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Abstract

In distance learning environments, learner engagement directly impacts attention, moti-
vation, and academic performance. Signs of fatigue, negative affect, or critical remarks
can warn of growing disengagement and potential dropout. However, most existing ap-
proaches rely on a single modality, visual or text-based, without providing a general view
of learners’ cognitive and affective states. We propose a multimodal system that integrates
three complementary analyzes: (1) a CNN-LSTM model augmented with warning signs
such as PERCLOS and yawning frequency for fatigue detection, (2) facial emotion recogni-
tion by EmoNet and an LSTM to handle temporal dynamics, and (3) sentiment analysis
of feedback by a fine-tuned BERT model. It was evaluated on three public benchmarks:
DAISEE for fatigue, AffectNet for emotion, and MOOC Review (Coursera) for sentiment
analysis. The results show a precision of 88.5% for fatigue detection, 70% for emotion
detection, and 91.5% for sentiment analysis. Aggregating these cues enables an accurate
identification of disengagement periods and triggers individualized pedagogical interven-
tions. These results, although based on independently sourced datasets, demonstrate the
feasibility of an integrated approach to detecting disengagement and open the door to
emotionally intelligent learning systems with potential for future work in real-time content
personalization and adaptive learning assistance.

Keywords: E-learning; fatigue detection; emotion recognition; sentiment analysis; Natural
Language Processing (NLP); multimodal fusion; valence and arousal; pedagogical
recommendation

1. Introduction

With the unprecedented expansion of online learning, particularly in the wake of the
COVID-19 pandemic, student motivation and engagement have become central concerns
in assuring the quality and effectiveness of distance education [1]. The absence of direct
face-to-face communication makes it more difficult to detect early warning signs such as
cognitive overload, frustration, boredom, or disengagement. However, these states directly
affect concentration, motivation, and academic performance [2].

Most existing engagement detection systems are unimodal, relying on a single data
source. Some use visual cues captured by webcams (e.g., facial expressions, blinking,
posture) to detect fatigue or emotions [3,4], while others analyze sentiment in student
feedback [5,6]. Although informative, these approaches fail to capture the full spectrum

Computers 2025, 14, 314

https://doi.org/10.3390/computers14080314


https://doi.org/10.3390/computers14080314
https://doi.org/10.3390/computers14080314
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-5482-1782
https://orcid.org/0000-0001-5183-5268
https://doi.org/10.3390/computers14080314
https://www.mdpi.com/article/10.3390/computers14080314?type=check_update&version=1

Computers 2025, 14, 314

2 of 20

of learners’ cognitive and affective states. For instance, a student might appear neutral on
camera while expressing distress in written feedback, or vice versa.

Recent studies emphasize the need for multimodal approaches to more accurately
assess engagement [7]. Indicators such as PERCLOS, head pose, and yawning frequency
have shown potential to predict cognitive dropout [8]. In contrast, facial affect and free
text feedback offer complementary insights into the learner’s experience. With the advent
of advanced language models such as BERT [9], it is now possible to achieve a richer,
context-sentitive understanding of textual input.

However, to date, no existing work has fused visual fatigue estimation, facial affect
recognition, and text-based sentiment analysis within a single architecture. This lack
of multimodal fusion limits the ability of current systems to accurately estimate overall
engagement and to allow timely pedagogical interventions.

To address this gap, we propose a new multimodal approach that integrates three
modules :CNN-LSTM for visual fatigue detection, EmoNet for facial emotion recognition,
and a fine-tuned BERT model for sentiment analysis of learner comments. The output of
these modules is normalized, weighted, and aggregated to generate a global engagement
index. This composite score, which is more representative than any single modality, drives
adaptive pedagogical recommendations (e.g., break reminders, content simplification, tutor
intervention) in a personalized learning system.

The main contributions of this work are summarized as follows:

* Anintegrated combination of multimodal signals—visual (fatigue and facial emotions)
and textual (sentiment)—within a single architecture for measuring engagement in
e-learning environments;

e Thejoint use of cutting-edge learning models: CNN-LSTM to capture temporal dy-
namics of fatigue, EmoNet for robust facial emotion recognition, and fine-tuned BERT
for context-aware sentiment analysis of learner feedback;

* A weighted fusion of the predictions from the three modules, resulting in a composite
engagement index that is more accurate and representative than unimodal estimates;

*  The use of this interaction index for making personalized pedagogical recommen-
dations, validated by experiments on three publicly available benchmark datasets:
DAISEE (fatigue), AffectNet (facial expressions), and Course Reviews on Coursera
(sentiment analysis).

The remainder of this paper is structured as follows. Section 2 addresses related
work and the state-of-the-art. Section 3 outlines the proposed methodology. Section 4
is concerned with experimentation and results analysis. Section 5 finally outlines future
research directions before reaching a conclusion.

