheme, while keeping the mapping table RAM usage as close as possible to the block-

mapping table size.

Many caching mechanisms [4–11] have been designed to facilitate the work of the underlying FTL.

These cache systems absorb part of the data updates and attempt to reveal sequentiality in order to evict

the largest set of pages from the same block at the same time. Grouping pages allows a reduction in the

number of block erasures performed. State-of-the-art caching systems are designed independently of FTLs

for reasons of genericity, and FTL designs do not take into account upstream caches. However, flash-

specific caches have a common feature consisting of flushing groups of pages from the same block.

This paper describes CACH-FTL [12], a cache-aware configurable hybrid FTL designed to optimize

write performance and embedded memory usage. This optimization is achieved through a flexible and

efficient data placement mechanism. With CACH-FTL, the flash memory is partitioned into two regions:

(1) a page-mapped over-provisioning region, named PMR; and (2) a block-mapped data region, named

BMR. CACH-FTL selectively places data flushed by the above cache either in the PMR or in the BMR,

depending on the number of flushed pages. If this number is above a (configurable) threshold, written

data are considered as sequential and, thus, directed toward the BMR; as block-mapping is well suited

for large write operations with a high spatial locality (pages from the same block). If the number of

flushed pages is below the predefined threshold, the small dataset is sent to the PMR, which works as a

second-level in-flash buffer. Small groups of pages are temporarily placed into the page-mapped PMR

in order to: (1) generate less ineffective erase operations and; (2) collect more pages before moving them

to the BMR.

In the present study, CACH-FTL was tested on a large number of real and synthetic I/O workloads

and performed well for both random and sequential ones. Its performance was close to the ideal

page-mapping scheme performance, but it used a much smaller mapping table, which makes it much

more scalable.

The next sections present an overview of flash memories and some related works. The fourth section

of this paper then details the CACH-FTL structure and algorithms. This is followed by a description of

the performance evaluation method and a presentation of the results. Finally, the conclusions and some

perspectives for future work are given.

2. Overview on NAND Flash Memory

Flash memories are based on floating gate transistors and include two main implementations:

(1) NOR and (2) NAND flash memories. NOR flash memories are reliable (no need for error correction

code), support byte random access and have a lower density and higher cost than NAND flash memories.

NOR flash memories are used for storing code [13]. NAND flash memories, in contrast, are block

addressed, offer a higher storage density at a lower cost and provide good performances for large

read/write operations. They are used as secondary storage [13]. Other types exist, such as divided bit

line NOR, AND-type and some specific embedded flash technologies. This paper only concerns the

NAND-type.

Computers 2014, 3 39

Basically, there are three main types of NAND flash memories: (1) single-level cell (SLC);

(2) multi-level cell (MLC); and (3) triple-level cell (TLC). In SLC flash memories, only one bit can be

stored per cell, whereas two bits can be stored in MLC and three in TLC. From the point of view of bit

density and cost per bit, TLC is the best, followed by MLC and, finally, SLC. From a performance and

reliability point of view, SLC outperforms MLC, which further surpasses TLC. While TLC is more

frequently used for low-end media players, mobile GPS and, more generally, non-critical data

applications that do not require frequent updates, MLC and SLC are mostly used for more data intensive

appliances, such as Solid State Drives (SSDs) and mobile phones.

Flash memory is structured as shown in Figure 1: a chip is composed of one or more dies; each die is

divided into multiple planes. A plane is composed of a fixed number of blocks, each of which encloses

a fixed number of pages that is typically a multiple of 64. Current versions of flash memories have

between 128 and 1,024 KB blocks (with pages of two, four or 8 KB). A page consists of a data space

and a metadata out-of-band (OOB) area containing the page state, information on the error correction

code (ECC), etc. Three operations can be carried out on flash memories: reads and writes, which are

realized on pages, and erases, which are performed on blocks. As shown in Figure 1, a flash memory

disk contains a flash translation layer managing wear levelling, address mapping and garbage collection

and other services in the controller part (controller CTRL in the figure).

Figure 1. Flash disk logic components. FTL, flash translation layer.

3. Related Work

3.1. FTL Schemes

Hybrid-mapping schemes aim for the performance of a page-mapping scheme with the memory usage

of block-mapping. Most are based on a primary block-mapping scheme, whereas others partition the

flash space according to I/O characteristics into a page and a block-mapped space.

Computers 2014, 3 40

Hybrid-mapping schemes with primary block-mapping are mainly based on the use of log-blocks.

Log-blocks are spare blocks used to avoid a block copy for each page update. At least one block copy is

generated when the log-block is full and a new update is required. A log-block can be either dedicated

to one data block (such as M-Systems [14], AFTL, [15], CNFTL [16] and BAST [17]) or shared between

many (such as RNFTL [18], FAST [19] and KAST [20]). The associativity of pages in log-blocks is also

crucial for mapping performance. While the first FTLs used log-blocks that are directly mapped to data

blocks, as in ANAND [14], most recent FTLs are fully associative (FAST [19], LAST [21], HFTL [22],

BlogFTL [23]). In these hybrid FTLs, page-mapping is generally used to map the pages of the log blocks

(FAST, BAST).

The second type of hybrid FTL partitions the flash memory into a page-mapped and a

block-mapped space (such as WAFTL [24], CFTL [25]). According to the data access type and/or

pattern, pages are directed toward the adequate space. Indeed, as noted in [24], page-mapping is better

suited (even if more expensive) to random writes than is block-mapping, which is nonetheless sufficient

for sequential read and write operations.

From the partitioning point of view, CACH-FTL can be considered as closer to the latter type, as it

divides the flash space into a page-mapped region and a block-mapped region. However, from the type

of data stored point of view, CACH-FTL resembles log-block based FTLs, as it stores temporary data

into the page-mapped region. While WAFTL and CFTL use some more or less complex mechanisms to

detect I/O pattern characteristics in order to direct data toward the more adequately mapped space,

CACH-FTL abstracts the applicative layer and uses a simpler algorithm that relies only on the above

cache output to decide whether to write data temporarily into the page-mapped or directly to the data

block-mapped space. The parameter on which CACH-FTL relies is the number of evicted pages.

