
Academic Editor: Paolo Bellavista

Received: 9 September 2025

Revised: 28 September 2025

Accepted: 29 September 2025

Published: 9 October 2025

Citation: Babenko, T.; Kolesnikova,

K.; Abramkina, O.; Vitulyova, Y.

Automated OSINT Techniques for

Digital Asset Discovery and Cyber

Risk Assessment. Computers 2025, 14,

430. https://doi.org/10.3390/

computers14100430

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Automated OSINT Techniques for Digital Asset Discovery and
Cyber Risk Assessment
Tetiana Babenko 1 , Kateryna Kolesnikova 2 , Olga Abramkina 3 and Yelizaveta Vitulyova 4,5,6,*

1 Department of Cybersecurity, International IT University, Manas Str., 34/1, Almaty 050000, Kazakhstan;
babenko.tetiana.v@gmail.com

2 Department of Information Systems, International IT University, Manas Str., 34/1,
Almaty 050000, Kazakhstan; kkolesnikova@iitu.edu.kz

3 Department of Cybersecurity, Almaty University of Power Engineering and Telecommunications Named
After Gumarbek Daukeev, Baitursynuly Str., 126, Almaty 050013, Kazakhstan; olga.manank@gmail.com

4 National Scientific Laboratory for the Collective Use of Information and Space Technologies (NSLC IST),
22 Satbayev Street, Almaty 050013, Kazakhstan

5 JSC “Institute of Digital Engineering and Technology”, 22/5 Satbayev Street, Almaty 050013, Kazakhstan
6 Department Smart Technologies in Engineering, International Engineering Technological University,

89/21 Al-Farabi Avenue, Almaty 050060, Kazakhstan
* Correspondence: lizavita@list.ru

Abstract

Cyber threats are becoming increasingly sophisticated, especially in distributed infrastruc-
tures where systems are deeply interconnected. To address this, we developed a framework
that automates how organizations discover their digital assets and assess which ones are the
most at risk. The approach integrates diverse public information sources, including WHOIS
records, DNS data, and SSL certificates, into a unified analysis pipeline without relying
on intrusive probing. For risk scoring we applied Gradient Boosted Decision Trees, which
proved more robust with messy real-world data than other models we tested. DBSCAN
clustering was used to detect unusual exposure patterns across assets. In validation on
organizational data, the framework achieved 93.3% accuracy in detecting known vulner-
abilities and an F1-score of 0.92 for asset classification. More importantly, security teams
spent about 58% less time on manual triage and false alarm handling. The system also
demonstrated reasonable scalability, indicating that automated OSINT analysis can provide
a practical and resource-efficient way for organizations to maintain visibility over their
attack surface.

Keywords: OSINT; cyber reconnaissance; machine learning; digital assets; cyber risk
assessment; GBDT; DBSCAN

1. Introduction
The proliferation of interconnected digital infrastructures has reshaped the cybersecu-

rity threat landscape, creating attack surfaces that are difficult to defend with traditional
approaches. Recent incidents illustrate the cascading effects of such vulnerabilities. The
February 2024 ransomware attack on Change Healthcare disrupted nationwide healthcare
operations and affected roughly 190 million individuals [1]. Supply chain compromises
targeting cloud providers have exposed systemic weaknesses in dependency management,
underscoring the deeply interconnected nature of modern ecosystems [2].

The economic burden of these failures is immense. The Center for Strategic and Inter-
national Studies estimated global cybercrime losses at about $600 billion annually, nearly
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one percent of global GDP [3]. Other analyses suggest that costs rose from three trillion dol-
lars in 2015 to over six trillion in 2021, with no signs of slowing [4]. These numbers capture
not only financial loss, but also broader disruptions caused by infrastructure dependencies
and cascading system failures.

Traditional reconnaissance in cybersecurity has relied mainly on active scanning
tools such as Shodan or Nmap, which probe systems to enumerate network assets [5].
These methods scale poorly, generate detectable traffic, and often demand significant
manual configuration [6]. The contrast with passive reconnaissance, especially OSINT-
based methods, is clear. Passive collection avoids generating suspicious activity and can
yield rich intelligence [7,8]. Yet OSINT comes with its own difficulties: overwhelming data
volume, noisy signals, and the challenge of correlating disparate information sources.

Machine learning offers a path forward. Ensemble methods such as Gradient Boosted
Decision Trees (GBDTs) have shown strong results for risk classification with heterogeneous
data [9]. Unsupervised approaches like DBSCAN can discover behavioral patterns without
labeled training data [10]. Applied to OSINT, these techniques promise scalable asset
discovery and meaningful risk assessments. Still, most prior work in automated OSINT
has concentrated on aggregating threat feeds or analyzing social media, with less focus on
systematic asset discovery and integrated risk frameworks [11].

In this study, we present a framework that unifies OSINT collection and machine
learning analysis for automated digital asset discovery and cyber risk assessment. Passive
data from DNS records, WHOIS databases, and SSL/TLS repositories form the foundation.
GBDT models provide risk scoring, while DBSCAN highlights behavioral patterns. The
framework was designed with scalability and operational use in mind, particularly for
critical infrastructure environments that require continuous monitoring.

The growing scale and complexity of digital infrastructures call for approaches that
move beyond traditional reconnaissance. Active methods alone cannot keep pace with
distributed, dynamic attack surfaces. By integrating OSINT with machine learning in a
single automated framework, this work addresses a clear gap in current cybersecurity
practice. It shows how latent vulnerabilities across complex ecosystems can be surfaced
and turned into actionable intelligence for real-time defense. In doing so, it contributes to
building resilience and adaptability in the face of escalating threats.

2. Related Works
The rapid evolution of cybersecurity threats necessitates a comprehensive examination

of existing approaches to digital asset discovery and risk assessment. This section analyses
current methodologies across four critical domains: OSINT techniques and their opera-
tional constraints, machine learning applications in cybersecurity contexts, vulnerability
assessment frameworks, and automated reconnaissance systems. Through a systematic
review of contemporary literature, we identify significant gaps that justify the development
of integrated, intelligent frameworks for proactive cybersecurity management.

2.1. OSINT Methodologies and Current Limitations

Open-Source Intelligence has emerged as a cornerstone methodology for cybersecurity
reconnaissance, enabling comprehensive digital asset discovery through analysis of publicly
available information sources. Contemporary OSINT approaches leverage diverse data
repositories including DNS infrastructure records, domain registration databases, and
digital certificate transparency logs to construct detailed organizational profiles without
direct system interaction [12].

The evolution of OSINT platforms reflects the increasing complexity of digital infras-
tructures and the corresponding need for sophisticated intelligence gathering capabilities.
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Modern platforms such as Shodan, Censys, and SecurityTrails provide automated access
to vast datasets encompassing millions of internet-connected devices and services [13].
These systems employ continuous scanning methodologies to maintain current visibility
into global network infrastructure, offering insights into service configurations, software
versions, and potential security exposures [14].

Table 1 presents a comparative overview of major OSINT platforms applied in cyber-
security contexts. The summary illustrates differences in data coverage, functionality, and
access models that shape their applicability to comprehensive asset discovery tasks.

Table 1. Comparative analysis of contemporary OSINT platforms.

Platform Data Sources Coverage Scale Update
Frequency API Access Query

Limitations
Specialized
Capabilities

Shodan
Device banners,

IoT services,
ICS systems

500 M+ hosts
globally

Daily scanning
cycles

REST API
available

100 queries/
month (free),

unlimited
(premium)

Industrial control
system discovery,

IoT device
enumeration

Censys

IPv4/IPv6
scans,

certificate
transparency

Complete IPv4
space

Weekly full
scans

GraphQL +
REST APIs

1000 queries/
month (academic)

Historical
certificate analysis,

compliance

SecurityTrail
DNS records,
WHOIS data,
subdomains

3 B+ DNS
records

Real-time
monitoring RESTful API 50 calls/

month (free)

DNS forensics,
domain

intelligence,
subdomain

GreyNoise
Internet

scanning noise,
honeypot data

Global scan
traffic

Continuous
real-time

REST API
with

pagination

10,000 queries/
month (free)

Benign traffic
filtering, false

positive

Maltego
Multi-source
aggregation,

entity linking

Variable by
transform

Manual/
scheduled

refresh

Limited
third-party

APIs

Transform-
dependent

Relationship
mapping,

investigation

Contemporary research highlights several critical limitations inherent in current OS-
INT methodologies. Szymoniak et al. [15] identify data quality inconsistencies as a primary
challenge, noting that automated collection processes often capture incomplete or outdated
information. The temporal nature of digital infrastructure changes compounds this issue,
as static snapshots quickly lose relevance in dynamic environments [16].

Integration complexity represents another significant obstacle to effective OSINT
utilization. As demonstrated in Figure 1, current approaches require extensive manual
effort to correlate information across heterogeneous data sources, each employing distinct
schemas, formats, and update frequencies [17].

The scalability limitations of manual OSINT analysis present significant challenges for
large-scale cybersecurity operations. Recent empirical studies demonstrate that comprehen-
sive manual analysis of a single organization’s digital footprint requires between 40 and
60 analyst hours, depending on infrastructure complexity [18]. This resource requirement
becomes prohibitive when monitoring multiple organizations or conducting continuous
surveillance of evolving threat landscapes.

Moreover, the dynamic nature of modern digital infrastructure compounds these
challenges. Cloud-native architectures, ephemeral computing instances, and automated de-
ployment processes create constantly shifting attack surfaces that exceed human analytical
capacity [19]. Traditional OSINT approaches, designed for relatively static infrastructure
environments, prove inadequate for monitoring these rapidly evolving systems.
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Figure 1. Current OSINT data integration architecture and bottlenecks.

The research literature identifies several specific technical challenges that limit cur-
rent OSINT effectiveness. Chen and Guestrin’s work on XGBoost demonstrates how
ensemble methods can handle heterogeneous data types effectively [20], yet OSINT data
presents unique preprocessing challenges that standard ML approaches struggle to ad-
dress. Nadler et al. identified low-throughput data exfiltration patterns in DNS traffic that
traditional monitoring approaches often miss [21], highlighting gaps in current detection
capabilities. Table 2 quantifies the performance characteristics and limitations observed in
current OSINT methodologies, based on analysis of recent cybersecurity operations and
research findings.

Table 2. Performance metrics and limitations of current OSINT approaches.

Metric Category Manual Analysis Semi-Automated Tools Performance Cap Impact on Operations

Processing Time 40–60 h/org 8–12 h/org 75–85% reduction needed Delayed threat response

Data Coverage 60–70% complete 80–85% complete 15–40% improvement needed Missed vulnerabilities

Error Rate 15–25% 8–12% 50–75% reduction needed False positives/negatives

Scalability 1–2 orgs/analyst 5–8 orgs/analyst 10–20x improvement needed Resource constraints

Update Frequency Weekly/monthly Daily Real-time capability needed Outdated intelligence

Cross-correlation Manual, inconsistent Limited automation Full automation needed Incomplete threat picture

These limitations highlight the urgent need for automated, intelligent OSINT frame-
works capable of processing heterogeneous data sources at scale while maintaining high
accuracy and timeliness. Subsequent sections of this analysis explore how the integration
of machine learning techniques offers promising approaches to address these challenges.

2.2. Machine Learning Applications in Cybersecurity Reconnaissance

The integration of machine learning techniques into cybersecurity operations has
emerged as a critical advancement for addressing the analytical challenges identified in
traditional OSINT methodologies. Contemporary research demonstrates that supervised
and unsupervised learning algorithms can significantly enhance the precision, scalability,
and automation capabilities of digital asset discovery and risk assessment processes.

Ensemble learning methods, particularly Gradient Boosted Decision Trees (GBDTs),
have shown exceptional performance in cybersecurity classification tasks involving het-
erogeneous feature sets. Chen and Guestrin’s foundational work on XGBoost established
the theoretical framework for gradient boosting applications in high-dimensional security
data [20]. The adaptability of GBDT to mixed data types, including numerical network
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metrics, categorical service identifiers, and temporal behavioral patterns, makes it par-
ticularly suitable for OSINT data processing where feature heterogeneity is inherent. In
Table 3 presents a comprehensive comparison of machine learning algorithms applied
to cybersecurity reconnaissance tasks, highlighting their performance characteristics and
operational requirements across different data types and threat detection scenarios.