2. Previous Works

Fatigue recognition is a pertinent problem in contexts such as driving, prolonged cog-
nitive work, and e-learning. Ref. [10] observe that traditional methods rely on observable
indicators such as PERCLOS or blink frequency. While effective under laboratory-like
conditions, these methods, as noted by [11], are not sensitive to micro-indicators of fatigue
and lack robustness in real-world settings. To address these limitations, deep learning
models—particularly CNN-LSTM architectures—have been introduced to capture facial
dynamics [12]. Additionally, multimodal techniques combining visual data with physiolog-
ical signals (e.g., EEG, ECG) have shown promising results in adverse environments [13].
More recently, Ref. [14] proposed temporal transformer-based architectures to represent
the progressive build-up of fatigue in long video sequences.
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Facial emotion recognition is another key area of affective analysis in digital contexts.
Ref. [15] report that recent approaches rely on CNN-based models trained on annotated
datasets such as AffectNet, FER2013, or RAF-DB. Models like EmoNet [16] estimate both
discrete emotions and continuous dimensions (valence, arousal), and are more robust when
dealing with partially occluded or noisy facial expressions. Visual context (e.g., surrounding
objects or background scenes), as noted by [17], helps disambiguate facial expressions.
However, as explained by [18], model performance drops considerably in unconstrained
settings, particularly for rotated faces—scenarios common in e-learning environments.

Text-based sentiment analysis is also crucial for inferring underlying affective states.
As pointed out by [19], the advent of Transformer-based models such as BERT has revolu-
tionized contextual understanding and polarity detection in natural language. Subsequent
advancements, such as RoBERTa [20] and DistilBERT [21], have further improved per-
formance while reducing computational cost. In education, as discussed by [22], these
models—when trained on labeled MOOC corpora—achieve high accuracy in both binary
and multi-class sentiment prediction. Nonetheless, as highlighted by [23], their perfor-
mance heavily depends on domain-specific annotated datasets, which are often limited
or biased.

Few studies have explored the fusion of visual and textual data in e-learning, and
most overlook the temporal dynamics of affective states. This gap motivates our proposal
of an adaptive sequential model for fine-grained engagement analysis and personalized
pedagogical recommendations.

3. Methods and Materials

The system proposed in this paper is based on a multimodal approach that aims to
detect the engagement of learners correctly and contextually in an e-learning environment.
The architecture consists of three complementary modules, as Figure 1 illustrates: visual
fatigue sensing, facial emotion analysis, and textual sentiment analysis. Each module
processes a different kind of input (text or videos), extracts different features (visual,
behavioral, linguistic), and outputs a partial score. Subsequently, these are normalized
and aggregated to produce a global engagement index on which pedagogical advice can
be based.

Fatigue Detection
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Figure 1. The Proposed Architecture.

The identification of visual fatigue relies on a CNN-LSTM model capable of capturing
both spatial characteristics (blinking, yawning, head orientation) and the temporal evo-
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lution thereof. Emotion detection is performed by the EmoNet network, which is highly
skilled at recognizing facial expressions in relation to eight universal emotional categories
and calculating continuous valence and arousal dimensions. Lastly, sentiment analysis
is performed through a fine-tuned BERT model, trained on the learner feedback corpora,
enabling classification of the emotional tone (positive, neutral, or negative) expressed in
text comments.

Before feeding visual data into CNN-LSTM and EmoNet models, a pre-processing
pipeline was performed on all images collected from videos in the publicly available
datasets. This is done to normalize the data, reduce environmental variation, and improve
the quality of the features used for fatigue and emotion detection.

3.1. Image Preprocessing

The video recordings were segmented into 20-frame sequences sampled at equal
intervals to record the dynamics of facial expressions over time. Each frame was converted
to grayscale through the OpenCV library, in order to reduce computational complexity
and highlight the structural changes of the face. The adaptive histogram equalization
was then performed using the CLAHE algorithm (Contrast Limited Adaptive Histogram
Equalization), also in OpenCV. This technique improves local contrast without adding
noise, allowing for the enhancement of valuable facial features (such as eyes and mouth)
under varying lighting conditions. The images were now ready for face detection.

3.2. Face Detection, ROI Extraction, and Normalization

In each processed image, face detection was carried out using the Dlib library’s
68-point facial landmark predictor that has very high accuracy for detecting facial fea-
tures. From this detection, it was feasible to extract the areas of interest in visual fa-
tigue, namely the eyes, mouth, and head posture. An ROI focusing on the face was then
cropped out, resized to 64 x 64 pixels, and normalized to [0,1]. The image processing
images were then formatted as temporal sequences, where each session was equivalent
to 20 consecutive images. These sequences were saved in 5D tensors of dimensions hape
(batch_size, sequence_length, height, width, channels)) for easy integration into the CNN-
LSTM pipeline, where every image was processed in isolation by the CNN and the LSTM
was trained on facial behavior temporal dynamics.

3.3. Fatigue Frequency Calculation
3.3.1. Behavioral Indicator Extraction

Fatigue-related behavior detection relies on collaborative analysis of facial geometric
features and temporal dynamics [24]. We introduced a hybrid architecture based on a
CNN-LSTM network, where spatial feature vectors are extracted automatically and their
dynamics are represented as a function of time.

Each input sequence consists of 20 consecutive images that are preprocessed and
normalized (as described in Section 3.1). The images first pass through a lightweight
convolutional network (Conv2D — ReLU — MaxPooling) that extracts a feature vector
ft € R¥ at each time step .

In parallel, facial landmarks are detected using the Dlib library (68 points), from which
three key geometric indicators are computed: Eye Aspect Ratio (EAR), Mouth Aspect Ratio
(MAR), and head pose rotation angles (pitch, roll, yaw).