However, unlike CFTL and WAFTL, and like log-block-based FTL schemes, such as FAST, in CACH-

FTL, the page-mapped space is used only to buffer small page sets before merging them with the block-

mapped data.

CACH-FTL allows the use of information coming from the cache system above it to simplify the

FTL structure, to abstract the higher layers and to be agnostic to the cache system and, at the same time,

giving better performance. It also provides a high degree of flexibility and can be (re)configured

according to upper layers (cache and I/O workload).

3.2. Flash-Specific Cache Systems

In order to optimize the performance of write operations on flash memories, different cache systems

can be placed above the FTL. Most of them reflect the granularity of the erase operations by dealing

with groups of pages (FAB [4], CLC [5], BPLRU [6], BPAC [7], LB-Clock [8], PUD-LRU [9], REF [10]

and C-lash (cache for flash) [11]). These caches try to achieve two goals: (1) maximizing the number of

flushed pages (from a given block); and (2) evicting data that are unlikely to be accessed (temporal and

spatial locality). To realize Goal 1, most caches evict the largest set of pages belonging to the same

block. For Goal 2, caches generally use LRU algorithms while dealing with page groups.

One common characteristic of flash-specific caches is that they all flush groups of pages belonging

to the same in-flash block. The idea behind CACH-FTL is to make use of this parameter as an indicator

for deciding whether to evict the group of pages in the page-mapped or the block-mapped space. The

Computers 2014, 3 41

number of pages in the flushed group is a valuable indicator of the performance cost of the generated

block update operation. The smaller the group of pages is, the higher the cost (for a given set of valid

data still residing in the flash memory). CACH-FTL uses this indicator so that small groups of flushed

pages are mapped by page, thereby temporarily eliminating the cost of the block merge operations, while

large groups are mapped by block. Indeed, in CACH-FTL, the page-mapped area is considered a second-

level buffer that allows more space to group several sets of page updates.

The information gap between FTLs and the flash memory buffer has been discussed in [26], where

the authors proposed to handle this by making the cache and the FTL cooperate. This is done through a

modification of the cache in order to provide many candidates for flushing data, and on the other hand,

upgrading the FTL by making it achieve a decision on the data to flush according to the cleaning cost.

The proposed solution is pertinent and can be complementary to the work presented in this paper;

however, it induces modifying both the buffer and the FTL layers, while we propose in this paper

a FTL that imposes no modification on the cache and only uses flushed data information. Both

approaches try to cope with the same information gap issue.

3.3. Motivation

The design of CACH-FTL was motivated by the need to exploit the most pertinent information in a

simple way to perform data placement in a hybrid FTL. Indeed, many state-of-the-art solutions focused

on I/O pattern-based heuristics to choose the adequate mapping granularity for data placement.

In CACH-FTL, we used a simpler, yet very efficient, solution that relies on a realistic architectural model

supposing a cache system on top of the FTL layer, which is the architecture used in most

real-world applications. CACH-FTL uses information coming from the cache to perform data placement

on a page-mapped or block-mapped region. The objective, through CACH-FTL, was also to bridge the

information gap between FTLs and cache systems, as both mechanisms were developed separately in

state-of-the-art work. Nevertheless, this was done by staying as cache-agnostic as possible, since CACH-

FTL can work with all cache systems that flush groups of pages, and most caches for flash fall into this

category. In addition, CACH-FTL is scalable, as it can scale on both small and large cache proportions,

as the mapping table size can be adapted accordingly.

4. Cache-Aware Configurable Hybrid FTL Design

The CACH-FTL system architecture is illustrated in Figure 2. CACH-FTL splits the flash memory

into two regions: (1) an over-provisioning region managed with a page-mapping scheme (called PMR);

and (2) a data region managed by the use of a block-mapping scheme (called BMR). The BMR size

dictates the addressable space as seen by the applicative layer.

The CACH-FTL scheme is generic, as it can be used together with any cache system, provided that

it flushes groups of pages from the same block. In this paper, C-lash (cache for flash) was considered

as the cache system example [11] for the performance evaluation part. Using some other cache

mechanisms proved to have similar results.

Computers 2014, 3 42

Figure 2. Cache-aware configurable hybrid (CACH)-FTL system architecture. C-lash, cache

for flash; b-space, block space; p-space, page space; BMR, block-mapped region; PMR,

page-mapped region; BM, block-mapping; PM, page-mapping (LBN, PBN: logical and

physical page number respectively).

4.1. Overview of the C-Lash System

Cache systems per se are beyond the scope of this paper, as its main contribution is the FTL scheme

implemented below the cache (see Figure 2). However, for reasons of clarity, a very brief overview of

C-lash is given in this section.

In C-lash [11], a typical cache for flash, the cache space is partitioned into two spaces, a page space

(p-space) and a block space (b-space). P-space consists of a set of pages that can come from different

logical blocks, whereas b-space is composed of blocks (which are further composed of pages). Pages

and blocks have the same size as those of the underlying flash memory. Both b-space and p-space have

fixed sizes. The C-lash system is hierarchical, as it has two levels of eviction policies: one that evicts

pages from p-space to b-space (F in Figure 2); and another in which blocks from b-space are evicted into

the flash media (N in Figure 2).

When a read request arrives from upper layers, requested data are first searched for in the cache

(B and C in Figure 2). If the data are not available, the read request is forwarded to the underlying FTL

(A in Figure 2).

When a write request is issued, and the data to be modified are in the cache, then they are updated in

place (E or D in Figure 2). When a write miss occurs, data are written into a free page of the p-space (E

in Figure 2). If there is no space available, the first-level eviction policy is triggered to flush the largest

group of pages from p-space to b-space (F in Figure 2). If no space is available in the b-space to receive

pages from the p-space, the second eviction policy is launched to flush a block from the

b-space to the flash (N in Figure 2) following an LRU algorithm.

Computers 2014, 3 43

4.2. CACH-FTL Scheme Management

As stated above, CACH-FTL partitions the flash memory into two separate regions with two different

mapping tables that are both maintained within the embedded RAM.