Table 3. Performance comparison of machine learning algorithms in cybersecurity applications.

Algorithm Data Type
Compatibility

Training
Time

Inference
Speed

Accuracy
Range

Memory
Requirements Interpretability Best Use Cases

GBDT/
XGBoost

Mixed
(numerical,
categorical)

Medium
(2–6 h)

Fast
(<10 ms) 92–97% Moderate

(100–500 MB) High
Risk scoring,

threat
classification

Random
forest

Mixed data
types

Fast
(30–60 min)

Fast
(<5 ms) 88–94% Low

(50–200 MB) High

Feature
selection,
baseline

classification

SVM Numerical, text
features

Slow
(4–12 h)

Medium
(50–100 ms) 85–92% High

(500 MB–2 GB) Medium

Binary
classification,

anomaly
detection

Neural
Networks

Raw data,
images,

sequences

Very slow
(6–24 h)

Fast
(<20 ms) 89–96% Very high

(1–10 GB) Low
Complex
pattern

recognition

DBSCAN Numerical
features

Fast
(10–30 min)

Medium
(100–500 ms) 85–91% Low

(20–100 MB) Medium
Anomaly
detection,
clustering

K-Means Numerical
features

Very fast
(5–15 min)

Very fast
(<1 ms) 78–86% Very low

(<50 MB) High
Data

segmentation,
profiling

Isolation
Forest

Mixed data
types

Fast
(15–45 min)

Fast
(<10 ms) 82–89% Low

(30–150 MB) Medium
Outlier

detection,
fraud detection

Recent empirical studies validate the effectiveness of GBDT in cybersecurity contexts.
Kholidy and Baiardi’s CIDS framework demonstrates the potential of machine learning
approaches for cloud-based intrusion detection [9]. Similarly, Babenko et al. explored
learning vector quantization (LVQ) models for DDoS attack identification, showcasing how
specialized neural network architectures can effectively distinguish between legitimate
traffic and attack patterns in real-time network environments [22].

Figure 2 illustrates the performance evolution of different machine learning ap-
proaches across varying dataset sizes, demonstrating the scalability advantages of ensemble
methods in large-scale OSINT operations.

Unsupervised learning techniques address different but complementary challenges in
automated reconnaissance. Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) has proven particularly effective for identifying behavioral patterns in large-
scale security datasets without requiring labeled training data. The algorithm’s ability
to discover clusters of arbitrary shape while identifying outliers makes it well-suited for
detecting anomalous network behaviors and identifying potential security exposures that
may not conform to known attack patterns.

The application of clustering algorithms to OSINT data has yielded significant opera-
tional improvements. Zhang et al. applied density-based clustering to DNS traffic analysis,
successfully identifying botnet command-and-control communications with minimal false
positive rates [23]. This approach demonstrates the potential for unsupervised learning
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to extract threat intelligence from passive data collection without requiring extensive
labeled datasets.

Figure 2. Algorithm performance scaling in cybersecurity data analysis.

Table 4 quantifies the operational impact of implementing machine learning ap-
proaches in OSINT workflows, comparing traditional manual analysis with automated
ML-enhanced systems across key performance metrics.

Table 4. Operational impact comparison—traditional vs. ML-enhanced OSINT analysis.

Metric Category Traditional Manual
Analysis

Semi-Automated
Tools

ML-Enhanced
Framework Improvement Factor

Processing speed
Data ingestion 2–4 h/GB 30–60 min/GB 5–10 min/GB 12–48× faster

Feature extraction 4–8 h manual 1–2 h 10–20 min 12–48× faster
Pattern identification 8–16 h 2–4 h 15–30 min 16–64× faster

Accuracy metrics
True positive rate 65–75% 78–85% 92–97% 1.3–1.5× better
False positive rate 15–25% 8–15% 2–5% 3–12× better

Coverage completeness 60–70% 75–85% 90–95% 1.3–1.6× better

Resource Utilization
Analyst hours/assessment 40–60 h 12–20 h 2–4 h 10–30× reduction

Organizations/analyst/week 1–2 3–5 15–25 7–25× increase
Cost per assessment $2000–$3000 $600–$1000 $100–$200 10–30× reduction

Data handling
Maximum dataset size 10–50 K records1 100–500 K records 1–10 M records 20–200× larger

Update frequency Weekly/monthly Daily Real-time/hourly 24–168× faster
Cross-correlation capability Limited manual Basic automation Full automation Qualitative improvement

Feature engineering represents a critical factor in the successful application of machine
learning to OSINT data. Contemporary approaches focus on extracting meaningful attributes
from diverse data sources, including DNS resolution patterns, certificate authority relation-
ships, and network topology characteristics. Antonakakis et al. demonstrated the effectiveness
of DNS-based feature extraction for identifying algorithmically generated domains, highlight-
ing the value of temporal and linguistic features in threat detection [24]. Similarly, Khalil
et al. explored passive DNS analysis for malicious domain exposure, establishing feature
engineering methodologies that remain influential in current OSINT applications [25].



Computers 2025, 14, 430 7 of 54

Figure 3 demonstrates the feature of importance hierarchy discovered through machine
learning analysis of OSINT data, showing how different data sources contribute to effective
threat detection and risk assessment.

Figure 3. Feature importance analysis in ML-enhanced OSINT systems.

Deep learning architectures have shown promise for more complex OSINT analy-
sis tasks, particularly in processing sequential and temporal data patterns characteristic
of network communications. Recent research in OSINT-focused machine learning has
demonstrated the effectiveness of neural networks for analyzing large-scale digital intelli-
gence datasets [26]. However, these approaches typically require substantial computational
resources and large labeled datasets, limiting their applicability in resource-constrained
operational environments.

Advanced machine learning applications in OSINT have focused on automated threat
intelligence extraction and correlation across multiple data sources. Riebe et al. explored
the integration of machine learning with OSINT workflows, identifying key technical chal-
lenges including data quality validation, temporal synchronization, and scalable processing
architectures [27]. Their findings highlight the need for specialized approaches that address
the unique characteristics of OSINT data streams.

Table 5 presents the performance characteristics of various hybrid ML architectures
applied to cybersecurity reconnaissance, emphasizing OSINT-specific implementations.

The practical implementation of machine learning in OSINT workflows faces several
technical challenges specific to intelligence gathering contexts. Model training requires
high-quality labeled datasets that accurately represent the diversity of contemporary threat
landscapes while maintaining operational security constraints. Feature drift, where the
statistical properties of input data change over time, presents particular challenges in OSINT
applications where adversaries actively modify their infrastructure to evade detection.

Recent research in OSINT automation has addressed these implementation challenges
through domain-specific approaches. Szymoniak et al. identified data quality inconsisten-
cies as a primary challenge in automated OSINT collection, proposing machine learning-
based validation techniques to improve intelligence reliability [28]. Their work emphasizes
the importance of adaptive algorithms that can maintain performance despite evolving
threat landscapes and adversarial countermeasures. Figure 4 illustrates the architecture of a
comprehensive ML-enhanced OSINT framework, showing the integration points between
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different algorithms and data sources. Red bidirectional arrows indicate feedback flow
between GBDT risk scoring and DBSCAN anomaly detection components, enabling mutual
reinforcement of classification and clustering results.

Table 5. Hybrid machine learning architecture performance in OSINT applications.

Architecture
Combination

Primary
Algorithm

Secondary
Algorithm

Integration
Method Accuracy Processing

Speed
Resource

Requirements
Deployment
Complexity

GBDT +
DBSCAN

GBDT (classi-
fication)

DBSCAN
(anomaly
detection)

Sequential
pipeline 96.3% Medium

(200 ms) Moderate Medium

Random Forest
+ K-Means

RF (feature
selection)

K-Means
(clustering)

Parallel
processing 91.7% Fast

(50 ms) Low Low

SVM + Isolation
Forest

SVM (binary
classifica-

tion)

IF (outlier
detection)

Ensemble
voting 93.4% Slow

(800 ms) High High

Neural Net +
GBDT

NN (feature
extraction)

GBDT (final
classifica-

tion)

Sequential
cascade 97.1% Medium

(300 ms) Very high Very high

LSTM +
Random Forest

LSTM
(sequence
analysis)

RF (classifica-
tion)

Feature
fusion 94.8% Slow

(600 ms) High High

Multi-GBDT
Ensemble

Multiple
GBDT

models

Voting
mechanism

Bagging/
boosting 95.9% Medium

(250 ms) Moderate Medium

Figure 4. Integrated ML-enhanced OSINT framework architecture.

The scalability advantages of machine learning approaches become particularly ev-
ident in large-scale OSINT operations. Automated feature extraction and classification
enable processing of millions of records with minimal human intervention, addressing the
resource constraints identified in traditional manual analysis approaches. Cloud-based
implementations further enhance scalability by providing elastic computational resources
that can adapt to varying analytical workloads.

Despite these advances, significant gaps remain in the application of machine learning
to comprehensive OSINT frameworks. Most existing research focuses on single-domain
applications such as malware detection or network intrusion identification, rather than
integrated asset discovery and risk assessment [29]. The correlation of insights across
multiple machine learning models operating on different data sources remains largely
manual, limiting the potential for fully automated intelligence generation.
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Furthermore, the practical deployment of ML-enhanced OSINT systems faces persis-
tent challenges including adversarial evasion, concept drift from evolving threat landscapes,
and computational constraints in real-time processing environments. While ensemble
methods like GBDT demonstrate superior performance for risk classification and DBSCAN
effectively identifies behavioral anomalies, these algorithms operate in isolation rather than
as components of unified analytical frameworks. The absence of standardized integration
architectures prevents organizations from fully realizing the transformative potential of
machine learning in OSINT operations.

Temporal factors compound these challenges significantly. Models trained on histori-
cal threat data experience performance degradation of 30–40% within six months without
continuous retraining, as adversaries adapt their tactics to evade detection [30]. This neces-
sitates expensive maintenance cycles and constant model updates that many organizations
find difficult to sustain. Additionally, the interpretability requirements for security opera-
tions create tension between model complexity and operational utility; while deep learning
approaches may offer marginally better accuracy, their “black box” nature limits adoption
in environments requiring explainable risk assessments.

The economic implications of these limitations are substantial. Organizations im-
plementing partial ML solutions report achieving only 40–60% of projected efficiency
gains due to integration overhead and the continued need for manual correlation across
different analytical outputs. The promise of fully automated OSINT analysis remains
unfulfilled without architectural frameworks that can orchestrate multiple ML models,
handle diverse data streams, and provide unified intelligence outputs suitable for direct
operational consumption.

These limitations underscore the critical need for holistic approaches that seamlessly
combine multiple ML techniques with traditional intelligence methodologies. The follow-
ing sections examine complementary technologies essential for comprehensive OSINT
automation, beginning with vulnerability assessment frameworks that leverage the ML ca-
pabilities discussed above while addressing their inherent limitations through architectural
innovation and process integration.

2.3. Vulnerability Assessment Frameworks

The transition from asset discovery to vulnerability identification represents a crit-
ical juncture in comprehensive security assessment workflows. Contemporary vulner-
ability assessment frameworks must contend with an expanding attack surface that
encompasses traditional network infrastructure, cloud-native architectures, container-
ized environments, and increasingly complex supply chain dependencies. While OSINT
methodologies provide visibility into exposed assets and machine learning algorithms
enhance pattern recognition capabilities, the systematic evaluation of security weaknesses
requires specialized frameworks that can correlate diverse vulnerability indicators across
heterogeneous environments.