Eye Aspect Ratio (EAR)

The Eye Aspect Ratio introduced [25], measures the openness of the eye using six key
landmarks detected around the eye (1):
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lp2 = poll +[lps — p5
AR = = 0
where p; to pg are the facial landmarks detected by Dlib around the eye contour. An
EAR value lower than a certain threshold (typically 0.2) indicates that the eye is closed.
Successive low EAR values are used to detect blinks and compute the Percentage of Eye
Closure (PERCLOS) (2).

Mouth Aspect Ratio (MAR)

The Mouth Aspect Ratio (MAR), defined in Equation (2), is a geometric measure used
to detect yawning behaviors by tracking facial landmarks around the mouth [26].

MAR(t) = P63 — pezl + lIPes — pes|l )
2+ [lper — pesl
A high MAR value sustained across several frames indicates a yawn, especially when
combined with an elevated pitch angle of the head.

Head Rotation Angles

The learner’s head inclination is computed using the Euler angles—pitch (vertical
tilt), roll (lateral tilt), and yaw (horizontal rotation)—which are extracted from a 3D pose
estimation model [27]. In drowsy states, a learner tends to tilt their head downward
(high pitch) or sideways (high roll), deviating from an alert and upright posture. The
transformation between 3D world coordinates (X, Y, Z) and image coordinates (u,v) is
given by (3):

)

RS IS
I
=~
=

X
Y
Z
1

This pinhole camera model is adapted from [28].
Where K is the camera intrinsic matrix, R the rotation matrix, and ¢ the translation vector.

3.3.2. Detection of Behavioral Events

At each time step f, we extract a base feature vector f; composed of core visual
indicators such as PERCLOS, EAR, MAR, and head orientation. To enhance temporal
modeling, we augment this vector with additional geometric features (e.g., distances
between key facial landmarks), forming the enriched vector ff "3. This augmented vector is
passed to a unidirectional LSTM with 128 units (4):

he = LSTM(f;"¢, 1) 4)

The final output it summarizes the temporal sequence and is used for behavioral fatigue
event detection.

Blinking
A blink is detected when the EAR value drops below a certain threshold Ty, for at
least n;, consecutive frames (5):

Blink(t) = W(EAR(t) < Tpjink), BlinkFreq = % (5)

where Npjinks is the number of blinks observed within a sequence of length T.
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Prolonged Eye Closure (PERCLOS)

The percentage of frames during which the eyes remain more than 80% closed is
calculated as (6):

T
PERCLOS = % Z%(EAR(t) < Tclose) (6)
t=1

Yawning

A yawn is detected when the MAR value exceeds a defined threshold Tyawn for at
least 1, consecutive frames (7):

N, yawns

Yawn(t) = ¥(MAR(t) > Tyawn), YawnFreq = T

)

Head Nodding (Drowsy Nod)

A nodding event is detected when the pitch angle changes abruptly beyond a defined
threshold T,,q over a time interval At > é; (8):

Nod(f) = J(APitch(t) > Tnoa A At > 6;), NodFreq = Nan ®)

These indicators are later normalized and fused to compute a global behavioral fatigue
score, as detailed in the next section.

3.3.3. Fusion of Behavioral Indicators and Fatigue Score Computation

The four behavioral indicators extracted above are combined into a single fatigue score
ranging from 0 to 1. This process includes:

Normalization

Each indicator x; is first scaled to the [0, 1] interval using (9):

x; — xmn

i
xlnorm _ i (9)
xlgnax _ x?nn

min
i

max

where x7"" and x}

are empirically derived from dataset statistics.

Weighted Fusion

The final fatigue score is computed as a weighted sum of the normalized indica-
tors (10):

FatigueScore = w; - PERCLOSporm + w5 - BlinkFreq,, ... + w3 - YawnFreq, . + w4 - NodFreq, . (10)

The higher weight assigned to PERCLOS (0.35) in Table 1 is based on recent research
that confirms its robustness as a primary indicator of fatigue and reduced alertness. Several
studies have shown that PERCLOS exhibits a more direct correlation with drowsiness and
cognitive fatigue than other behavioral signals. For example, Refs. [29,30] validated its use
in embedded systems, while [31] demonstrated its effectiveness in online learning contexts.
This consensus supports its higher contribution in the fusion formula, while the other
indicators, blink frequency, yawning, and head nodding, are assigned complementary
weights, reflecting their respective sensitivity to fatigue.
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Table 1. Weights used for fatigue score computation.

Indicator Symbol Weight w;
Eye closure rate PERCLOS 0.35
Blink frequency BlinkFreq 0.25
Yawn frequency YawnFreq 0.20
Head nod frequency NodFreq 0.20

3.4. Facial Emotion Analysis with EmoNet

The goal of this module is to detect and track the evolution of a learner’s facial
emotions during an e-learning session. To achieve this, we employ EmoNet, a convolutional
neural network trained on the AffectNet dataset. EmoNet is capable of predicting:

* A categorical emotion from among 8 universal classes: anger, disgust, fear, joy, sadness,
surprise, contempt, neutral.

* A continuous valence-arousal pair in the range [—1, 1], allowing a finer representation
of emotional state.

The same facial image sequences used for fatigue analysis are reused here. Each image
is resized to 224 x 224 pixels and normalized using the AffectNet dataset’s RGB mean and
standard deviation. The processed images are then passed frame by frame into EmoNet.