4.2.1. Read Operation Management

When requested data are not present in the cache, the cache system forwards the request to

CACH-FTL. Data can be located either in the BMR or in the PMR if not yet flushed to the BMR.

CACH-FTL first checks for data in the BMR by looking at the validation bit of the mapping table.

If data are not valid, the read request is forwarded to the PMR.

4.2.2. Write Operation Management

From the CACH-FTL point of view, write operations always come from the above cache system

when an eviction occurs (N in Figure 2). CACH-FTL defines a redirection threshold according to the

number of evicted pages. This threshold allows making a decision on to where the group of victim pages

from the cache should be flushed (see Algorithm 1, Functions 1, 2 and 3). The redirection threshold

gives the number of pages above which the evicted group of pages is sent to the BMR (I then K in Figure

2) and under which they are sent to the PMR (J then L in Figure 2) for a later update to the BMR. Indeed,

a low number of flushed pages means that the system has undergone a burst of random write operations.

The pages are then directed toward the PMR to avoid a costly update/merge operation on the BMR (valid

page read, block erase and page write operations; see Algorithm 1, Function 2).

The over-provisioning space used (PMR space) is generally larger than the cache; its size can vary

between 5% and 30% of the flash memory (this is the interval used in state-of-the-art studies). In CACH-

FTL, the objective of the PMR is to buffer as many random writes as possible in order to group larger

sets of pages (from the same block), with the objective of reducing the update cost before moving data

blocks into the BMR data-space (M in Figure 2). When facing a long random write burst, the PMR

rapidly becomes full of dirty or busy blocks. Therefore, in order to recycle some free space, a garbage

collection (GC) mechanism is implemented. The designed GC works in two stages: first, it tries to

recycle blocks by compacting valid pages within the PMR (and recycling invalid blocks); if this is not

sufficient, data are then moved to the BMR to free some blocks in the PMR. Each of these mechanisms

is detailed in the following sections.

Algorithm 1 shows the write operation algorithm followed by CACH-FTL. Function 1 shows the test

on the redirection threshold value and switches to Function 2 in case of a BMR write or Function 3 in

case of a PMR write operation.

In Function 3, Line 29 tests whether there is enough free space; indeed, if the free space falls under a

given limit, the GC is launched (see Line 35). Otherwise, the group of pages is written to the PMR, and

the mapping table is updated.

Computers 2014, 3 44

Algorithm 1. CACH-FTL write algorithms.

1: input:

2: Redirection page group size threshold: NbPagesThreshold

3: Number of evicted pages: NbPagesEvict

4: The group of pages to evict: GroupPagesevicted

5: The block in the flash corresponding to data to evict: Blockevict

6: Free pages in the PMR: FreePagesPMR

7: PMR free pages synchronous GC threshold: SyncFreePThreshold // see the following GC section

for details on this variable

8: FUNCTION 1: CACH-FTL_Write_To_Flash (NbPagesThreshold, NbPagesEvict, GroupPagesevicted)

9: if (NbPagesEvict > NbPagesThreshold)

10: Flush_Pages_BMR(GroupPagesevicted)

11: else

12: Flush_Pages_PMR(GroupPagesevicted)

13: end if

14: FUNCTION 2: Flush_Pages_BMR(GroupPagesevicted)

15: if (GroupPagesevicted < NumberOfValidPagesInABlock)

16: //Read valid pages in flash from the BMR and/or PMR

17: Read (Blockevict − GroupPagesevicted)

18: Erase Blockevict // erase the block in the flash memory

19: Flush the block from the cache → Blockevict

20: Update page-mapping tables (PMR if needed and BMR)

21: Delete GroupPagesevicted from the cache

22: else

23: Erase Blockevict

24: Write the GroupPagesevicted → Blockevict

25: Update the block-mapping table of BMR

26: Delete GroupPagesevicted from the cache

27: end if

28: FUNCTION 3: Flush_Pages_PMR(GroupPagesevicted)

29: if (FreePagesPMR − GroupPagesevicted > SyncFreePThreshold)

30: Flush GroupPagesevicted → PMR

31: Update the page-mapping table PMR

32: else

33: // space available in PMR is < SyncFreePThreshold

34: Activate Noninterruptible GC

35: PMR_GC(NbPagesEvict) // see Algorithm 2.

36: Flush GroupPagesevicted → PMR

37: Update page-mapping table PMR

38: end if

Computers 2014, 3 45

4.2.3. BMR Block-Mapping Scheme

Function 2 shows how pages are flushed into the BMR in the case of a page group, the size of which

is greater than the threshold. The algorithm first checks if there are some valid pages in the target on-

flash data block. If so, it reads first all the valid pages into a dedicated cache block before erasing the

block. Then, it flushes the whole block (from the cache) into the on-flash block and, finally, updates the

mapping tables.

As one can see from Lines 17–19, 23 and 24, for the sake of this study, a simple direct (block)

mapping in-place update algorithm was used. Therefore, when updated, a given block is written

in-place. Direct block-mapping does not allow the available flash memory free space to be used to

optimize the performance of CACH-FTL. This is not an optimal solution in terms of performance, but

it allows a better performance evaluation, as results could be biased by flash memory free space usage,

depending on the applied I/O workload. Modifying the direct mapping scheme would allow a better FTL

performance (this is to be achieved in future work).

Adding a wear leveler into CACH-FTL is also beyond the scope of this paper, as the evaluation

of such a mechanism would require a separate performance evaluation study. However, several

state-of-the-art wear levelers can be adapted to CACH-FTL either locally on each region (BMR or PMR)

or globally all over the flash memory space.

4.3. CACH-FTL Garbage Collection (GC) Mechanisms

Two garbage collection mechanisms are used in CACH-FTL, one for each flash region. The PMR

garbage collector (PMR-GC) recycles invalid pages inside the PMR in order to recover free space within

the PMR. The BMR garbage collector (BMR-GC) moves data from the PMR to the BMR when there is

no free space available in the PMR, even after the PMR-GC is performed.