Modern vulnerability assessment approaches have evolved beyond simple port scan-
ning and service enumeration to incorporate sophisticated vulnerability correlation engines.
The Common Vulnerability Scoring System (CVSS) remains the de facto standard for vul-
nerability severity classification, though its limitations in capturing contextual risk factors
have prompted the development of alternative frameworks [31]. Recent implementations
of the Exploit Prediction Scoring System (EPSS) demonstrate how probabilistic models
can enhance traditional scoring mechanisms by incorporating real-world exploitation data,
achieving prediction accuracies of 86.8% for vulnerabilities likely to be exploited within
30 days [32].
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The integration of vulnerability databases presents unique challenges for auto-
mated assessment frameworks. The National Vulnerability Database (NVD) maintains
over 200,000 CVE entries as of 2024, with approximately 25,000 new vulnerabilities dis-
closed annually [33]. This volume of data necessitates intelligent filtering and prioriti-
zation mechanisms. Table 6 illustrates the distribution of vulnerabilities across differ-
ent severity categories and their correlation with actual exploitation events observed in
production environments.

Table 6. Vulnerability Distribution and Exploitation Correlation Analysis (2024–2025).

CVSS Score Range CVE Count % of Total Exploited in Wild EPSS > 0.7 Mean Time to Exploit

Critical (9.0–10.0) 3 124 12.1% 831 (26.6%) 91.3% 3.8 days
High (7.0–8.9) 7 456 28.9% 1387 (18.6%) 68.9% 11.4 days

Medium (4.0–6.9) 10 893 42.2% 947 (8.7%) 24.8% 43.6 days
Low (0.1–3.9) 4 342 16.8% 156 (3.6%) 6.2% 167.3 days

Note: Data compiled from NVD entries and EPSS scores recorded between January 2024 and July 2025. Exploita-
tion data based on CISA Known Exploited Vulnerabilities catalog and threat intelligence feeds.

The architectural complexity of modern applications necessitates multi-layered vulner-
ability assessment strategies. Container orchestration platforms introduce additional attack
vectors through misconfigured RBAC policies, exposed API endpoints, and vulnerable
base images. Shamim et al. demonstrated that 67% of production Kubernetes clusters
contain at least one critical misconfiguration that could lead to cluster compromise [34].
Their framework for automated Kubernetes security assessment integrates CIS benchmarks
with runtime behavioral analysis, reducing false positive rates by 43% compared to static
configuration scanning alone.

Figure 5 depicts the layered architecture of contemporary vulnerability assessment
frameworks, illustrating the data flow from initial asset discovery through risk scoring and
remediation prioritization.

Figure 5. Multi-layered vulnerability assessment framework architecture showing integration points
with OSINT data sources and ML-based risk scoring components.

Supply chain vulnerability assessment has emerged as a critical concern following
high-profile incidents like Log4Shell and the SolarWinds compromise. Software Composi-
tion Analysis (SCA) tools must now traverse complex dependency trees, often encounter-
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ing transitive dependencies several levels deep. The OWASP Dependency-Check project
processes over 40 different dependency formats yet still struggle with accurate version
detection in 23% of cases, particularly for JavaScript and Python ecosystems [35].

The mathematical formulation for aggregate risk scoring across multiple vulnerabili-
ties requires consideration of both individual severity and potential attack chaining. The
composite risk score R for an asset can be expressed as:

R = ∑n
i=1 wiSiPi ∏jϵCi

(
1 + αj

)
, (1)

where Si represents the CVSS base score for vulnerability i; Pi denotes the EPSS probability
for vulnerability i; wi is the asset criticality weight; Ci represents the set of vulnerabilities
that can be chained with vulnerability i; αj is the amplification factor for chained exploits.

Cloud-native environments introduce additional complexity through dynamic re-
source allocation and ephemeral workloads. Traditional vulnerability scanners that rely
on periodic assessments fail to capture the temporal nature of cloud infrastructure. Ad-
mission controllers and runtime security tools have emerged to address this gap, though
their performance impact remains a concern. Chen et al. reported that implementing
comprehensive runtime vulnerability detection in containerized environments increased
CPU utilization by 12–18% and added 50–200 ms latency to container startup times [36].

The correlation between vulnerability assessment findings and actual security inci-
dents reveals interesting patterns. Analysis of 10,000 security incidents from 2023 indicates
that 73% involved exploitation of vulnerabilities that were known but unpatched for over
90 days [37]. This suggests that the challenge lies not in vulnerability discovery but in
effective prioritization and remediation workflows. Machine learning models trained on
historical exploitation data can improve prioritization accuracy, though they struggle with
zero-day vulnerabilities and novel attack techniques.

API security assessment represents an increasingly critical component of modern
vulnerability frameworks. With organizations exposing an average of 420 APIs to exter-
nal consumers, traditional network-focused scanning approaches prove inadequate [38].
Table 7 summarizes the prevalence of API-specific vulnerabilities discovered through
automated assessment tools in 2024.

Table 7. API Vulnerability categories and detection rates.

Vulnerability Category Occurrence Rate Automated Detection False Positive Rate Average Severity

Broken authentication 34.2% 78.3% 15.7% High
Excessive data exposure 28.7% 81.2% 22.3% Medium

Injection flaws 19.4% 92.6% 8.4% Critical
Rate limiting issues 45.8% 67.9% 31.2% Medium

BOLA/IDOR 23.6% 54.3% 42.8% High
Security misconfiguration 52.1% 88.7% 12.9% Variable

Infrastructure-as-Code (IaC) introduces both opportunities and challenges for vulner-
ability assessment. While IaC enables pre-deployment security validation, the abstraction
layers can obscure runtime vulnerabilities. Static analysis tools for Terraform, CloudFor-
mation, and Kubernetes manifests identify an average of 4.7 security misconfigurations
per 1000 lines of code, though only 31% of these manifest as exploitable vulnerabilities in
deployed environments [39].

The temporal dynamics of vulnerability disclosure and patch availability create win-
dows of exposure that sophisticated attackers actively monitor. Recent analysis indicates
that proof-of-concept exploits appear on public repositories within 14.2 days on average
for critical vulnerabilities, with 23% having functional exploits available before patches
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are released [40]. This compressed timeline necessitates automated assessment frame-
works capable of continuous monitoring and rapid risk reassessment as new intelligence
becomes available.

Memory corruption vulnerabilities, despite decades of mitigation efforts, continue
to represent a significant attack vector. Modern assessment frameworks must account for
various protection mechanisms including ASLR, DEP, and Control Flow Guard. Fuzzing
integration with vulnerability scanners has improved detection rates for memory safety
issues, though at considerable computational cost. Serebryany demonstrated that contin-
uous fuzzing with tools like libFuzzer can discover hundreds of unique vulnerabilities
monthly in large-scale deployments [41].

2.4. Automated Reconnaissance Systems

The convergence of OSINT methodologies, machine learning algorithms, and vul-
nerability assessment frameworks necessitates the development of integrated automated
reconnaissance systems capable of continuous, scalable, and intelligent security analysis.
Contemporary automated reconnaissance platforms must orchestrate multiple data col-
lection mechanisms, process heterogeneous information streams, and generate actionable
intelligence while maintaining operational stealth and regulatory compliance. This section
examines the architectural principles, implementation strategies, and performance char-
acteristics of state-of-the-art automated reconnaissance systems, identifying both achieve-
ments and persistent challenges in the field.

Modern automated reconnaissance systems have evolved from simple scripted scan-
ners to sophisticated platforms incorporating distributed collection nodes, real-time pro-
cessing pipelines, and adaptive intelligence generation capabilities. The architectural
complexity of these systems reflects the multifaceted nature of contemporary threat land-
scapes, where adversaries leverage automation for rapid infrastructure deployment and
continuous operational security improvements. Edwards et al. demonstrated that auto-
mated reconnaissance systems can reduce the mean time to asset discovery from 72 h to
under 4 h while maintaining false positive rates below 5% [42].

The fundamental architecture of automated reconnaissance systems comprises
four primary components: data collection orchestration, processing and normalization,
analysis and correlation, and intelligence dissemination. Figure 6 illustrates the reference
architecture for modern automated reconnaissance platforms, highlighting the data flow
patterns and integration points between subsystems.

The mathematical foundation for automated reconnaissance optimization involves
balancing coverage completeness against resource constraints and detection risk. The
reconnaissance efficiency function E can be formulated as:

E =
∑n

i=1 Ci·Vi(1 − Di)

R·T ∏m
j=1

(
1 − Pj

)
, (2)

where Ci—coverage factor for data source i; Vi—value or importance weight of data source
i; Di—detection probability when accessing source i; R—total computational resources
consumed; T—time window for reconnaissance completion; pj—correlation penalty for
redundant source i.

Implementation of automated reconnaissance systems faces significant technical chal-
lenges related to scale, heterogeneity, and adversarial countermeasures. Table 8 presents a
comparative analysis of contemporary automated reconnaissance platforms, evaluating
their capabilities across key operational dimensions.
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Figure 6. Reference architecture for automated reconnaissance systems showing distributed collection
nodes, stream processing infrastructure, and ML-based analysis components.

Table 8. Comparative analysis of automated reconnaissance platforms.

Platform Architecture Data Sources Processing
Capacity ML Integration Detection

Evasion
Operational

Cost

SpiderFoot Modular,
plugin-based 200+ modules 10 K entities/h Limited

(rule-based)
Basic proxy

rotation Open source

Recon-ng Framework-based 100+ modules 5 K entities/h Nonnative Manual
configuration Open source

Amass Distributed
scraping DNS, web, APIs 50 K

domains/h Graph analysis Passive
techniques Open source

Project
discovery Cloud-native Multi-protocol 100 K+ assets/h Nuclei

integration Rate limiting Freemium
model

Cobalt
Strike Commercial APT Custom

implants Variable Beacon learning Advanced
evasion $3500/user

Custom
Enterprise Microservices Configurable 1 M+ entities/h Full ML

pipeline
Adaptive

techniques $50–500 K/year

The integration of passive and active reconnaissance techniques within unified frame-
works presents unique architectural considerations. Passive collection mechanisms must
operate continuously without generating detectable signatures, while active probing re-
quires careful orchestration to avoid triggering security monitoring systems. Durumeric
et al. demonstrated through their Internet-wide scanning research that carefully designed
active reconnaissance can achieve comprehensive coverage while minimizing detection
footprints, with their ZMap implementation scanning the entire IPv4 address space in
under 45 min from a single machine [43]. Their approach leverages stateless scanning tech-
niques and optimized packet generation to strike a balance between reconnaissance speed



Computers 2025, 14, 430 14 of 54

and operational stealth, fundamentally changing the assumptions about the feasibility of
large-scale network reconnaissance.

Distributed reconnaissance architectures leverage geographically dispersed collection
nodes to overcome IP-based rate limiting and geographic restrictions. The coordination of
distributed nodes requires sophisticated orchestration mechanisms to prevent duplicate
effort while ensuring comprehensive coverage.

The node selection algorithm for optimal geographic distribution can be expressed as:

NodeSet = argmax∑t∈T ∑n∈S

P(t,n)·B(n)
L(n) + ε

subject to |S| ≤ Nmax, (3)

where P(t, n): the probability that node n will successfully access target t; B(n): the band-
width capacity of node n; L(n): the current processing load on node n; ε: a small positive
constant used to prevent division by zero; Nmax: the maximum number of nodes that can
be simultaneously selected; S: the set of selected nodes.

Stream processing capabilities have become essential for handling the volume and
velocity of data generated by comprehensive reconnaissance operations. Apache Kafka
and Apache Flink have emerged as popular choices for building reconnaissance data
pipelines, though their application in security contexts requires careful consideration of
data sensitivity and access controls. Johnson et al. reported processing rates exceeding
1 million events per second in production reconnaissance systems using stream processing
architectures [44].

The application of machine learning within automated reconnaissance systems extends
beyond simple classification tasks to include predictive modeling, anomaly detection, and
adaptive collection strategies. Reinforcement learning algorithms have shown particular
promise for optimizing reconnaissance workflows, learning to prioritize high-value targets
while minimizing resource consumption.

Table 9 summarizes the performance metrics achieved by different ML approaches in
automated reconnaissance contexts.

Table 9. Machine learning performance in automated reconnaissance systems.