3.4.1. Architecture and Feature Extraction

The detection and analysis of facial emotions are carried out using a two-stage system
that combines a convolutional network for frame-level feature extraction (EmoNet) with
a sequential module (LSTM) for temporal modeling. The EmoNet model is based on a
standard CNN architecture that processes each facial image independently. It consists of
six stacked convolutional blocks, each including a 3 x 3 convolution operation, followed
by batch normalization, ReLU activation, and 2 x 2 max pooling.

The number of filters increases progressively from 32 to 256 across the blocks. The
resulting feature maps are flattened to produce a vector f; € R>?, representing the salient
visual features of the facial image I;.

Two supervised output branches are attached to the network:

* a fully connected layer followed by a softmax activation, producing the predicted
discrete emotion label i,

* and a linear regression head for estimating the continuous valence and arousal dimen-
sions (vy, a).
Although these outputs are used during training, only the latent representation f; is

passed to the next stage for temporal modeling.

3.4.2. Temporal Modeling with LSTM

The sequence of feature vectors {f1, fo,..., fr} is fed into a unidirectional LSTM
network with 256 hidden units and a dropout rate of 0.3 to avoid overfitting. This module
captures emotional transitions over time and provides contextualized representations of
each frame.

Each LSTM output /; is passed through a fully connected layer to produce either:

* adiscrete emotion prediction f;, or
*  acontinuous estimation (v;, a;) of valence and arousal.

The system thus generates time-dependent sequences (11):

? = {}?L}?Zp . -,?T}/ ‘7 - {01/02/- ..,UT}, A = {a1/a2/- ..,QT} (11)
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3.4.3. Temporal Aggregation and Emotion Scoring

To obtain a unified measure of the emotional state over a session, we compute a con-
tinuous score from the valence-arousal pairs (v¢, a;) generated at each time step. Two ag-
gregation strategies were considered:

*  Simple mean (12):

1

0= at (12)

-
Il

IS}

Il
S
1=

T
Z Ot,
t=1

*  Arousal-weighted valence, which better reflects emotionally intense moments (13):

~

1

T .
Ty = Zt:l |ﬂt| Ot (13)

Yy larl

This formulation assigns more weight to frames with high arousal levels, thereby
emphasizing emotionally intense moments.

The choice of this weighted strategy is supported by recent research in affective
computing, which highlights the role of arousal as a modulating factor in emotional
salience and perceived engagement [32,33]. Low arousal moments typically correspond to
emotionally neutral or ambiguous states, while peaks in arousal often reflect heightened
emotional or cognitive activity. By weighting valence by arousal, the model gives priority
to the most affectively significant segments of the video. This method is particularly suited
to learning environments, where emotional peaks, whether positive or negative, are more
indicative of the engagement of the learner than flat emotional averages.

A global emotion score Semo € [0, 1] is computed using an affine transformation (14):

Oy + 1
Semo = wz (14)

This score summarizes the emotional state throughout the sequence by combining both
polarity (valence) and intensity (arousal). Following the circumplex model of affect [34], we
defined four qualitative intervals of the emotional score Semo € [0, 1] as shown in Table 2,
each corresponding to pedagogically relevant affective states. These intervals are grounded
in empirical findings from large-scale emotion datasets such as AffectNet [35] and DEAP,
which report similar valence-arousal clusters in learning-relevant emotions.

Table 2. Emotion score zones and AffectNet-based interpretation.

Affective Zone Emotions Score Range Semo Pedagogical Interpretation

Positive engagement Joy, Surprise 0.75-1.0 Emotionally favorable state for learning; high
motivation and attention [36].

Emotional tension Anger, Fear, Disgust 0.40-0.75 High arousal but negative valence—may sig-
nal stress or cognitive overload [37].
Gradual disengagement  Neutral, Contempt 0.25-0.40 Low emotional involvement; learner may be
passive or drifting [38].
Deep disengagement Sadness 0-0.25 Clear affective withdrawal; risk of dropout or

strong demotivation.

A high score (close to 1) reflects positive emotional engagement—such as joy, motiva-
tion, or serenity—and is a strong signal of active involvement in learning. An intermedi-
ate score, especially when associated with negative valence, indicates emotional tension
(e.g., anger, frustration, stress); this state may conceal cognitive overload and warrants
pedagogical attention. A low score (close to 0) reveals deep affective disengagement, often
linked to sadness, boredom, or demotivation; such states correlate with lower learning
outcomes and increased dropout risk. This score will later be fused with the fatigue score
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to compute a global cognitive-affective engagement index, supporting adaptive learning
recommendations based on the learner’s real-time emotional and physiological state.

3.5. Sentiment Analysis Layer Using BERT

The third layer of our engagement detection pipeline aims to interpret the emotional
and cognitive content expressed by learners through written messages. To achieve this, we
use a transformer-based model, specifically BERT (Bidirectional Encoder Representations
from Transformers).

Each learner message undergoes standardized linguistic preprocessing to ensure
homogeneous and usable input. The main steps are as follows:

e  Lowercasing and removal of special or non-alphanumeric characters

¢  Tokenization using the BERT tokenizer (subword-level)

*  Truncation and padding of sequences to a fixed maximum length (128 tokens)
*  Encoding into BERT-compatible input formats:

—  input_ids: token identifiers
-  attention_mask: binary mask distinguishing real tokens from padding

The inputs are then batched into sequences ready to be fed into the BERT model.