4.3.1. PMR Garbage Collector

When the number of free blocks in the PMR goes under a predefined threshold, the PMR-GC is

launched (see Algorithm 1, Line 35). CACH-FTL uses a simple greedy reclamation algorithm that

selects the physical block from the PMR containing the least number of valid pages. Valid pages from

the chosen block are copied to a free block, and then, an erase operation is triggered to recycle the victim

block.

Algorithm 2, Function 4 then Function 5, describe the PMR-GC behavior. While there are still pages

to evict from the cache (Line 20), the PMR-GC carries on its work. The system scans all the flash blocks

of the PMR to detect the one containing the larger set of invalid pages. (Lines 21 and 22). If there are no

invalid pages to recycle (all data in the PMR are valid), the BMR-GC is launched

(Lines 24 and 25; see the next section). Otherwise, the system reads the valid pages from the selected

block, copies them into a free block, recycles the selected block and, finally, updates the mapping table

(Lines 27–31). Once done, it checks whether enough space has been recycled to copy the whole set of

pages to evict, and if not, it goes for another round of PMR-GC. An example of the PMR-GC behavior

is given in Figure 3a,b.

Computers 2014, 3 46

Figure 3. Examples of garbage collection (GC): each page of PMR can belong to a given

data block (for instance, in the top left, Block n contains Page 2 of Data Block 4). In

(a), when a PMR-GC is launched, CACH-FTL chooses the block with the maximum number

of invalid pages (marked “XXXXX”). It copies the valid pages to a new block and erases the

original one, which finishes with State (b). In (c), the PMR is full. A BMR-GC is launched,

and the system chooses the largest group of pages belonging to the same block; in this

example, B4 (four pages). It then copies those pages to the BMR and invalidates them (State

(d)). Once done, the PMR-GC is launched to free a block. It then chooses the second block

(State (d)), copies the two valid pages and erases the first block (State (e)).

4.3.2. BMR Garbage Collector

The BMR-GC is launched whenever the PMR-GC cannot find any physical block containing enough

invalid pages to recycle. BMR-GC also uses a greedy reclamation algorithm selecting the largest group

of PMR pages belonging to the same data block (from BMR), as shown in the example in Figure 3c.

Once the pages in the PMR are identified, the system searches for valid pages from the same block in

the BMR in order to launch a merge operation (note that valid pages in the cache are not merged during

GC). If some pages are found, the valid block pages (from the PMR and BMR) are moved into a

dedicated block of the cache. The related block of the flash memory is then erased, and all the pages are

flushed (see Figure 3).

Function 6 of Algorithm 2 describes the actions performed during the BMR-GC. The loop in

Lines 36 and 37 searches in the PMR for the largest set of pages from the same data block (BMR). Once

found, pages are read and copied to the BMR (through the cache), and finally, the mapping tables are

updated (Lines 38–42).

Computers 2014, 3 47

Algorithm 2. CACH-FTL garbage collection algorithms.

1: input:
2: Number of evicted pages: NbPagesEvict
3: The group of pages to evict: GroupPagesevicted
4: The block in the flash of data to evict: Blockevict
5: Free pages in the PMR: FreePagesPMR
6: PMR-GC free page asynchronous threshold: AsyncFreePThreshold
7: PMR free page synchronous GC threshold: SyncFreePThreshold
8: The PMR block with the largest number of invalid pages: BlockMaxInvalid
9: Number of invalid pages in BlockMaxInvalid: NbPagesInvalid
10: Maximum number of pages in PMR belonging to the same data block: MaxGroupPagesPMR
11: // FUNCTION 4 is launched at the end of each I/O request
12: FUNCTION 4: PMR_Garbage_Collector()
13: if (FreePagesPMR ≤ AsyncFreePThreshold)
14: Activate Interruptible GC
15: PMR_GC(NbPagesEvict)
16: else
17: Wait for next PMR write request
18: end if
19: FUNCTION 5: PMR_GC(NbPagesEvict)
20: while (NbPagesEvict > 0)
21: for i ← 1 to sizeOfPMRinBlocks
22: Find BlockMaxInvalid
23: end for
24: if (no BlockMaxInvalid found) //no invalid pages in PMR
25: BMR_GC()
26: else
27: Find NbPagesInvalid
28: Read valid pages from BlockMaxInvalid
29: Copy BlockMaxInvalid → freePMRBlock
30: Update page-mapping table
31: Erase BlockMaxInvalid
32: end if
33: NbPagesEvict = NbPagesEvict − NbPagesInvalid
34: end while
35: FUNCTION 6: BMR_GC()
36: for i ← 1 to sizeOfPMRinBlocks
37: Find MaxGroupPagesPMR
38: Read all pages MaxGroupPagesPMR → specific block in the cache
39: Read valid pages of the same block as MaxGroupPagesPMR from BMR
40: Invalidate data from the PMR and BMR mapping tables
41: Erase the data block in the BMR
42: Flush the whole block of MaxGroupPagesPMR from the cache and update the mapping table

Computers 2014, 3 48

4.3.3. PMR-GC and BMR-GC Asynchronous Design

In CACH-FTL, both GCs can be launched synchronously or asynchronously. PMR-GC is launched

synchronously whenever there is not enough free space to write the flushed pages (from the cache),

while BMR-GC is launched synchronously whenever PMR-GC is not sufficient to recycle enough free

space to write the flushed pages.

In order to benefit from the I/O idle times, GCs can be launched asynchronously in order to recycle

blocks, to generate free space and, thus, to anticipate page reclamation in PMR. This allows one to reduce

the I/O request mean response times.

PMR-GC is launched asynchronously whenever there is less than a predefined percentage of free

space in the PMR (Line 13, Algorithm 2). This percentage threshold was fixed at 10% for the

performance evaluation part of the present study. On the other hand, PMR-GC is launched

synchronously whenever the free space falls under a minimal predefined threshold (fixed to three blocks

in the performance evaluation part) and when the FTL needs to free some space on the PMR (in order

to perform a write operation: Line 33–35, Algorithm 1). When the PMR-GC is launched synchronously,

it naturally delays the response time of the current write request.