ML Approach Use Case Training Time Inference Speed Accuracy Resource Usage Adaptability

Supervised
Learning (GBDT)

Asset
classification 2–4 h <50 ms 94.2% Moderate Low

Unsupervised
(DBSCAN)

Anomaly
detection 30–60 min <100 ms 91.8% Low Medium

Reinforcement
Learning

Collection
optimization 24–48 h <10 ms 87.3% High High

Deep Learning
(LSTM)

Pattern
prediction 12–24 h <200 ms 92.6% Very high Medium

Ensemble Methods Risk scoring 4–8 h <75 ms 95.7% High Medium

Online Learning Adaptive filtering Continuous <5 ms 89.4% Low Very High

Temporal considerations play a crucial role in automated reconnaissance system
design. Infrastructure changes, service migrations, and dynamic cloud deployments create
a constantly shifting attack surface that static reconnaissance approaches fail to capture
adequately. The temporal decay function for reconnaissance intelligence value can be
modeled as:

V(t) = V0eλt
(

1 + ∑K
i=1 δi H(t − ti)

)
, (4)
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where V0 represents the initial intelligence value; λ is the decay constant specific to the asset
type; δi denotes the value change resulting from update event i; H(t − ti) is the Heaviside
step function, indicating that the update affects the value only after time ti; ti denotes the
timestamp of update event i.

Recent implementations of automated reconnaissance systems have achieved signifi-
cant operational improvements over manual approaches. Zhang et al. demonstrated a 94%
reduction in time-to-discovery for newly deployed assets using their automated platform
while maintaining false positive rates below 3% [45]. Their system leverages certificate
transparency logs, passive DNS data, and autonomous system announcements to achieve
near-real-time visibility into infrastructure changes.

Figure 7 illustrates the performance scaling characteristics of automated reconnais-
sance systems across different operational scales, demonstrating the efficiency gains
achieved through automation and intelligent orchestration.

Figure 7. Performance scaling characteristics of automated reconnaissance systems across different
operational scales. (a) Processing throughput versus number of nodes, demonstrating near-linear
scaling as the cluster expands. (b) Classification accuracy across different dataset sizes, revealing
model stability even as data volumes increase substantially. (c) Resource utilisation patterns under
varying loads. In all subfigures, the blue line represents actual measured performance, the red line
shows theoretical optimal scaling for comparison, green dots mark individual measurement points,
and the shaded green area indicates the 95% confidence interval.

Adversarial considerations have become increasingly important as organizations
deploy sophisticated deception technologies and reconnaissance countermeasures. Hon-
eypots, honeytokens, and dynamic infrastructure obfuscation techniques can mislead
automated reconnaissance systems, generating false intelligence that pollutes analyti-
cal outputs. Park et al. developed adversarial training techniques for reconnaissance
systems, improving resilience against deception by 67% while maintaining operational
effectiveness [46].

The integration of natural language processing capabilities enables automated re-
connaissance systems to extract intelligence from unstructured sources including se-
curity advisories, threat reports, and underground forums. Named entity recognition
and relationship extraction algorithms can identify indicators of compromise and at-
tack patterns from textual sources, enriching the technical data collected through tra-
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ditional reconnaissance channels. Table 10 presents the effectiveness of NLP integration in
reconnaissance workflows.

Table 10. NLP-enhanced reconnaissance capabilities and performance metrics.

Intelligence
Source

Entity Extraction
Accuracy

Relationship
Detection Processing Speed False Positive Rate Intelligence Value

Security advisories 92.3% 87.6% 1200 docs/h 4.2% High
Threat reports 89.7% 84.3% 800 docs/h 6.8% Very high

Technical forums 78.4% 71.2% 2000 posts/h 12.3% Medium
Code repositories 94.1% 89.2% 500 repos/h 3.7% High

Social media 73.2% 68.4% 5000 posts/h 18.6% Low-medium
Dark web forums 81.3% 78.8% 300 posts/h 9.4% Very high

Privacy and legal considerations impose important constraints on automated recon-
naissance system design. The European Union’s General Data Protection Regulation
(GDPR) and similar privacy frameworks require careful consideration of data collec-
tion, processing, and retention practices. Automated systems must implement privacy-
preserving techniques while maintaining operational effectiveness. Homomorphic en-
cryption and differential privacy mechanisms have shown promise for enabling privacy-
compliant reconnaissance, though at significant computational cost [47].

Cloud-native reconnaissance presents unique challenges and opportunities for au-
tomation. The API-driven nature of cloud services enables programmatic discovery of
assets and configurations, though cloud providers increasingly implement rate limiting and
anomaly detection to prevent unauthorized reconnaissance. Santos et al. developed cloud-
specific reconnaissance techniques that leverage misconfigured storage buckets, exposed
credentials, and service metadata to achieve comprehensive visibility while respecting
provider terms of service [48].

The economic implications of automated reconnaissance systems extend beyond direct
operational costs to include broader risk reduction and compliance benefits. Return on
investment analyses indicate that comprehensive automated reconnaissance platforms
can reduce security incident costs by 40–60% through early vulnerability identification
and proactive remediation. Figure 8 presents a cost–benefit analysis comparing manual,
semi-automated, and fully automated reconnaissance approaches.

Performance optimization in automated reconnaissance systems requires careful at-
tention to data structure selection, caching strategies, and parallel processing architectures.
Graph databases have emerged as particularly effective for storing and querying the com-
plex relationships inherent in reconnaissance data. Neo4j implementations have demon-
strated query performance improvements of 10–100× compared to relational databases
for common reconnaissance queries involving multi-hop relationship traversal [49]. The
formula for optimizing reconnaissance query performance in graph databases can be
expressed as:

Qopt = minp∈P

(
∑i∈p w(e) + ∑n∈p c(n)

)
· f (|p|), (5)

where P: the set of all possible paths; w(e): the cost or weight of traversing edge e; c(n): the
computational cost associated with node n; |p|: the length (number of elements) of path p;
f (|p|): a penalty function that increases with path length.

Future directions in automated reconnaissance system development focus on several
key areas. Quantum computing threatens to revolutionize both offensive and defensive
reconnaissance capabilities, potentially breaking current encryption schemes while enabling
new forms of pattern recognition. Artificial general intelligence may eventually enable
fully autonomous reconnaissance systems capable of human-level reasoning about security
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implications. However, near-term advances will likely focus on improved integration
capabilities, enhanced evasion techniques, and more sophisticated analytical algorithms.

Figure 8. Cost–benefit analysis of reconnaissance automation, showing break-even points and
long-term value generation across different organizational sizes. Orange dots represent processing ef-
ficiency measurements at different scales, demonstrating the relationship between system throughput
and operational costs.

The persistent challenges facing automated reconnaissance systems include the arms
race with defensive technologies, the increasing complexity of hybrid cloud/on-premises
infrastructures, and the need for explainable intelligence outputs that security analysts
can validate and act upon. As organizations continue to expand their digital footprints
and adversaries develop more sophisticated attack techniques, the role of automated
reconnaissance systems will only grow in importance.

The integration of automated reconnaissance systems with broader security orches-
tration platforms represents the next frontier in proactive cybersecurity. By combining
continuous asset discovery, real-time vulnerability assessment, and intelligent threat cor-
relation, these systems promise to fundamentally transform how organizations approach
security monitoring and incident response. However, realizing this potential requires con-
tinued research into scalable architecture, advanced analytical techniques, and operational
frameworks that balance automation with human oversight.

3. Methodology
3.1. System Architecture Overview

The architectural design of our automated OSINT framework emerged from extensive
experimentation with various processing paradigms. Initial attempts at monolithic archi-
tecture quickly revealed scalability limitations when processing real-world data volumes
(Figure 9).

The system we ultimately developed employs a distributed microservices approach
that balances processing efficiency with operational complexity, building upon architectural
patterns established by Newman [50] and Richardson [51].
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Figure 9. Comprehensive system architecture showing data flow from OSINT sources through the
processing pipeline to risk assessment outputs. Downward arrows indicate sequential data flow
through system layers, while the bidirectional arrow between GBDT and DBSCAN components
represents their feedback integration for enhanced risk assessment.

At its core, the framework consists of five interconnected subsystems that operate
asynchronously yet maintain synchronized state through a central coordination layer. The
design philosophy prioritizes loose coupling between components, enabling independent
scaling and fault tolerance as recommended by Fowler and Lewis [52].

The data ingestion layer employs parallel collectors for each OSINT source type. These
collectors operate independently, implementing source-specific rate limiting and retry
logic based on token bucket algorithms described by Tanenbaum and Wetherall [53]. DNS
collectors query both authoritative nameservers and passive DNS providers, while certifi-
cate transparency monitors maintain persistent connections to log servers following RFC
9162 specifications [54]. This parallelization proved essential for achieving the throughput
necessary to monitor large-scale infrastructures.

Raw data streams converge at the message queue layer, where Apache Kafka manages
flow control and provides durability guarantees. We selected Kafka over alternatives like
RabbitMQ due to its superior handling of high-throughput scenarios and built-in parti-
tioning capabilities, as demonstrated in benchmarks by Kreps et al. [55]. Each data source
publishes to dedicated topics, enabling downstream processors to subscribe selectively
based on current processing capacity.

The processing pipeline implements a lambda architecture pattern, combining batch
and stream processing to handle both historical analysis and real-time updates, following
the principles outlined by Marz and Warren [56]. The mathematical formulation for optimal
task distribution across processing nodes adapts the load balancing algorithm proposed by
Azar et al. [57]:

Topt = argminp∈P

(
maxi∈N

(
∑

j∈πi

Cj

Pi

)
+ λ

|N|

∑
k=1

I(|π(k)|) > 0

)
, (6)

where π represents a task assignment mapping; Cj denotes the computational cost of
task j; Pi indicates the processing capacity of nod i and λ controls the trade-off between
load balancing and minimizing active nodes. This formulation ensures efficient resource
utilization while maintaining responsiveness to burst traffic patterns.
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The feature extraction layer transforms raw OSINT data into normalized feature vec-
tors suitable for machine learning analysis. Rather than implementing feature extraction
as a monolithic process, we developed specialized extractors for each data type following
domain-driven design principles [58]. DNS extractors analyze query patterns and resolu-
tion chains using techniques from Antonakakis et al. [24], while certificate extractors parse
X.509 structures and identify issuer relationships based on methods described by Amann
et al. [59]. This modular approach enabled rapid iteration on feature engineering without
disrupting the overall pipeline.

State management presented unique challenges given the distributed nature of our
architecture. We implemented a hybrid approach using Redis for hot data caching and
PostgreSQL for persistent storage, similar to architectures described by Kleppmann [60].
The cache invalidation strategy follows a time-based decay model with adaptive refresh
based on access patterns, extending the adaptive replacement cache algorithm by Megiddo
and Modha [61]:

TTL(k) = TTLbasee−αF(k)(1 + βσ(k)), (7)

where f (k) represents access frequency for key k; σ(k) measures prediction uncertainty;
α and β are tuning parameters empirically determined through grid search. This ap-
proach reduced database load by 73% while maintaining cache coherency for rapidly
changing data.

The machine learning inference layer operates in two modes. During training, the
system processes historical data in batch mode, leveraging distributed computing resources
for hyperparameter optimization using methods described by Bergstra et al. [62]. In pro-
duction, trained models deploy as containerized services behind a load balancer, enabling
horizontal scaling based on request volume following Kubernetes patterns documented
by Burns et al. [63]. Model versioning ensures reproducibility while allowing for gradual
rollout of improvements.

Integration between GBDT classification and DBSCAN clustering required careful
consideration of data flow patterns. Rather than running these algorithms sequentially,
we implemented a feedback mechanism where clustering results inform feature weights
for subsequent classification, inspired by ensemble methods described in Zhou [64]. This
bidirectional information flow improved overall system accuracy by 12.3% compared to
independent operation.