Model Architecture

For sentiment analysis, we use a pretrained BERT model fine-tuned for a 3-class
classification task: Positive, Neutral, and Negative.
The model architecture includes:

e The BERT body, which transforms each input sequence into a contextual representation
vector. This vector is derived from the [CLS] token, placed at the beginning of each
input, and is intended to summarize the entire sequence.

*  Alinear softmax classification layer that projects the [CLS] vector into a 3-dimensional
output space.

Formally, for a given tokenized input sequence x, the operation is written as (15):

= Softmax (W - BERTcys)(x) +b) (15)
where:

*  xis the tokenized input,
*  BERT|qg(x) € R768 is the contextual representation vector,
e W e R3>7%and b € R? are the parameters of the classification layer.

Instead of relying solely on the predicted class label, we utilize the full probability
distribution to define a continuous sentiment score Seent € [0, 1], enabling effective fusion
with other behavioral indicators such as fatigue and emotion.

Specifically, we denote by §pos, fineu, Jneg the predicted probabilities for the positive,
neutral, and negative sentiment classes, respectively, as obtained from the softmax output.

We define the sentiment score as (14):

Ssent = ﬁpos +05- ]?neu (16)

3.6. Multimodal Fusion and Calculation of the Global Engagement Score

The three extracted scores, behavioral fatigue (Statigue), facial emotion (Semo), and
textual sentiment (Sgent)—were all normalized within the range [0, 1], allowing direct
combination without further rescaling.
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The global engagement score Seng € [0, 1] is defined as a weighted average of the three
components:

Seng = & * (1 — Statigue) + B+ Semo + 7 * Ssent Witha + B+ =1 (17)

The term (1 — Sfatigue) accounts for the inverse relationship between fatigue and
engagement: higher fatigue levels should contribute negatively to the engagement score.
This formulation ensures conceptual consistency by aligning the directionality of the three
scores, higher values indicating higher engagement.

The weights a, B, and < represent the relative contribution of each modality to the
overall engagement score. Their calibration is addressed in the next phase through a
systematic sensitivity analysis .

3.7. Interpretation Thresholds and Adaptive Actions

The score Seng allows the classification of the learner’s engagement state into four
distinct levels, triggering adaptive pedagogical actions as shown in Table 3.

Table 3. Classification of learner engagement levels.

Score Engagement Level Behavioral Manifestation Recommendation
Seng &~ 1 Very Engaged Positive engagement (joy, motivation, serenity) Continue, encourage active participation
0.7 < Seng <1 Engaged Moderate emotional engagement (interest) Stimulate with challenges, offer rewards
0.4 < Seng <07 At Risk Tendency toward boredom, fatigue, or distraction  Pause, revise content, provide personalized support
Seng < 0.4 Disengaged Lack of interest, strong distraction, frustration Urgent interventions: long pause, contact with tutor

Thus, the engagement score Seng helps define action thresholds for pedagogical inter-
ventions to improve learner engagement and participation.

4. Results
4.1. Work Environment and Datasets

The experiments were conducted in a Python 3.9 environment, using machine learning
libraries including TensorFlow 2.13 and Keras 2.13. The Hugging Face Transformers library
was used to fine-tune the BERT model. Training was carried out on a workstation equipped
with an NVIDIA GPU.

Three main datasets were used for training and evaluating this work:

e DAISEE: This dataset was used to train and evaluate our fatigue detection module.
It contains videos of students filmed in a real e-learning environment, annotated
frame-by-frame for four affective states: engagement, excitement, frustration, and
fatigue. The sequences are resampled at 10 fps, and the labels are binarized into two
classes: tired /not tired.

*  AffectNet: This dataset is used for facial emotion analysis with the EmoNet model. It
contains over 1 million images extracted from the web, labeled with 8 discrete emotions
(joy, sadness, fear, anger, surprise, disgust, contempt, neutral), and continuous scores
for valence and arousal on a scale of [—1, 1].

*  Course Reviews on Coursera: This dataset was used for sentiment analysis of learner
feedback. It includes textual reviews on various courses offered on Coursera, labeled
as positive, neutral, or negative. This dataset was used to fine-tune the BERT model
for sentiment classification.

Experimental Results of the Fatigue Detection Layer
Model Performance Metrics

The performance of the CNN-LSTM model for fatigue detection was evaluated on
a data set divided into Training (70%), Validation (15%), and Test (15%). The model was
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trained using the training set and both the validation and test sets were used to evaluate
performance.

As shown in Figure 2, the train-validation loss curve indicates a steady reduction
in loss over approximately 30 epochs. Initially, the loss was high (0.65), but by epoch 30,
the training loss converged to 0.12 and the validation loss to 0.42, with minimal overfit-
ting—evidenced by the small gap between the two curves.

The confusion matrix in Figure 2 further shows that the CNN-LSTM model correctly
classifies 90% of both fatigued and non-fatigued instances, with only 10% misclassified in
each category.

As illustrated in the F1 score comparison in Figure 2, CNN-LSTM outperforms the
OpenFace + SVM baseline, achieving a significantly higher F1 score of 90% versus 80%
for OpenFace+SVM. This indicates that the CNN-LSTM model provides a better balance
between precision and recall.

To estimate performance variability, we trained the CNN-LSTM model three times
using the same architecture and dataset but with different random initializations (default
seed behavior). The average F1-score obtained was 90% with a standard deviation of +1.2%,
indicating stable model performance across runs.