BMR-GC is launched asynchronously whenever it is triggered by an asynchronous PMR-GC

(Line 25, Algorithm 2); otherwise, it is launched synchronously.

In order to allow the design of asynchronous GCs, one has to define interruption points in the GC

process. Indeed, both asynchronous GC systems (PMR and BMR GC) are interruptible, which is not the

case for synchronous GC operations. PMR-GC is performed in three phases (Lines 28–30, Algorithm 2)

and is interruptible at the end of each phase. Each phase is atomic to avoid system inconsistency. If the

system performs the action on Line 28, the valid pages are read and put into a dedicated block in the

cache and maintained there until the PMR-GC is complete, even if interrupted. Line 29 consists of

copying the pages of the candidate block to a free PMR block. This is transparent to the functioning of

CACH-FTL, as the mapping table is changed only at Line 30.

BMR-GC is performed in five phases (Lines 38–42, Algorithm 2) and can also be interrupted at the

end of each phase. As for the asynchronous PMR-GC, the first step consists of reading the data and

putting them into the cache (Line 38). In Line 39, the valid pages from the BMR are read in order to

have the whole valid date on that block in the cache. Those two steps are interruptible, as data are still

consistent in the PMR and BMR. In Line 40, data are invalidated from the PMR and BMR, so that they

can be read from the cache. In Line 41, the block is erased, and finally, in Line 42, data are flushed from

the dedicated cache block to the BMR in an atomic step.

The two GC algorithms described in this section are specific to over-provisioning space management

and do not concern traditional FTL GCs performed on a data space (in our case, in the BMR), due to

wear-leveling implementation. Once again, direct mapping is used in the BMR, which operates without

a GC. If ever out-of-place modifications are allowed in the BMR (which is not currently the case), an

additional GC algorithm would be necessary to recycle invalid pages. In that case, many state-of-the-art

GC systems can be used.

Computers 2014, 3 49

5. Performance Evaluation

The first step of the performance evaluation of CACH-FTL consisted of comparing it with three other

FTL schemes: (1) page-mapping (PM); (2) an optimized block-mapping scheme (BM); and

(3) FAST hybrid FTL. The same cache system (C-lash in our case) with the same configuration was

placed on top of each of the tested FTLs.

In the first step, the CACH-FTL configuration was fixed during all the tests. Cache on pure PM

represents the ideal performance one can obtain, since PM is the optimal FTL [22]. The drawback of

such a scheme is that it is definitely non-scalable, as the PM table size would become impractically large

when the flash memory size becomes high. Cache on BM represents the lower bound of performance

that CACH-FTL should achieve. The simple BM scheme gives very bad performance, but uses a very

small mapping table. The BM used in this part was optimized, so that when a group of sequential pages

was flushed from the cache, writing this group required only one erase operation (rather than as many

block erasures as the number of pages flushed). This is a very important optimization in BM, as it reduces

drastically the mean response times. FAST, a good performing, very popular log-block hybrid FTL, was

also compared. To summarize, CACH-FTL was compared with an ideal, a lower bound and a very

popular and good performing FTL.

This first experimental step ends up with some figures comparing the best CACH-FTL configuration

with the other FTLs. The purpose was to show that one can always find a configuration to apply for

CACH-FTL, giving very good performance even when compared with PM and better than BM and

FAST. The objective of CACH-FTL is to approach PM performance, while using a smaller amount of

embedded RAM.

The second step consisted of evaluating the impact of tuning both the redirection threshold and the

over-provisioning space (PMR) size according to the I/O workload. The purpose of this part was to

investigate CACH-FTL’s flexibility in comparison with standard hybrid FTLs. This helps to find the

optimal configuration points according to the I/O workload characteristics.

5.1. Storage System and Performance Metrics

A modified version of the FlashSim [27] simulator was used, based on the DiskSim [28] discrete

event simulator, the most popular disk-based storage simulator.

Two main performance metrics were considered: the mean response time and the number of erase

operations. Response times were captured at the I/O driver level, including all intermediate delays:

caches, controllers, I/O queues, etc. The impact of intermediate elements was, however, minimized to

focus on the flash memory subsystem behavior. The second metric is the number of erase operations,

which gives an idea of the global wear out, even though it does not provide information on the wear

leveling (as no wear leveler is implemented).

The simulated NAND flash memory characteristics were as follows: a 4 KB page size and a

256 KB block size. The three basic operations had the following delays: 25 µs for a page read, 200 µs

for a page write and 1.5 ms for a block erasure. Those numbers are related to a real flash storage system

[29]. The chosen cache size in all the tests was 2 MB (the simulated flash memory address spaces were

Computers 2014, 3 50

less than 8 GB for real traces). For this study, the cache system was configured and fixed to six blocks

in the b-space and 128 pages in the p-space.

A fixed default configuration for CACH-FTL was used for the first set of tests. It had the following

characteristics: a redirection threshold of four pages and an over-provisioning space (PMR) representing

10% of the flash space (the configuration can be optimized according to the workload). Similarly, FAST

was set to use 10% for over-provisioning space for log-blocks (PM and BM do not use over-provisioning

space).

Each simulation trace was preceded by a warm up phase consisting of playing the simulated trace

twice in order to have a representative flash memory (in terms of valid, invalid and clean pages) and

cache state. From our tests, we noticed that playing the I/O traces twice during warm up is enough, as

the performance does slightly change when passing from two to ten trace executions for the warm-up

(less than 2% performance difference).

5.2. Simulated I/O Workloads

Both real and synthetically generated I/O workloads were considered. For real traces, some widely

used I/O traces available from the Storage Performance Council (SPC) [30] were chosen. These

workloads describe traces of Online Transaction Processing (OLTP) applications obtained from two

financial institutions [31]. Another tested trace subset was Cello99 [32], which is issued from the activity

of a workgroup file server used in HP labs. For Cello99, eight-day traces beginning on

20 February 1999, were selected from five different disks (see Table 1).

Table 1 gives the mean write rate of all the disks of the financial trace and the minimum and maximum

write rate in the set of disks per trace. As for the sequentiality rate, both the inter-request rate and the

per-page (4 KB) sequentiality are shown, the latter being more representative, as it takes into account

both inter- and intra-request sequentiality.