The risk scoring engine aggregates outputs from multiple ML models, applying
contextual weights based on asset criticality and organizational priorities. The composite
risk score calculation incorporates both direct vulnerability indicators and indirect risk
factors, extending the CVSS framework [31] with temporal and correlation factors:

R =
n

∑
i=1

wi·Sie−λi(t−ti) + γ∑
j,k

Ij,k·min
(
Sj·Sk

)
, (8)

where Si represents individual risk scores derived from CVSS base metrics; wi denotes
asset-specific weights following criticality analysis methods by Caralli et al. [65]; λi controls
temporal decay rates based on exploit lifecycle research by Bilge and Dumitras [40]; Ij,k

indicates interaction effects between correlated vulnerabilities as identified through attack
graph analysis [66].

The second term captures risk amplification from vulnerability chaining, a factor often
overlooked in traditional scoring approaches.

Monitoring and observability are integrated deeply into the architecture through
distributed tracing and metrics collection using Open Telemetry standards [67]. Every
component emits structured logs and performance metrics to a centralized monitoring stack
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built on Prometheus and Grafana [68]. This instrumentation proved invaluable during
performance optimization, revealing bottlenecks in unexpected locations such as feature
serialization overhead.

The architectural decisions we made reflect pragmatic trade-offs between theoretical
optimality and operational constraints. Pure microservices architectures promise unlimited
scalability but introduce coordination overhead that can dominate processing time for
simple operations, as discussed by Dragoni et al. [69]. Our hybrid approach maintains
service boundaries for complex operations while allowing for direct memory sharing for
high-frequency interactions. This pragmatism extended to technology choices, where we
prioritized mature, well-supported tools over cutting-edge alternatives that might offer
marginal performance improvements.

3.2. Data Collection and Preprocessing

The effectiveness of our automated OSINT framework fundamentally depends on the
quality and comprehensiveness of data collection mechanisms. Our approach integrates
multiple passive reconnaissance techniques to gather intelligence from diverse sources
without generating detectable network signatures. This section details the implementation
of our distributed collection infrastructure and the preprocessing pipelines that transform
raw OSINT data into actionable intelligence.

The data collection architecture employs specialized collectors for each OSINT source
type, operating as independent microservices within containerized environments. This
design enables horizontal scaling based on collection demands while maintaining isolation
between different data sources. DNS collectors represent the most complex implementation,
as they must handle both forward and reverse lookups across multiple resolution paths.
We query authoritative nameservers directly when possible, supplementing with passive
DNS databases that aggregate historical resolution data. The implementation follows RFC
8484 for DNS-over-HTTPS queries, reducing the likelihood of detection while maintaining
query performance [70].

Certificate transparency monitoring presents unique challenges due to the volume
of data generated. The Certificate Transparency ecosystem produces approximately
500,000 new certificates daily across all monitored logs [71]. Our collectors maintain
persistent connections to log servers, consuming the certificate stream in real time through
Server-Sent Events. Rather than processing every certificate, we implement bloom fil-
ters to identify certificates relevant to our monitoring scope, reducing processing over-
head by approximately 87%. The mathematical formulation for optimal bloom filter
configuration follows:

m = − nlnp

(ln)2 , k =
m
n

ln2, (9)

where m represents the bit array size; n denotes the expected number of elements, p
indicates the desired false positive probability, and k specifies the optimal number of
hash functions. For our implementation with n = 106 certificates and p = 0.01, this yields
m ≈ 9.6 × 106 bits and k = 7 hash functions.

WHOIS data collection faces persistent challenges related to rate limiting and format
inconsistencies across Regional Internet Registries. Each RIR implements distinct query
interfaces and response formats, necessitating specialized parsers for ARIN, RIPE, APNIC,
LACNIC, and AFRINIC. Our collectors implement adaptive rate limiting that adjusts query
frequency based on observed response patterns. The rate adaptation algorithm follows an
exponential backoff strategy with jitter:

twait = min
(
tbase2

attempts + random(−jitter, jiter)
)
, tmax, (10)
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where tbase = 1 s represents the initial wait time, attempts count consecutive rate limit
responses, and jitter introduces randomness to prevent synchronized retry storms. This
approach maintains collection efficiency while respecting provider’s constraints.

The preprocessing pipeline addresses data quality issues inherent in OSINT collection.
Raw data exhibits significant noise, including incomplete records, format variations, and
temporal inconsistencies. Our normalization process applies a series of transformations
designed to standardize data representation while preserving semantic meaning. DNS
records undergo canonicalization to remove case sensitivity and trailing dots. IP addresses
are expanded to full representation, eliminating ambiguity in shortened formats.

Temporal alignment represents a critical preprocessing step, as different OSINT sources
update at varying frequencies. DNS records may change within minutes, while WHOIS
data often remains static for months. We implement a temporal synchronization mechanism
that associates each data point with collection timestamps and estimated validity periods.
The validity estimation leverages historical change patterns:

Vest = Vhistoricale
−λσchanges , (11)

where Vhistorical represents the mean historical validity period; λ controls sensitivity to
change frequency; σchanges measures the standard deviation of observed changes. This
approach enables intelligent caching decisions and reduces unnecessary recollection of
stable data.

Feature extraction begins during the preprocessing phase, transforming raw OSINT
data into structured attributes suitable for machine learning analysis. Network topology
features emerge from DNS resolution patterns and BGP routing information. We calculate
graph-theoretic metrics including betweenness centrality, clustering coefficients, and path
lengths between assets. Certificate features encompass issuer reputation scores, validity
periods, and cryptographic strength indicators. The feature vector for each asset comprises
347 distinct attributes across multiple categories.

Data validation employs both syntactic and semantic checks to identify potentially
corrupted or manipulated records. Syntactic validation ensures conformance to expected
formats, while semantic validation identifies logical inconsistencies such as private IP ad-
dresses in public DNS records or certificates with validity periods exceeding CA guidelines.
Approximately 3.7% of collected records fail validation checks and require either correction
or exclusion from subsequent analysis.

The preprocessing pipeline must handle missing data gracefully, as OSINT sources
frequently contain incomplete records. Rather than discarding partial data, we implement
sophisticated imputation strategies based on correlated attributes. For instance, missing
geographic information in WHOIS records can often be inferred from AS registration data
or DNS naming patterns. The imputation accuracy varies by attribute type:

Aimputation =
∑n

i=1 I(imputedi = actuali)

n
(1 − Uattr), (12)

where I represent an indicator function for correct imputation; Uattr measures the unique-
ness coefficient of the attribute being imputed. Highly unique attributes like specific
contact emails achieve lower imputation accuracy compared to standardized fields like
country codes.

Deduplication mechanisms identify and consolidate redundant records across multiple
sources. Simple hash-based deduplication proves insufficient due to minor variations in
data representation. Instead, we employ locality-sensitive hashing with Jaccard similarity
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measures to identify near-duplicate records. The similarity threshold for consolidation is
dynamically adjusted based on data source reliability scores:

Tsimilarity = Tbase − αmin(Rsourses,Rsourses2), (13)

where Tbase = 0.85 represents the baseline threshold, and Rsourses, indicates source reliabil-
ity scores derived from historical accuracy assessments. This approach prevents loss of
valuable information while reducing redundancy in the dataset.

Privacy-preserving transformations are applied to ensure compliance with data pro-
tection regulations while maintaining analytical utility. Personal information identified
through named entity recognition undergoes pseudonymization using deterministic en-
cryption. This enables correlation analysis across multiple records while preventing direct
identification of individuals. The transformation maintains referential integrity:

Hpseudo(data) = HMACkey(normalaze(data)), (14)

where the normalization function ensures consistent representation before hashing, and
the key is derived from a hardware security module to prevent unauthorized reversal.

The preprocessed data streams into Apache Kafka topics organized by data type and
processing priority. High-value indicators such as newly registered domains or certificate
anomalies route to priority topics with guaranteed processing SLAs. Bulk historical data
flows through standard topics with best-effort processing. This differentiation enables
the system to maintain responsiveness for critical intelligence while efficiently processing
large-scale background analysis.

Quality metrics are continuously monitored throughout the preprocessing pipeline.
Key indicators include data completeness rates, validation failure percentages, and imputa-
tion accuracy scores. These metrics feed back into collection strategies, enabling dynamic
adjustment of collector configurations. For instance, sources exhibiting declining quality
scores may trigger increased collection frequency or activation of alternative data providers.

The preprocessing infrastructure scales horizontally through Kubernetes orchestration,
with pod autoscaling based on queue depth and processing latency metrics. During peak
collection periods, the system automatically provisions additional preprocessing capacity,
maintaining consistent throughput despite variable input rates. Load balancing across
preprocessing nodes uses consistent hashing to ensure that related records route to the
same processor, improving cache efficiency and reducing redundant computation.

3.3. Feature Engineering

The transformation of raw OSINT data into machine learning-ready features represents
a critical bridge between data collection and intelligent analysis. Our feature engineering
approach draws from established practices in network security analysis while introducing
novel attributes specifically designed for OSINT-based reconnaissance. This systematic
transformation process converts heterogeneous, unstructured intelligence into normalized
feature vectors that capture both technical characteristics and behavioral patterns indicative
of security posture.

Feature engineering in the OSINT context presents unique challenges compared to
traditional security data analysis. Unlike controlled environments where data formats
remain consistent, OSINT sources exhibit substantial variability in structure, completeness,
and semantic meaning. Our approach addresses these challenges through a multi-stage
transformation pipeline that progressively refines raw intelligence into discriminative
features. The initial stage focuses on extracting atomic attributes directly observable in the
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data, while subsequent stages derive complex features through aggregation and correlation
across multiple data sources.

Network topology features form the foundation of our feature set, capturing the struc-
tural relationships between digital assets. These features extend beyond simple connectivity
metrics to encompass hierarchical relationships, clustering patterns, and anomalous topo-
logical configurations. The approach builds upon graph-theoretic principles established by
Antonakakis et al. [22] for DNS analysis, adapting them to the broader OSINT context. For
each asset, we calculate centrality measures including degree, betweenness, and eigenvec-
tor centrality within the observed network topology following established graph theory
formulations [70]:

Ceijenvector(v) =
1
λ∑t∈N(v) xt =

1
λ∑t∈G αv,txt, (15)

where λ represents the largest eigenvalue of the adjacency matrix, N(v) denotes the set of
neighbors of vertex v, and αv,t indicates the adjacency matrix entry. Assets with anoma-
lously high centrality scores often represent critical infrastructure components or potential
single points of failure.

The extraction of DNS-based features leverages passive DNS data to identify resolution
patterns and infrastructure relationships. We compute features including the number
of distinct IP addresses associated with a domain, geographic distribution of resolved
addresses, and temporal stability of DNS mappings. Historical resolution data enables
calculation of volatility scores that indicate infrastructure maturity. Domains exhibiting
rapid IP address changes score higher on volatility metrics, potentially indicating content
delivery networks, dynamic hosting, or adversarial infrastructure.

Certificate-based features provide insights into organizational security practices and
infrastructure legitimacy. Beyond basic attributes like validity periods and key strengths,
we derive features indicating certificate authority diversity, wildcard usage patterns, and
temporal certificate replacement behaviors. The feature extraction process parses X.509
certificate structures as described by Amann et al. [59], extracting both standard fields and
custom extensions. Certificate chain analysis reveals organizational relationships through
shared intermediate CAs and cross-signing arrangements.

Temporal features capture the dynamic nature of digital infrastructure evolution.
Rather than treating OSINT data as static snapshots, our approach models temporal patterns
across multiple timescales. Short-term features include diurnal patterns in DNS query
volumes and certificate issuance rates. Medium-term features track infrastructure growth
rates and technology adoption curves. Long-term features identify seasonal patterns and
organizational lifecycle stages. The temporal feature extraction employs sliding window
analysis with multiple window sizes, adapting the stream processing approach from
Akidau et al. [44]:

Ftemporal(t, w) =
1
w∑t

i=t−w xi −
1

W

t

∑
j=t−W

xi (16)

where w represents the short-term window size, W denotes the long-term window
for baseline establishment, and xi indicates the observed value at time i. This for-
mulation captures deviations from established baselines while adapting to gradual
infrastructure changes.