Confusion Matrix - Fatigue Detection (CNN-LSTM Proposed)

Training vs Validation Loss - Fatigue Detection 1200
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Figure 2. Model CNN-LSTM Performance Metrics.

Experimental Results and Evaluation

The effectiveness of the CNN-LSTM model was further evaluated using real-world
tests on the DAISEE dataset, simulating an e-learning environment. We selected a sample
of sequences and manually annotated key events such as blinks, prolonged eye closures
(PERCLOS), and yawning. The annotation was performed using the CVAT (Computer Vi-
sion Annotation Tool), which allows precise marking of moments when the eyes are closed,
when the learner yawns, and to identify head movements. These manual annotations were
then compared to the model’s predictions. We measured the accuracy of detecting each
behavior by calculating the percentage of agreement between the model’s predictions and
the actual annotations.

The Table 4 below presents the results obtained from five test sequences, comparing
the number of blinks and prolonged eye closures detected by our system against the real
observations. The accuracy was calculated as the percentage of agreement between the
automatic detections and the manual annotations.
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Table 4. Results of Blink and Eye Closure Detection Tests.

Test Real Number of Blinks (Times/min) Detected Blinks Precision (%) Real Number of Eye Closures (PERCLOS) Detected Closures Precision (%)
1 7 8 100 % 3 3 100 %
2 18 17 94.4 % 5 5 100 %
3 22 23 95.5 % 4 3 75 %
4 11 10 90.9 % 6 6 100 %
5 26 27 96.2 % 7 8 85.7 %

The results indicate that our model achieves an average precision of 95.4% for blink
detection and 92.2% for prolonged eye closures (PERCLOS), thus validating the robustness
of the EAR + PERCLOS module combined with CNN-LSTM processing.

Similarly, the precision of yawning detection was evaluated using the Mouth As-
pect Ratio (MAR) on the same video sequences. The Table 5 below summarizes the
results obtained:

Table 5. Results of Yawning Detection Tests.

Test Real Number of Yawns (Times/min) Detected Yawns Precision (%)

1 2 2 100%
2 4 5 80%
3 1 0 0%
4 3 4 100%
5 2 3 66.7%

All annotated yawns were correctly identified in most cases, but some errors were
observed, particularly a slight mismatch in predictions for certain test sequences. While this
confirms the effectiveness of the dynamic MAR threshold integrated into our facial fatigue
monitoring algorithm, it also highlights areas for potential improvement. Some critical
detection failures, such as undetected yawns, may result from technical limitations like low-
resolution frames, partial face occlusion, or suboptimal lighting conditions. Addressing
these issues could further enhance the robustness of the system in real-world settings.

The Table 6 shows the results obtained experimentally for the composite fatigue
index, combining eye closures, yawning, head nods, and the PERCLOS value. The 0- to
1-dimensioned composite fatigue index represents the degree of fatigue in the subject. With
a corresponding rise in eye closures, yawning, and head nods, the composite measure also
rises to indicate more fatigue. For instance, in Test 5 with 7 eye closures and 4 head nods,
the composite index is 0.598, representing an extreme degree of fatigue, while in Test 1 with
only 3 eye closures and 2 yawns, the index is 0.248, showing lower fatigue.

Table 6. Results of the Composite Fatigue Index Experiments.

Test Eye Closure Frequency Yawning Frequency Head Nods Frequency PERCLOS (%) Fatigue Severity

img.1 3 2 1 0.118 0.248
img.2 5 4 2 0.251 0.379
img.3 4 3 1 0.413 0.548
img.4 6 3 2 0.197 0.403
img.5 7 2 4 0.312 0.598

The metrics, along with the test evaluations, demonstrate the strong performance of
the CNN-LSTM model in fatigue detection.
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4.2. Evaluation Emotion Detection

To evaluate our emotion detection pipeline, we used the AffectNet dataset. We used
a CNN-LSTM-based model (EmoNet) to predict both discrete emotions and continuous
values of valence and arousal for each facial frame. The model was trained over 120 epochs,
with a batch size of 16. As shown in Figure 3, the EmoNet model achieved 0.8 accuracy on
the training set, with 0.7 accuracy on the validation set, demonstrating good generalization
across unseen data. The accuracy gap between training and validation is typical for deep
learning models and indicates the model’s ability to learn robust features while maintaining
generalizability. After epoch 80, the model’s performance became stable Figure 3.

Training vs Validation Accuracy over 120 Epochs

0.8 1 — Train accuracy
—— Val accuracy

0 20 40 60 80 100 120
Epoch

Figure 3. Model Emonet-LSTM Accuracy.

For testing, we used 8 selected video sequences from the DAISEE dataset, which were
re-annotated for facial emotion recognition. Each video was analyzed frame-by-frame at a
rate of 6 frames per second (fps). For each video frame, we predicted a discrete emotion
and generated a valence-arousal pair. The valence-arousal values were then aggregated
using the arousal-weighted valence method to calculate the global emotion score (Semo),
which was normalized to fall within the [0, 1] range.

The following Table 7 summarizes the results of our valence-Arousal prediction for
each test sample:

Table 7. Comparison of predicted vs. real valence-arousal pairs, with emotion score Semo and error.