Table 1. Synthetic I/O trace characteristics (the first line contains the varied metrics).

Sequential Rate Request Number Inter-Arrival Times

40%, default value
(10% → 90%)

250,000 default value
(10,000 → 5,000,000)

exponential (0, 200 ms) default value
(50 → 500 ms)

Spatial Locality Write Rate Mean Request Size

20% 100% 1 page (4 KB)

Table 2 presents the synthetic I/O workload characteristics. For sequentiality, spatial locality and

inter-arrival time rates, the observed financial (Financials 1 and 2) trace average rates were considered

as default values. Then, we launched simulation changing one parameter at a time. The sequentiality

rate, request number and inter-arrival times were varied on a 1-GB size flash memory. A small size was

chosen to rapidly saturate the flash memory without affecting performance compared with larger sizes.

This ensures the launch of the GCs, without which the performance would not be representative.

Computers 2014, 3 51

Table 2. Financial 1, Financial 2 and Cello99 I/O trace characteristics.

Number format: Mean, (Min, Max)
Financial 1
(24 Volumes)

Financial 2
(19 Volumes)

Cello99
(5 Volumes)

Write rate
77%,
(4%, 100%)

18%,
(0%, 98%)

34%,
(19%, 53%)

Sequentiality per request/per page
23%/46%
(1%, 99%)

9%/38%
(3%, 96%)

9%/45%
(4%, 27%)

Mean request. size (KB) 5.6 5.3 4.5
Trace time (h) 12 12 168

6. Results and Discussion

This section describes the results of the tests conducted.

6.1. CACH-FTL versus PM, BM and FAST

Figure 4a shows the mean response time per request for CACH-FTL compared with BM, PM and

FAST. One can observe that for the chosen configuration, CACH-FTL approaches the performance of

the ideal PM better in most cases and always performs better than BM and FAST. For the Financial 1

traces, CACH-FTL improves BM by 47% and FAST by 71%. For Financial 2, CACH-FTL improves

BM by 65% and FAST by 58%. Finally, for the Cello99 trace, CACH-FTL improves BM by 86% and

FAST by 38%. The average differences between the ideal PM and CACH-FTL are: 39% for Financial 1,

21% for Financial 2 and 35% for Cello99. Thus, CACH-FTL drastically improves response times and is

closer to the ideal PM case.

Figure 4. Performance of CACH-FTL. (a) The mean response times for the studied traces;

(b) The number of generated erase operations. Note that some results are outside the scale

of the graph, values are reported on the figure.

One can see that the tested CACH-FTL configuration generates 8% more erasures than BM for

Financial 1 and 6% less than FAST. For the Financial 2 trace, CACH-FTL performs 55% better than

BM and 5% less then FAST. Finally, for the Cello workload, CACH-FTL performs 89% better than BM

Computers 2014, 3 52

and 69% better than FAST. For all erase operation results, one can observe that PM performs, by far,

better than the other FTLs.

As compared to BM, CACH-FTL performs better in terms of response times for 80% of the tested

disks of the Cello trace, 79.2% of the Financial 1 trace and for 94.7% of the Financial 2 trace. For the

number of erase operations metric, CACH-FTL enhances BM for 80% of the Cello disks, 91.7% of the

Financial 1 disks and 89.5% of the Financial 2 disks.

As compared to FAST, CACH-FTL performs better in terms of response times for all the tested disks

of the Cello trace, 87.5% of the Financial 1 trace and for 84.2% of the Financial 2 trace. For the number

of erase operations metric, CACH-FTL improves BM for all the Cello disks, 66.7% of the Financial 1

disks and 68.4% of the Financial 2 disks.

Figure 5 presents the best results that CACH-FTL can give when varying the redirection threshold

from 1 to 32 and the over-provisioning space from 5% to 25% of the total flash memory space. Those

two parameters were varied for each single disk of each trace, and the best configuration was chosen for

each disk. For FAST FTL, the log-block space has been varied accordingly. The main observation one

can draw from the mean response times figure is that CACH-FTL performs approximately as good as

PM, the ideal FTL, with a difference of 4%, 3% and zero for Financial 1, Financial 2 and Cello,

respectively. CACH-FTL improves the performance of BM by 36%, 56% and 94% for Financial 1,

Financial 2 and Cello, respectively. Finally, CACH-FTL enhances the performance of FAST by a factor

of 61%, 56% and 48% for Financial 1, Financial 2 and Cello, respectively.

Figure 5. CACH-FTL’s best configuration improvement over BM and FAST.

For the mean number of erase operations improvement, one can observe that the best CACH-FTL

configuration always performs better than BM and FAST by more than 69% (less erase operations are

generated). One can infer that this would prevent the flash memory from wearing out quickly, as the

total number of erase operations is drastically reduced. However, compared to PM, CACH-FTL

performs very poorly, as it generates much more erase operations. This is mainly due to the additional

number of erase operations generated, because of the garbage collection mechanism. As this mechanism

is asynchronous in CACH-FTL, it does not always impact response times. One must also keep in mind

that PM uses approximately 80% more memory for storing the mapping table than CACH-FTL, with a

25% over-provisioning space.

Figure 6 presents the results of the tests with the synthetic I/O workloads described in Table 2. In

Figure 6a, one can observe the mean response times according to the sequentiality rate variation. It can

Computers 2014, 3 53

be noticed that the more sequential the workload, the closer CACH-FTL gets to PM (only a 4%

difference for a sequential rate of 90%); it generates less garbage collections, as sequential writes are

directed towards BMR. However, even for very random workloads, CACH-FTL is far better than BM

and FAST (a 41% and 64% improvement factor, respectively). FAST gives very poor performance

for random workloads, due to the merge operation overhead. Indeed, the number of costly merge

operations triggered is equal to the number of pages coming from different data blocks (at random) in

the victim log-block [19].