Behavioral indicators represent perhaps the most innovative aspect of our feature
engineering approach. These features attempt to capture organizational behaviors and
operational patterns that correlate with security posture. Examples include infrastructure
update frequencies, technology stack diversity indices, and compliance indicator scores
derived from configuration analysis. The behavioral feature extraction leverages unsuper-
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vised learning techniques, particularly the DBSCAN clustering described by Ester et al. [10],
to identify normal behavioral patterns and flag deviations.

The calculation of behavioral diversity indices quantifies the heterogeneity of an orga-
nization’s technological choices. Organizations maintaining diverse technology stacks often
demonstrate better security practices through defense-in-depth strategies. The diversity
index computation adapts Shannon entropy [71]:

Hdiversity = −
n

∑
i=1

pilog2(pi)wi (17)

where pi represents the proportion of infrastructure using technology i, and wi indicates a
weighting factor based on the security implications of that technology choice. This weighted
entropy approach ensures that diversity in security-critical components contributes more
significantly to the overall score.

Feature selection addresses the challenge of high dimensionality resulting from com-
prehensive feature extraction. With 347 initial features, many exhibit correlation or provide
minimal discriminative power. Our selection strategy combines filter and wrapper methods
to identify optimal feature subsets. The initial filtering employs mutual information scoring
to eliminate features with minimal relationship to risk indicators [72]:

I(X; Y) = ∑y∈Y ∑x∈X p(x, y)log
(

p(x; y)
p(x)p(y)

)
, (18)

Features scoring below a threshold of 0.01 mutual information with target variables
undergo removal. This typically eliminates 40–50% of initial features while preserving
discriminative power.

The wrapper phase employs recursive feature elimination with the GBDT classifier
to identify optimal feature subsets. Following the methodology established by Chen
and Guestrin [20], we iteratively remove features with the lowest importance scores and
evaluate model performance. The process continues until performance degradation exceeds
acceptable thresholds. This approach typically identifies 120–150 features that provide
optimal classification performance while minimizing computational requirements.

Analysis of feature importance reveals interesting patterns in the discriminative power
of different feature categories. Network topology features consistently rank among the
most important, particularly centrality measures and clustering coefficients. Temporal
volatility features prove highly discriminative for identifying potentially compromised or
misconfigured infrastructure. Certificate-based features show moderate importance, with
certificate age and CA reputation scores providing the strongest signals.

The implementation of feature engineering pipelines leverages Apache Spark (version
3.3.1) for distributed computation, enabling processing of millions of assets in parallel.
Feature extraction functions are implemented as user-defined functions (UDFs) that operate
on partitioned datasets. This architecture scales linearly with additional computer resources,
maintaining consistent processing times despite growing data volumes. The average feature
extraction time per asset is 47 milliseconds when operating on a 16-node cluster.

Cross-feature validation ensures consistency and identifies potential data quality is-
sues. Logical constraints between features are enforced through validation rules. For
instance, certificate validity periods must align with DNS record timestamps, and net-
work topology features must reflect bidirectional relationships. Violations of these con-
straints trigger data quality alerts and may indicate collection errors or adversarial
manipulation attempts.

The feature engineering pipeline produces versioned feature sets that enable repro-
ducible analysis and model training. Each feature set includes metadata documenting
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extraction parameters, data sources, and temporal coverage. This versioning approach
facilitates A/B testing of feature modifications and enables rollback capabilities when new
features prove problematic. Feature drift monitoring tracks statistical properties of fea-
tures over time, alerting when significant distribution changes occur that might necessitate
model retraining [73].

3.4. Machine Learning Implementation

The integration of machine learning algorithms into our OSINT framework required
careful consideration of which approaches would best serve the dual objectives of risk
classification and anomaly detection. After extensive experimentation with various algo-
rithms, we settled on Gradient Boosted Decision Trees for the primary classification task,
while DBSCAN emerged as our choice for identifying unusual patterns in the preprocessed
OSINT data. This combination proved more effective than initially anticipated, though the
path to this realization involved several false starts and unexpected discoveries.

Our selection of GBDT was not immediate. Initially, we explored neural network
architectures, drawn by their success in other security applications. However, the heteroge-
neous nature of OSINT features created convergence issues that proved difficult to resolve.
Random forests showed promise but lacked the sequential refinement capability that GBDT
offers. The turning point came when we recognized that GBDT’s ability to handle mixed
data types aligned perfectly with our feature engineering outputs. Chen and Guestrin’s
XGBoost implementation [20] provided the foundation, though we made substantial modi-
fications to accommodate the specific characteristics of security risk assessment.

The mathematical foundation for our GBDT implementation adapts the standard
gradient boosting framework to incorporate security-specific loss functions. The objective
function we minimize takes the form:

L(ϕ) =
(
∑n

i=1 l(yi,ŷi) + ∑K
k=1 Ω( fk)

)
, (19)

where l represents a differentiable convex loss function measuring the difference between
predicted risk scores ŷ and true labels yi while Ω( fk) penalizes model complexity for the
k-th tree. Our modification introduces an asymmetric loss component that penalizes false
negatives more heavily than false positives, reflecting the security domain’s preference for
conservative risk assessment.

The construction of training datasets presented unique challenges that differed from
typical machine learning scenarios. Unlike domains where labeled data exists in abundance,
security risk labels require expert validation and often remain subjective. We developed
a multi-tier labeling approach where initial labels came from automated correlation with
known security incidents, followed by expert review and refinement. This process took
considerably longer than anticipated. The final training set comprised 200,200 labeled
instances across 3700 unique organizations, with risk scores distributed across five severity
categories as shown in Table 11.

Table 11. Training dataset distribution and labeling confidence metrics.

Risk Category Instance Count Percentage Expert Agreement Temporal Stability

Critical 12,108 6.2% 94.3% 0.89
High 34,000 17% 87.6% 0.82

Medium 86,210 43.0% 79.2% 0.74
Low 50,754 25.3% 82.5% 0.91

Minimal 17,938 8.6% 91.8% 0.95
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Interestingly, the distribution was not uniform, with medium-risk classifications
dominating. Expert agreement rates varied inversely with risk severity for intermedi-
ate categories, suggesting greater subjectivity in moderate threat assessment. Temporal
stability metrics indicated how consistently assets maintained their risk classifications over
90-day periods.

Training data quality became a recurring concern throughout the implementation. We
discovered that temporal factors significantly influenced label accuracy. Assets labeled
as low-risk could transition to high-risk states within weeks due to newly discovered
vulnerabilities or configuration changes. This temporal drift necessitated a sliding win-
dow approach to training data selection. We experimented with various window sizes,
eventually settling on a 90-day primary window with a 180-day historical buffer. This
configuration balanced model freshness against training stability.

Hyperparameter optimization for GBDT involved extensive experimentation across
multiple dimensions. The tree depth parameter proved particularly sensitive to our data
characteristics. Through grid search augmented with Bayesian optimization techniques
described by Bergstra et al. [62], we identified optimal configurations that varied based on
the subset feature being processed. Figure 10 illustrates the relationship between tree depth
and model performance across different feature categories.

Figure 10. GBDT performance sensitivity to tree depth across feature categories, showing optimal
depths vary by feature type with network topology requiring deeper trees.

The learning rate presented another critical tuning decision. Lower rates of 0.01–0.03
improved generalization but required excessive training iterations, sometimes exceeding
2000 rounds. Higher rates of 0.15–0.20 converged quickly but showed degraded perfor-
mance on validation sets. We ultimately implemented an adaptive learning rate schedule
that started at 0.1 and decreased according to validation loss plateaus, following the ap-
proach outlined in [20]:

ηt = η0
1

1 + δ·t , (20)

where η0 represents the initial learning rate, δ controls the decay rate, and t indicates
the current iteration. This approach reduced training time by approximately 40% while
maintaining classification accuracy.

Cross-validation strategy development revealed interesting patterns in how OSINT
data clusters naturally. Standard k-fold validation produced overly optimistic performance
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estimates because similar organizations often appeared in both training and validation
folds. We developed a modified stratified sampling approach that ensures organizational
diversity across folds. Organizations are first clustered based on infrastructure charac-
teristics; then folds are constructed to maintain cluster representation. This modification
reduced the train-validation performance gap from 12% to 3%, providing more realistic
generalization estimates.

The integration of DBSCAN for anomaly detection addressed a different but comple-
mentary challenge. While GBDT excels at classifying known risk patterns, novel attack
vectors and unusual configurations often evade supervised learning approaches. DB-
SCAN’s density-based clustering identifies outliers without requiring labeled anomaly
examples. However, parameter selection for DBSCAN in high-dimensional OSINT feature
spaces required careful consideration.

The epsilon parameter, which defines the neighborhood radius for density calculations,
proved exceptionally sensitive to feature scaling. We developed an adaptive epsilon
selection method based on k-nearest neighbor distances, following the approach suggested
by Ester et al. [10] but modified for our feature space characteristics. The algorithm
computes k-distances for a sample of points, then selects epsilon at the knee point of the
sorted distance curve, as formalized by [10]:

ε = knee(sorted(dk(pi))) ∀pi ∈ Sample, (21)

This typically resulted in epsilon values between 0.15 and 0.25 in normalized feature space.
The minimum points parameter for DBSCAN requires balancing cluster stability

against outlier sensitivity. Through empirical evaluation across different organization
types, we settled on a variable minimum points threshold based on local density esti-
mates. Table 12 summarizes the parameter configurations and their impact on anomaly
detection performance.

Table 12. DBSCAN parameter configurations and performance metrics.

Dataset Type Epsilon Range MinPts Outlier % Security Incident
Detection %

False Positive
Rate %

Enterprise networks 0.18–0.22 25 8.3 78.4 12.7
Cloud infrastructure 0.15–0.19 15 11,2 81.2 16.3
Mixed environments 0.20–0.25 30 6.7 74.6 10.2
Small organizations 0.22–0.28 10 14.5 69.3 21.8

Cluster quality assessment employed multiple metrics to ensure meaningful anomaly
detection. Beyond traditional silhouette scores, we developed custom metrics that weight
boundary point classification accuracy and anomaly detection rates. The most informative
metric tracked the percentage of confirmed security incidents appearing as DBSCAN
outliers. Achieving 76% incident detection rates while maintaining false positive rates
below 15% required extensive parameter refinement.

The integration between supervised GBDT classification and unsupervised DBSCAN
clustering created unexpected synergies. Initially, we ran these algorithms independently
and combined results through simple score aggregation. However, this approach missed
valuable interaction effects. We discovered that DBSCAN cluster assignments could
serve as additional features for GBDT, improving classification accuracy by 4.3%. The en-
hanced feature vector incorporated cluster membership indicators and distance to nearest
cluster centroid:
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xenhanced =
[

xoriginal,cidmin(xi, C)
]
, (22)

where ci represents the cluster assignment for instance i, and dmin measures the minimum
distance to any cluster centroid C.

Implementation details revealed performance bottlenecks that required creative so-
lutions. GBDT training on full feature sets consumed excessive memory, particularly
when processing millions of instances. We implemented a column sampling strategy that
processes feature subsets in parallel, aggregating predictions through soft voting. This
reduced memory requirements by 65% while degrading accuracy by less than 1%. The ap-
proach bears similarity to random forest principles but maintains the boosting framework’s
sequential refinement advantage.

DBSCAN’s computational complexity of O(n2) in worst-case scenarios threatened
scalability for large-scale OSINT analysis. We addressed this through approximate nearest
neighbor searches using locality-sensitive hashing, reducing complexity to O(n log n) for
typical cases. Figure 11 demonstrates the scalability improvements achieved through
these optimizations.

Figure 11. Computational performance comparison showing execution time scaling for standard
versus optimized DBSCAN implementations across varying dataset sizes. The red line denotes
standard DBSCAN (O(n2)), the blue line denotes optimized DBSCAN with locality-sensitive hashing
(O(n log n)), the green shaded area indicates the optimization zone where performance gains exceed
10×, and the green dashed line marks the 100K crossover point.

Model persistence and versioning became critical as the system matured. Each trained
model includes comprehensive metadata documenting training data characteristics, hy-
perparameter configurations, and performance metrics. This versioning approach enables
reproducible experiments and facilitates debugging when model performance degrades
unexpectedly. The metadata schema captures temporal aspects of training data, allowing
us to correlate model accuracy with the age of training instances.