Test Emotion  Valence Pred. Valence Real Arousal Pred. Arousal Real Error (Euclid) Semo

Test1  Sadness 0.20 0.25 —0.40 —-0.35 0.07 0.60
Test2  Disgust —0.40 —0.45 —0.40 —0.50 0.11 0.30
Test 3 Fear —0.50 —0.55 0.60 0.65 0.07 0.25
Test4  Surprise 0.50 0.48 0.70 0.75 0.058 0.75
Test 5 Anger —0.60 —0.65 0.70 0.72 0.053 0.20
Test 6 Happiness 0.60 0.65 —0.30 —0.25 0.07 0.80
Test7  Neutral 0.00 0.05 —0.30 —0.28 0.053 0.50
Test 8 Joy 0.70 0.75 0.80 0.82 0.053 0.85

The following Figure 4 illustrates the prediction of emotions based on the valence-
arousal pair for the test set, showing how the predicted emotions are distributed within the
valence-arousal circle. This visualization helps to understand the mapping of the predicted
emotions in the emotion space:
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Figure 4. Prediction of Emotion—Valence-Arousal.

The results indicate that the model achieves a reliable match between predicted and
real valence—arousal pairs, with low Euclidean errors across all cases. Emotion scores span
the full spectrum of affective engagement, ranging from deep disengagement (e.g., anger
and fear) to high positive engagement (e.g., joy and happiness). This confirms the model’s
ability to accurately capture both the polarity and intensity of learners” emotional states.

The average Euclidean error across the 8 test videos was 0.067, with a standard
deviation of £0.018, computed over three inference runs using different random seeds.

4.3. Sentiment Analysis and Evaluation on Course Reviews

The fine-tuned BERT model on the Course Reviews on Coursera dataset was evaluated
using standard metrics such as accuracy, macro Fl-score, as well as precision and recall
for each class. The batch size was set to 16, with a learning rate of 2 x 1075, and a
total of 30 epochs. The model achieved an accuracy of 88.1% and a macro Fl-score of
84.9%, outperforming the reference models such as Naive Bayes (79.8%) and CNN-GRU
(83.2%) [39,40]. The results suggest that BERT excels in capturing emotional nuances in
educational feedback, with high precision for the “positive” class and relatively lower
results for the “neutral” class.

To assess the accuracy of the predicted sentiment, we computed Sgent for a sample
from the dataset and compared it to the real annotations. We used metrics like Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results obtained are
summarized in Table 8.

Table 8. Predicted sentiment scores.

Test Predicted Sentiment Score Real Sentiment Real Sentiment Score  Error

Test 1 0.809 Positive 1.0 0.1905
Test 2 0.43 Neutral 0.5 0.07
Test 3 0.06 Negative 0.0 —0.06
Test 4 0.72 Positive 1.0 0.28
Test 5 0.33 Neutral 0.5 0.17

While the model performed reliably overall, we observed higher error margins in the
“neutral” class (e.g., MAE = 0.17 in Test 5 and 0.28 in Test 4), confirming that this category
remains harder to classify. This can be attributed to the inherent ambiguity and semantic
overlap in neutral reviews. Future improvements could include the integration of enhanced
contextual embeddings to better disambiguate neutral expressions, and the enrichment of
the dataset with more representative and balanced samples for this class. Such strategies
have been shown to reduce misclassification of neutral sentiment in similar educational
domains. Overall, the BERT model has demonstrated robustness in emotion classification
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and provided accurate sentiment scores, contributing to the overall engagement evaluation
of learners.

4.4. Learner Engagement Detection Evaluation

To evaluate our engagement detection pipeline, we built a dedicated subset of the
public DAIiSEE dataset. To ensure both validity and diversity of the video sequences, we
selected 30 videos using an automatic filtering process based on the following criteria:

*  Confidence score > 0.9 (provided in DAISEE official annotations), ensuring reliable
engagement labels (“Engaged”, “At Risk”, “Disengaged”).

* Inter-individual diversity by selecting videos from 10 different users using the user_id
attribute, to minimize intra-subject bias.

* C(Class balance: 10 videos per engagement class, allowing a symmetric evaluation
of predictions.

Although DAISEE provides validated engagement annotations, we reinforced their
robustness with an additional manual annotation procedure. Two independent raters
reviewed each video sequence and assigned an engagement label. The inter-rater agree-
ment, measured using Cohen’s Kappa coefficient, was 0.81, indicating strong consistency
between annotators.

Each video was processed at 6 frames per second to extract behavioral fatigue in-
dicators (eye closures, yawns, head nods). In parallel, valence and arousal scores were
computed using the EmoNet model to estimate facial emotional state. To complete this mul-
timodal analysis, we manually associated a textual comment from the Coursera Reviews
corpus with each video.

This manual pairing was based on the following criteria:

*  Semantic consistency: the comment content had to match the visible emotional state
in the video (positive, neutral, or negative).

* Balanced polarity: each engagement class was associated with textual comments
reflecting a coherent satisfaction level.

*  Cross-checking by two annotators to ensure subjective validity of the pairing.

Although this manual process does not reflect a truly co-localized learning context,
it was used for exploratory purposes to evaluate the benefit of fusing heterogeneous
modalities for engagement prediction.

Each extracted score—fatigue Sfatigue, emotion Sepmo, and sentiment Sgeni—was nor-
malized to the range [0, 1]. We then computed a global engagement score Seng using a
weighted fusion of the three modalities as described in Equation (17).

To determine the optimal combination of coefficients (&, 8,) for the engagement
fusion formula, we conducted a sensitivity analysis by testing various weighted configura-
tions. The F1-score, which balances precision and recall, was used as the primary evaluation
metric to identify the most effective weighting strategy.