Figure 6. Performance of CACH-FTL on synthetic workloads. (a) Sequentiality rate

variation. (b) Number of generated writes (on a fixed flash size) variations. (c) Inter-arrival

time variation, the values represent the mean of an exponential distribution.

Figure 6b shows the results when inter-arrival times are varied; this variation does not impact the

performance of BM and PM. For FAST, short inter-arrival times lead to saturated I/O queues, delaying

response times. However, for CACH-FTL, higher inter-arrival times allow GC times to be better

absorbed, leading to better performance. CACH-FTL performs better than FAST and BM for all cases

and approaches PM with a 15% difference for higher inter-arrival times.

Figure 6c shows the average response time variation according to the number of generated writes.

Increasing the number of writes tends to saturate the flash memory and forces the FTL to perform several

garbage collections. In fact, the simulated flash space is 1 GB, and the largest set of generated writes

(five million) covers 19 GB. CACH-FTL performs even better than PM (for request numbers greater

than 500,000), as the latter is saturated with garbage collections, while CACH-FTL can better handle

them, thanks to the asynchronous implementation.

6.2. CACH-FTL Adaptability: Redirection Threshold and Over-Provisioning Space Configuration

Figure 7 depicts the I/O performance variation of CACH-FTL with different configuration points for

both the redirection threshold and the PMR size compared to FAST for three sample disks (one from

Cello99, one from Financial 1 and one from Financial 2). For nearly all the tested disk volumes (around

50 for the real I/O traces), simulations showed that there is always at least one CACH-FTL configuration

that surpasses, or at least matches, both FAST and BM for a given over-provisioning space size. Figure

7(a-1) and 7(c-1) shows that even though CACH-FTL gives very bad performance when poorly

dimensioned (very small values of the BMR/PMR redirection threshold), it is capable of optimal

performance. In Figure 7(a-1), the optimal configuration of CACH-FTL is given for high values of the

redirection threshold and improves FAST performance by 27%. In Figure 7 (c-1), the best CACH-FTL

Computers 2014, 3 54

performance is also reached by high values of the threshold (32) and improves it by 68%, and by 90%

for Figure 7 (b-1). Optimal performance depends highly on the applied workload, as can be observed in

Figure 7. The same conclusions can be drawn based on the number of erase operation curves in Figure

7 (a-2),(b-2),(c-2). The optimal points are always given by CACH-FTL for all the tested disks. Note that

the best performances are not always achieved at high threshold values and high over-provisioning

space.

Figure 7. CACH-FTL and FAST performance comparison on three different volumes of

Financial and Cello real traces. We varied the over-provisioning space for FAST and the

PMR region and threshold for CACH-FTL. The curves show one volume from the Cello

workload (a) and two volumes from the financial traces (b, c). Both response times and the

number of erase operations are illustrated.

CACH-FTL offers the user a large design space, providing flexibility that allows one to compromise

between the performance and lifetime of the flash memory (the number of erase operations performed).

7. Conclusion and Future Work

This paper presents a cache-aware configurable hybrid FTL, named CACH-FTL. CACH-FTL

manages groups of pages flushed from the upstream cache according to their size (in terms of the number

of pages). Large groups are flushed into the data block-mapped data region, while small groups are

buffered within an over-provisioning page-mapped space and moved to the BMR data space

asynchronously during I/O idle times.

The CACH-FTL’s design came from the need to better use storage architecture by exploiting some

information coming from the cache to manage the hybrid mapping in a simple and efficient way.

It also partly bridges the information gap between the cache and the FTL.

Computers 2014, 3 55

Some characteristics of CACH-FTL are: (1) genericity, as it can be used with any flash-specific cache

system, provided that it flushes groups of pages; (2) flexibility, as it offers a large configuration space,

allowing the efficient tuning of I/O performance (response time and lifetime) according to application

needs; this is achieved by modifying the PMR size and the redirection threshold;

(3) scalability, as CACH-FTL can work with whatever cache memory/flash storage ratio, as one can

adjust the size of the mapping table accordingly (reducing the PMR size); (4) efficiency, as CACH-FTL

uses much less RAM than PM to store the mapping table: with four to five times less memory usage for

a PMR, occupying 25% of the flash memory space, while having a drop in performance of less than 5%

when the configuration is well chosen.

One possible limitation of CACH-FTL is the additional erase operations generated (due to PMR and

BMR GCs), which can result from a bad configuration (threshold and PMR size) or a change in the

workload characteristics. To solve this issue, we plan to implement an adaptive version of

CACH-FTL, where the over-provisioning space and/or the redirection threshold can be tuned

dynamically according to the workload characteristics or the flash memory state. Another perspective is

the integration of a state-of-the-art wear leveler and garbage collection into CACH-FTL, as this

functionality was beyond the scope of this study. The wear leveler can be implemented in each region

(PMR and BMR) and can also be used to balance the wear between the regions when too many erasures

are provoked in a particular space.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Market Research. Available online: http://www.marketresearch.com/corporate/aboutus/ press.asp?

view=3&article=2223 (accessed on 19 March 2014).

2. Ranganathan, P. From microprocessors to nanostores: Rethinking data-centric systems. Computer

2011, 44, 39–48.

3. Ban, A. Flash File System. US Patent No 5,404,485, 4 April 1995.

4. Jo, H.; Kang, J.; Park, S.; Kim, J.; Lee, J. FAB: Flash-aware buffer management policy for portable

media players. IEEE Trans. Consum. Electron. 2006, 52, 485–493.

5. Kang, S.; Park, S.; Jung, H.; Shim, H.; Cha, J. Performance trade-offs in using NVRAM write buffer

for flash memory-based storage devices. IEEE Trans. Comput. 2009, 58, 744–758.

6. Kim, H.; Ahn, S. BPLRU: A Buffer Management Scheme for Improving Random Writes in Flash

Storage. In Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST),

San Jose, CA, USA, 26–29 February 2008.

7. Wu, G.; Eckart, B.; He, X. BPAC: An Adaptive Write Buffer Management Scheme for

Flash-Based Solid State Drives. In Proceedings of the 26th IEEE Symposium on Mass Storage

Systems and Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010.