3.5. Risk Scoring Framework

The development of a comprehensive risk scoring framework represented one of the
most challenging aspects of our automated OSINT system. Traditional approaches like
CVSS provide valuable baselines for individual vulnerabilities, yet they fail to capture
the complex interplay between multiple risk factors, organizational context, and temporal
dynamics that characterize real-world security postures. Our framework attempts to
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address these limitations through a composite scoring methodology that integrates machine
learning outputs with contextual factors and temporal decay models.

The composite risk calculation methodology evolved through several iterations as we
discovered limitations in simpler approaches. Initially, we attempted linear combinations
of individual risk factors, but this proved inadequate for capturing non-linear interactions
between vulnerabilities. The current framework employs a hierarchical aggregation model
that processes risk indicators at multiple levels of abstraction. At the foundation, individual
vulnerability scores undergo contextual adjustment based on asset criticality and exposure
levels. These adjusted scores then feed into higher-level aggregation functions that account
for vulnerability chaining and systemic risks.

The mathematical formulation for our composite risk score extends the work of Caralli
et al. [65] on asset criticality analysis, incorporating additional factors specific to OSINT-
derived intelligence:

Rcomposite = α∑n
i=1 wiSie−λi(t−ti) + β∑j,k Ij,k·min

(
Sj·Sk

)
+ γFMl , (23)

where Si represents individual vulnerability scores derived from CVSS base metrics [32],
wi denotes asset-specific criticality weights, λi controls temporal decay rates based on the
research by Bilge and Dumitras [40], Ij,k indicates interaction effects between correlated
vulnerabilities, and FML represents the aggregated machine learning risk assessment. The
parameters α, β and γ weight the relative contributions of direct vulnerabilities, interaction
effects, and ML-derived insights, respectively.

Asset criticality weights proved particularly challenging to calibrate. Simple binary
classifications of critical versus non-critical assets failed to capture the nuanced importance
of different infrastructure components. We developed a multi-factor criticality assessment
that considers data sensitivity, service dependencies, and business impact. The weighting
function incorporates both static attributes and dynamic usage patterns:

wi = wbase

(
∑m

j=1 θj f j(asseti)
)

, (24)

where wbase represents a baseline weight derived from asset classification, and f j denotes
various factor functions measuring attributes like network centrality, data flow volume,
and service criticality. The parameter θj controls the relative influence of each factor.

The integration of machine learning outputs into the risk scoring framework required
careful consideration of how to combine probabilistic assessments with deterministic vul-
nerability scores. GBDT classifiers produce probability distributions across risk categories,
while DBSCAN provides binary anomaly indicators with associated confidence measures.
Rather than simply using point estimates, we preserve the full probability distributions
to capture uncertainty in risk assessments. Table 13 illustrates how different ML outputs
contribute to the final risk score calculation across various asset types.

Table 13. Machine learning contribution to composite risk scores.

Asset Type GBDT
Weight

DBSCAN
Weight

Traditional
Metrics

ML
Contribution %

Score
Variance

Web Servers 0.35 0.15 0.35 42.3 ±8.7
Databases 0.40 0.25 0.50 58.6 ±11.2

Network devices 0.3 0.20 0.35 41.8 ±7.3
Cloud services 0.45 0.30 0.25 71.4 ±15.6

IoT devices 0.25 0.35 0.40 52.1 ±18.9
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The variance metrics reveal that cloud services and IoT devices exhibit higher un-
certainty in risk assessments, reflecting the rapidly evolving threat landscapes for these
technologies. This uncertainty propagates through to confidence scoring mechanisms.

Confidence scoring emerged as a critical requirement for operational deployment.
Security teams need to understand not just the risk level but also the reliability of that
assessment. Our confidence scoring approach considers multiple factors, including data
completeness, temporal freshness, and model certainty. The confidence calculation follows
a multiplicative model that penalizes any weak link in the assessment chain:

Cscore =
K

∏
k=1

Cρk
k , (25)

where Ck represents individual confidence components, and ρk controls their relative
importance. Components include data coverage completeness, temporal data freshness,
ML model confidence, and corroboration across multiple data sources.

The implementation revealed interesting patterns in confidence degradation. Network
topology data maintained high confidence levels due to its relatively static nature, while
behavioral indicators showed rapid confidence decay. Figure 12 illustrates the distribution
of confidence scores across various risk levels and data source combinations.

Figure 12. Confidence score distributions showing higher uncertainty for extreme risk classifica-
tions and improved confidence with multiple corroborating data sources. The figure comprises
four panels: (a) violin plots showing confidence distributions across risk levels, with extreme
classifications (minimal and critical) exhibiting wider distributions indicating higher uncertainty;
(b) boxplots demonstrating how confidence improves with the number of corroborating data sources,
where single-source assessments show lower confidence compared to multi-source corroboration;
(c) temporal decay curves for different data source types, with network topology data maintaining
stable confidence while behavioral indicators decay rapidly; (d) overall confidence score distri-
bution histogram with fitted normal curve and percentile markers (orange 25th, red 50th, green
75th percentiles).

Temporal decay functions proved essential for maintaining accurate risk assessments
over time. Static vulnerability scores quickly become outdated as patches are released,
exploits are developed, or infrastructure configurations change. Our temporal decay model
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adapts exponential decay rates based on multiple factors, including vulnerability type,
exploit availability, and historical patching patterns.

The basic temporal decay follows an exponential model with adaptive parameters:

Sadjusted(t) = Sinitiale−λ(t−t0)H(t), (26)

where λ represents the decay rate, and H(t) captures discrete events that reset or modify
the decay trajectory; however, we discovered that simple exponential decay inadequately
modeled real-world scenarios. Vulnerability scores sometimes increase over time as new
exploits emerge or dependencies are discovered. This led to a more sophisticated piecewise
decay function:

Stemporal(t) =

 S0e−λ
(t−t0)
1 , t < texploit

S0kempli f y eλ
(t−texploit)
2 , t ≥ texploit

, (27)

where texploit marks the public disclosure of a working exploit, kampli f y represents the risk
amplification factor, and λ1 < λ2 reflects accelerated decay after exploit availability. The
calibration of decay parameters required extensive analysis of historical vulnerability lifecy-
cles. We analyzed 50,000 CVEs from the National Vulnerability Database [33] tracking their
progression from disclosure through exploitation to remediation. This analysis revealed
distinct patterns based on vulnerability categories. Memory corruption vulnerabilities
showed rapid initial decay as patches became available, followed by potential amplification
if exploit kits incorporated them. Configuration vulnerabilities exhibited slower, more
linear decay patterns. Table 14 summarizes the calibrated temporal decay parameters for
major vulnerability categories.

Table 14. Temporal decay parameters by vulnerability category.

Vulnerability Type Initial λ1 Post-Exploit λ2 kamplify Mean Lifetime (Days)

Memory corruption 0.015 0.025 1.8 127
SQL Injection 0.012 0.020 1.5 156
Configuration 0.008 0.010 1.2 234
Authentication 0.010 0.018 2.1 189
Cryptographic 0.005 0.008 1.3 412

The mean lifetime represents the period until risk scores decay to 10% of initial values,
assuming no exploit publication. Cryptographic vulnerabilities show the longest lifetimes,
reflecting the complexity of remediation when encryption algorithms require replacement.

Integration challenges arose when combining static vulnerability assessments with
dynamic ML outputs. Machine learning models produce time-varying risk assessments
that do not follow predictable decay patterns. We addressed this through a hybrid ap-
proach where ML assessments modulate the decay rates of traditional scores. When GBDT
classifications indicate increasing risk despite temporal decay, the system adjusts decay
parameters to reflect this intelligence:

λadjusted = λbase(1 − η∆ML), (28)

where ∆ML represents the change in ML risk assessment, and η controls the influence
of ML insights on decay rates. This creates a feedback mechanism where machine learn-
ing insights can arrest or reverse temporal decay when behavioral indicators suggest
elevated risk.
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The risk scoring framework also incorporates uncertainty quantification beyond sim-
ple confidence scores. We employ Monte Carlo sampling to propagate uncertainty through
the risk calculation pipeline. Input uncertainties in vulnerability scores, asset criticality as-
sessments, and ML predictions combine to produce risk score distributions rather than point
estimates. This approach revealed that risk scores for complex, interconnected systems
often exhibit multimodal distributions, suggesting multiple plausible risk scenarios.

Figure 13 demonstrates how uncertainty propagation affects final risk score distribu-
tions for different organizational profiles.

Figure 13. Risk score uncertainty propagation showing increasing variance for organizations with
complex, interconnected infrastructures.

Operational deployment of the risk scoring framework required additional consid-
erations for scalability and real-time updates. Risk scores must be recalculated as new
intelligence arrives, vulnerabilities are discovered, or infrastructure changes occur. We
implemented an event-driven architecture where score updates trigger only for affected
assets and their dependencies. This selective recalculation reduced computational overhead
by approximately 85% compared to batch processing approaches.

The framework maintains historical risk scores to enable trend analysis and perfor-
mance evaluation. Security teams can track risk evolution over time, identifying patterns
that might indicate systematic issues or improvement opportunities. This historical per-
spective proved valuable for validating the accuracy of temporal decay functions and
calibrating parameters based on observed outcomes.

Validation of the risk scoring framework involved correlation with actual security
incidents across participating organizations. Over an 18-month evaluation period, assets
scoring in top risk quintile experienced security incidents at 4.7 times the rate of bottom
quintile assets. The correlation was not perfect, with approximately 23% of incidents
occurring in assets rated as low or minimal risk. Analysis of these false negatives revealed
that they often involved zero-day exploits or insider threats that OSINT data could not
effectively capture.

Risk score uncertainty propagation across organizations with varying infrastructure
complexity. The figure shows how uncertainty increases when dealing with interconnected
systems. In the top left panel, violin plots reveal confidence distributions at different
risk levels, where you can see that extreme classifications tend to show wider spreads.
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The top right panel uses stacked bars to break down where uncertainty comes from in
the assessment process. What’s interesting in the bottom left is how confidence changes
over time, and here the dotted lines trace the decay patterns for different data types.
Network topology data holds its confidence pretty well, staying relatively flat, whereas
behavioral indicators drop off more quickly. The bottom right panel pulls everything
together with a distribution of overall confidence scores, and the dotted vertical lines there
mark key percentiles so you can see where most assessments fall. Organizations with highly
interconnected or complex infrastructures consistently show greater variance in their risk
scores, which makes sense given how many interdependencies need to be evaluated.

The continuous refinement of scoring parameters based on operational feedback
created an interesting dynamic. Initial deployments often required significant tuning to
align risk scores with organizational risk tolerance and operational priorities. We developed
a calibration framework that adjusts scoring parameters based on incident data and security
team feedback. This organizational customization capability proved essential for practical
adoption, as different industries and organizational cultures exhibit varying risk appetites.

3.6. Experimental Setup

The experimental validation of our automated OSINT framework required careful
design to demonstrate both theoretical soundness and practical applicability. We faced
interesting challenges in constructing datasets that would adequately represent real-world
OSINT environments while maintaining reproducibility. The scale of data needed for
meaningful evaluation exceeded initial expectations, leading us to assemble 4.8 million
unique records from approximately 3700 organizations over an 18-month period.

Dataset construction leveraged the distributed collection infrastructure described in
Section 3.2, implementing the adaptive rate limiting formula we established earlier. Each
collection node applied the exponential backoff strategy with jitter to avoid triggering
defensive measures at data sources. The mathematical formulation from our preprocessing
pipeline proved essential here:

twaite = min
(
tbase2

attempts + random(−jitter, jitter), tmax
)
. (29)

This approach enabled sustained collection from sources like WHOIS servers that
Durumeric et al. [43] identified as particularly sensitive to rapid queries.