As shown in Figure 5, the combination (« = 0.45, 8 = 0.35, = 0.20) produced the
highest F1-score. This indicates that prioritizing the fatigue dimension—while still account-
ing for emotional and sentiment cues—results in a more accurate engagement prediction.
These findings are consistent with prior research emphasizing the complementary roles of
affective and cognitive signals in learner state detection [41].
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Figure 5. Sensitivity Analysis.

Table 9 presents a representative sample of 8 cases out of the 30 analyzed videos. Each
row details the computed fatigue, emotion, and sentiment scores, along with the predicted
global engagement score. Pedagogical recommendations are associated with each profile to
guide the adaptation of content and pace.

Table 9. Engagement Prediction Based on Combined Fatigue, Emotion, and Sentiment -8 Videos.

Test Fatigue Emotion Sentiment Score.Eng Pred. Engagement Real Engagement Recommendation
V1 0.6 0.5 0.5 0.455 At Risk At Risk Stimulate with content-based rewards
V2 0.25 0.85 1 0.835 Engaged Engaged Sustain motivation, maintain current thythm
V3 0.5 0.6 0 0.435 At Risk At Risk High emotion detected, suggest active engagement strategy
V4 0.8 0.43 0.5 0.34 Disengaged Disengaged Suspend activity, recommend gradual re-engagement
V5 0.45 0.9 1 0.7625 Engaged Engaged Sustain motivation, maintain current rhythm
V6 0.45 041 0.5 0.491 At Risk At Risk Stimulate with content-based rewards
v7 04 0.2 0 0.34 Disengaged Disengaged Suspend activity, recommend gradual re-engagement
V8 0.9 0.57 0.5 0.344 Disengaged At Risk Suspend activity, recommend gradual re-engagement

For instance, in video V2, the learner exhibits moderate fatigue but high emotional and
semantic scores, resulting in an “Engaged” prediction. In this case, maintaining the current
learning rhythm while offering stimulating content is advised to support motivation.

In contrast, video V7 shows all signals pointing to a clear disengagement: high fatigue,
low emotion, and neutral sentiment. A temporary interruption of activities, followed by a
gradual re-engagement strategy, is recommended.

Figure 6 provides an overview of the 30 selected videos, illustrating normalized scores
for each dimension (fatigue, emotion, sentiment) and the corresponding engagement classes
(Very Engaged, Engaged, At Risk, Disengaged). This visualization highlights the diversity
of learner profiles.

These results confirm that engagement detection requires a combined multimodal
analysis. Some learners show signs of “At Risk” engagement despite physiological fatigue
(e.g., V3), supported by emotional involvement. When all three dimensions converge
toward low engagement scores (as in V4 or V7), the system detects significant cognitive
and emotional withdrawal.

This cross-modality perspective supports the relevance of a weighted fusion approach,
capable of capturing the complexity of learners’ internal states and fueling personalized
recommendations to improve the learning experience. As such, this multimodal and
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5. Conclusions and Future Work

This study addressed the limitations of unimodal approaches in learner engagement
detection by introducing a unified multimodal architecture that fuses visual fatigue indica-
tors, facial affect recognition, and textual sentiment analysis from learner feedback. Unlike
existing frameworks relying on isolated signals, our model captures the dynamic interplay
of cognitive and emotional states, providing a richer understanding of learner engagement.

The proposed system demonstrated promising results across public benchmark
datasets: 88.5% accuracy for fatigue detection (DAISEE), 70% accuracy for emotion recog-
nition (AffectNet), and 91.5% for sentiment classification (MOOC Reviews). These re-
sults validate both the performance of individual modules and the effectiveness of their
weighted integration into a global engagement index, which successfully enabled per-
sonalized pedagogical recommendations (e.g., suggesting breaks, simplifying content,
or triggering instructor interventions). Despite these strengths, certain limitations were
observed—particularly in low-confidence predictions for neutral sentiments and missed
fatigue cues due to technical constraints (e.g., occlusion).

These highlight opportunities for immediate improvements while also reflect-
ing the current proof-of-concept nature of the system, which relies on independently
sourced datasets.

As next steps, our future work will include the following directions:

*  Incorporating postural cues using skeletal tracking tools such as OpenPose to enhance
fatigue detection in scenarios involving slouching or restlessness.

* Improving robustness to occlusions and lighting variations by integrating a frame-
quality detection module and performing targeted data augmentation.
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¢ Expanding neutral sentiment coverage through contextualized language models
(e.g., RoBERTa, DeBERTa) fine-tuned on a larger and better-balanced sample set.

*  Conducting cross-platform deployment and A /B testing in real e-learning environ-
ments to assess real-world pedagogical impact and user satisfaction.

Ethical Considerations. As the proposed model relies on facial and textual data, future
deployment scenarios must address ethical and privacy concerns. All experiments in this
study were performed on publicly available anonymized datasets. However, real-time
applications should ensure on-device processing, face anonymization, and full compliance
with data protection regulations such as GDPR. Strategies such as federated learning or
edge inference will be explored to preserve user privacy without compromising engage-
ment prediction quality. Ultimately, this work lays the foundation for the development
of emotionally adaptive learning environments capable of responding in real time to fluc-
tuations in learner engagement, with the long-term goal of enhancing personalization,
retention, and learning outcomes at scale.
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