8. Debnath, B.; Subramanya, S.; Du, D.; Lilja, D.J. Large Block CLOCK (LB-CLOCK): A Write

Caching Algorithm for Solid State Disks. In Proceedings of the IEEE International Symposium on

Computers 2014, 3 56

Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS),

London, UK, 21–23 September 2009.

9. Hu, J.; Jiang, H.; Tian, T.; Xu, L. PUD-LRU: An Erase-Efficient Write Buffer Management

Algorithm for Flash Memory SSD. In Proceedings of the IEEE International Symposium on of

Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS),

Miami Beach, FL, USA, 17–19 August 2010.

10. Seo, D.; Shin, D. Recently-evicted-first buffer replacement policy for flash storage devices.

IEEE Trans. Consum. Electron. 2008, 54, 1228–1235.

11. Boukhobza, J.; Olivier, P.; Rubini, R. A Cache Management Strategy to Replace Wear Leveling

Techniques for Embedded Flash Memory. In Proceedings the of International Symposium on

Performance Evaluation of Computer & Telecommunication Systems (SPECTS), The Hague,

The Netherlands, 27–30 June 2011.

12. Boukhobza, J.; Olivier, P.; Rubini, S. CACH-FTL: A Cache-Aware Configurable Hybrid Flash

Translation Layer. In Proceedings of Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP), 27 February–1 March 2013.

13. Brewer, J.E.; Gill, M. Nonvolatile Memory Technologies with Emphasis on Flash; IEEE Press

Series, Wiley Inter-Science: Piscataway, NJ, USA, 2008; pp. 22–24.

14. Ban, A. Flash File System Optimized for Page-Mode Flash Technologies. US Patent No 5,937,425,

10 August 1999.

15. Wu, C.; Kuo, T. An Adaptive Two-Level Management for the Flash Translation Layer in Embedded

Systems. In Proceedings of the IEEE/ACM international conference on Computer-Aided Design

(ICCAD), San Jose, CA, USA, 5–9 November 2006.

16. Hsieh, J.; Tsai, Y.; Kuo, T.; Lee, T. Configurable flash-memory management: Performance versus

overheads. IEEE Trans. Comput. 2008, 57, 1571–1583.

17. Kim, J.; Kim, J.M.; Noh, S.H.; Min, S.L.; Cho, Y. A space-efficient flash translation layer for

compactflash systems. IEEE Trans. Consum. Electron. 2002, 48, 366–375.

18. Wang, Y.; Liu, D.; Wang, M.; Qin, Z.; Guan, Y. RNFTL: A Reuse-Aware NAND Flash Translation

Layer for Flash Memory. In Proceedings of the ACM SIGPLAN/SIGBED Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES), Stockholm, Sweden, 13–15

April 2010.

19. Lee, S.; Park, D.; Chung, T.; Lee, D.; Park, S.; Song, H. A log buffer based flash translation layer

using fully associative sector translation. ACM Trans. Embed. Comput. Syst. 2007, 6, 1–27.

20. Cho, H.; Shin, D.; Eom, Y.I. KAST: K-Associative Sector Translation for NAND Flash Memory

in Real-Time Systems. In Proceedings of Design, Automation and Test in Europe (DATE), Nice,

France, 20–24 April 2009.

21. Lee, S.; Shin, D.; Kim, Y.; Kim, J. LAST: Locality aware sector translation for NAND flash

memory based storage systems. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 36–42.

22. Lee, H.; Yun, H.; Lee, D. HFTL: Hybrid flash translation layer based on hot data identification for

flash memory. IEEE Trans. Consum. Electron. 2009, 55, 2005–2011.

23. Guan, Y.; Wang, G.; Wang, Y.; Chen, R.; Shao, Z. Block-Level Log-Block Management for NAND

Flash Memory Storage Systems. In Proceedings of the ACM SIGPLAN/SIGBED Conference on

Computers 2014, 3 57

Languages, Compilers and Tools for Embedded Systems (LCTES), Seattle, WA, USA, 20–21 June

2013.

24. Wei, Q.; Gong, B.; Pathak, S.; Veeravalli, B.; Zeng, L.; Okada, K. WAFTL: A Workload Adaptive

Flash Translation Layer with Data Partition. In Proceedings of the 27th IEEE Symposium on Mass

Storage Systems and Technologies (MSST), Denver, CO, USA, 23–27 May 2011.

25. Park, D.; Debnath, B.; Du, D. A Workload-Aware Adaptive Hybrid Flash Translation Layer with

an Efficient Caching Strategy. In Proceedings of the IEEE International Symposium on of

Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 25–

27 July 2011.

26. Liao, X.; Hu, S. Bridging the information gap between buffer and flash translation layer for flash

memory. IEEE Trans. Consum. Electron. 2011, 57, 1765–1773.

27. Kim, Y.; Taurus, B.; Gupta, A.; Urgaonkar, B. FlashSim: A Simulator for NAND Flash-Based

Solid-State Drives. In Proceedings of the 1st International Conference on Advances in System

Simulation (SIMUL), Porto, Portugal, 20–25 September 2009.

28. Ganger, G.R.; Worthington, B.; Patt, Y.N. The Disksim Simulation Environment Version 3.0

Reference Manual; Tech. Report CMU-CS-03-102; Carnegie Melon University, Pittsburgh, PA,

USA, 2003.

29. Agrawal, N.; Prabhakaran, V.; Wobber, T.; Davis, J.D.; Manasse, M.; Panigrahy, R. Design

Tradeoffs for SSD Performance. In Proceedings of the USENIX Annual Technical Conference

(ATC), Oslo, Norway, 23–25 June 2008.

30. Storage Performance Council Website. Available online: http://www.storageperformance.org/home/

(accessed on 22 January 2014).

31. OLTP Traces—UMass Trace Repository. Available online: http://traces.cs.umass.edu/index.php/

Storage/Storage/ (accessed on 22 January 2014).

32. Cello99 Traces, HP Labs. Available online: http://tesla.hpl.hp.com/opensource/cello99 (accessed

on 22 January 2014).

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