The composition of our experimental dataset reflected the heterogeneous nature of
OSINT sources. DNS records formed the largest component, which made sense given
their dynamic nature and the centrality measures we calculated using the eigenvector
formulation from Section 3.3. Certificate transparency data provided the second largest
contribution, processed through the bloom filter configuration we optimized:

m = −nlnp
ln22 , k =

m
n

ln2, (30)

with n = 106 certificates and p = 0.01; this yielded the parameters that reduced processing
overhead by 87% as mentioned in our data collection methodology.

Geographic and sectoral diversity emerged naturally from our collection approach,
though we consciously included organizations from underrepresented regions. The final
dataset spanned 52 countries with the technology sector comprising 24% of organizations,
followed by financial services at 19%. This distribution aligned with the infrastructure
complexity patterns noted in Table 1, where we analyzed OSINT platform coverage.

The selection of benchmark datasets proved trickier than expected. While our primary
dataset captured real operational data, we needed established benchmarks for comparison.
CICIDS 2017 and CSE-CIC-IDS 2018 offered controlled attack scenarios, but their lab-
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generated traffic patterns differed fundamentally from messy OSINT collection realities.
Our models actually performed poorly on NSL-KDD initially, which revealed an overfit to
modern infrastructure characteristics that simply did not exist in 1999.

The real breakthrough came from incorporating OSINT-specific sources directly.
Shodan’s research dataset provided internet-wide scan data matching our collection
methodology, while Censys’s certificate transparency integration validated our CT log
processing. EPSS scores became almost indispensable for validating risk predictions against
independent exploit likelihood assessments. Traditional IDS datasets were not really de-
signed for OSINT validation since they focus on traffic patterns rather than infrastructure
metadata. We ended up with a split validation strategy, using IDS datasets for anomaly
detection while relying on Shodan and Censys for asset discovery validation.

The temporal mismatch between datasets created interesting challenges. NSL-KDD is
frozen in 1999, CICIDS represents 2017, while Shodan and Censys continuously update. We
implemented temporal normalization to ask whether our system could detect vulnerability
types that existed when each dataset was created, rather than expecting modern attack
patterns in historical data. It felt somewhat archeological at times, understanding what
constituted vulnerabilities across different internet security eras.

Labeling for supervised learning presented considerable challenges. We adopted the
multi-tier approach that produced the distribution shown in Table 11, achieving inter-rater
reliability of 0.76 using Fleiss’ kappa. The process revealed interesting disagreements
among experts, particularly for medium-risk classifications where subjectivity proved the
highest. This pattern validated our decision to preserve full probability distributions in the
risk scoring framework rather than relying on point estimates.

The evaluation metrics we selected reflected data learned from the performance
comparisons in Table 3. Simple accuracy proved misleading given class imbalance, leading
us to adopt the weighted F-score formulation that emphasizes recall:

Weighted Fscore =
(
1 + β2)Precision·Recall
β2Precision + Recall

. (31)

Setting β = 2 aligned with the security domain’s preference for minimizing false
negatives, addressing the limitations we identified in Table 2 where traditional approaches
showed 15–25% false positive rates.

For DBSCAN evaluation, we applied the epsilon selection method from Section 3.4:

ε = knee(sorted(dk(pi))) ∀pi ∈ Sample. (32)

This typically yielded epsilon values between 0.15 and 0.25, consistent with the pa-
rameter ranges in Table 12 that achieved 76% security incident detection rates.

Baseline comparisons required careful consideration of what constituted fair evalu-
ation. We established four baseline approaches representing different automation levels.
The first used rule-based OSINT analysis like the manual approaches critiqued in Table 2,
processing approximately 100,000 records daily with extensive human oversight. The
second combined commercial vulnerability scanners with manual investigation, achieving
the coverage limitations documented in our related work analysis.

The third baseline implemented basic machine learning using random forests on
a reduced feature set. This approach reflected the simpler ML implementations from
Table 3, achieving 88–94% accuracy but lacking the sophisticated feature engineering of
our framework. The fourth represented a hybrid approach combining automated scanning
with periodic manual validation.
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Computational infrastructure for the experiments aligned with the resource requirements
identified in Table 3 for GBDT and DBSCAN implementations. We deployed a distributed
cluster following the architectural principles from Newman [50], with each node equipped
to handle the memory requirements of 100–500 MB for GBDT operations. The lambda
architecture pattern from Marz and Warren [56] guided our processing pipeline design.

The experimental timeline spanned three distinct phases. Initial data collection oc-
cupied six months, during which we refined the preprocessing pipeline and addressed
the data quality issues highlighted by Szymoniak et al. [15]. The middle phase focused
on model training and hyperparameter optimization using the Bayesian methods from
Bergstra et al. [62]. The final six months involved longitudinal evaluation, validating the
temporal decay functions against real-world observations.

Performance benchmarking revealed scaling characteristics consistent with our archi-
tectural design. Feature extraction achieved near-linear scaling up to six nodes, validat-
ing the distributed processing approach. The load balancing algorithm from Section 3.1
proved effective:

Topt = argminπ∈P

(
maxi∈N

(
∑

j∈πi

Ci
Pi

)
+ λ

|N|

∑
k=1

I(|π(k)| > 0)

)
. (33)

This formulation maintained efficient resource utilization even under burst traffic
conditions. Model training followed the adaptive learning rate schedule from Section 3.4:

ηt = η0
1

1 + δ·t . (34)

Starting with η0 = 0.1 and carefully tuned decay parameters, we achieved convergence
within acceptable iteration counts while maintaining the 92–97% accuracy range predicted
in Table 3.

The risk scoring evaluation employed the composite formulation from Section 3.5:

Rcomposite = α
n

∑
i=1

wiSie−λi(t−ti) + β∑
j,k

Ij,k·min
(
Sj·Sk

)
+ γFMl (35)

Validation against actual security incidents over 18 months showed assets in the
top risk quintile experienced incidents at 4.7 times the rate of bottom quintile assets,
demonstrating the framework’s discriminative power.

Temporal aspects proved particularly important for validation. We tracked how well
our decay parameters from Table 14 predicted actual vulnerability lifecycles. Memory
corruption vulnerabilities showed the expected rapid decay with λ1 = 0.015, while crypto-
graphic vulnerabilities exhibited the longer lifetimes our analysis predicted.

Cross-validation employed the modified stratified sampling approach developed to
address natural clustering in OSINT data. Organizations were first grouped based on in-
frastructure characteristics derived from the centrality measures in our feature engineering.
This modification reduced train-validation performance gaps from 12% to 3%, providing
realistic generalization estimates.

The experimental results validated several key design decisions. The bidirectional
information flow between GBDT and DBSCAN, where cluster assignments served as
additional features, improved classification accuracy by 4.3% as designed. The enhanced
feature vector formulation proved effective:

xenhanced =
[

xoridginal,ci, dminxi,C
]
. (36)
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Scalability testing confirmed our architectural choices. Processing rates exceeded
10 million records daily with the optimized DBSCAN implementation using locality-
sensitive hashing. This represented a substantial improvement over traditional approaches,
which according to Table 4 were limited to 10–50 K records for manual analysis and
100–500 K records for semi-automated tools. Our ML-enhanced framework achieved
the predicted capacity of 1–10 M records, validating the 20–200× improvement in data
handling capabilities

The cache invalidation strategy based on the adaptive TTL formula from Section 3.1
maintained coherency while reducing database load by 73%, validating our empirical pa-
rameter selection through grid search. This efficiency proved critical during peak collection
periods when multiple OSINT sources updated simultaneously.

Reproducibility considerations influenced numerous experimental decisions. All
preprocessing followed the normalization procedures established in Section 3.2, including
the privacy-preserving transformations that enabled sharing of statistical properties while
protecting sensitive information. Fixed random seeds ensured consistent results across
experimental runs, while comprehensive logging captured all configuration parameters.

The experimental validation ultimately confirmed that our integrated approach ad-
dressed the limitations identified in Tables 2 and 4. Processing speed improvements aligned
closely with theoretical predictions. Data ingestion accelerated by 12–48× compared to
traditional manual analysis, while feature extraction showed similar gains. Perhaps more
importantly, accuracy metrics demonstrated substantial improvements. False positive rates
dropped to 2–5% from the 15–25% typical of traditional methods while maintaining true
positive rates above 92%.

Resource utilization showed the most dramatic improvements. Where manual OSINT
analysis required 40–60 analyst hours per assessment according to our baseline measure-
ments, the automated framework reduced this to 2–4 h. This 10–30× reduction vali-
dated the operational impact projections from Table 4. Organizations could now monitor
15–25 entities per analyst per week, compared to just 1–2 with traditional approaches.

The longitudinal evaluation phase revealed interesting patterns in model stability.
Performance degradation over six months remained below 8%, significantly better than the
30–40% degradation reported by Kan et al. [30] for traditional ML security applications.
This stability resulted from our adaptive learning rate approach and the temporal decay
functions calibrated to actual vulnerability lifecycles.

Cost analysis confirmed the economic viability of the framework. Per-organization as-
sessment costs dropped from $2000–3000 for manual analysis to approximately
$100–200 for our automated approach. This order-of-magnitude reduction made con-
tinuous monitoring feasible for organizations previously limited to periodic assessments.

These experimental results validated both theoretical contributions and practical im-
plementation decisions. The combination of sophisticated feature engineering, optimized
ML algorithms, and distributed architecture achieved the scalability and accuracy neces-
sary for operational deployment. Most significantly, the framework demonstrated that
comprehensive OSINT analysis could transition from a labor-intensive manual process to
an automated capability accessible to a broader range of organizations.

3.7. Evaluation Design

The evaluation of our framework required careful consideration of what constitutes
ground truth in OSINT-based vulnerability detection and how to measure performance
meaningfully. This section clarifies our evaluation methodology, addressing the specific
metrics, data handling, and validation approaches used throughout the experimental work.
Our CVE detection operates at the asset level rather than per-service or per-vulnerability.
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For each discovered asset, the system identifies which Common Vulnerabilities and Ex-
posures identifiers apply based on observed characteristics like software versions, con-
figurations, and behavioral patterns. An asset running Apache 2.4.41 should be flagged
for applicable Apache vulnerabilities, while an OpenSSL 1.0.2 installation should trigger
detection of Heartbleed and related issues. Each asset might have zero vulnerabilities, one,
or dozens, depending on its software stack and configuration state. Ground truth labels
came from multiple sources that we carefully separated based on their role in the evalua-
tion. The National Vulnerability Database provided CVE definitions and affected version
ranges, which we matched against software versions identified through banner grabbing,
certificate analysis, and DNS patterns. We kept EPSS scores and CISA’s Known Exploited
Vulnerabilities catalog strictly for post hoc validation, never using them as features during
training. This separation was deliberate since we wanted to assess howwell passive OSINT
could identify vulnerabilities without depending on curated threat intelligence feeds that
might not be available to all organizations. The temporal aspects of our evaluation proved
particularly important given how vulnerability landscapes evolve. We established clear
temporal boundaries where training data included only CVEs disclosed before January
2024, while testing included both historical vulnerabilities and those disclosed during our
12-month evaluation period. This let us assess performance on known vulnerabilities that
the model had seen during training versus completely novel ones that emerged afterward.
We tracked these categories separately since detection rates naturally differ between famil-
iar patterns and zero-day style discoveries. For risk classification evaluation, we employed
stratified sampling that preserved the natural distribution of risk categories while ensuring
sufficient representation of rare but critical cases. The class imbalance was substantial, with
approximately 73% of assets having at least one vulnerability, but individual CVEs typically
affected less than 1% of assets. This skew meant that simple accuracy metrics could be
misleading. An approach that predicted “no vulnerability” universally would achieve
85% accuracy for some CVE types just due to their rarity. Statistical validation followed
established practices for imbalanced classification problems. We computed precision-recall
curves for each risk category rather than relying solely on ROC curves, since AUPRC
better reflects performance when negative cases vastly outnumber positives. Calibration
assessment used Brier scores to evaluate whether predicted probabilities matched actual
outcome frequencies. For instance, when our model assigned 0.9 probability to critical
risk, we checked if roughly 90% of such cases were indeed critical. This calibration matters
operationally because security teams need to trust not just the predicted class but also the
confidence estimates. Cross-validation required special handling due to the interconnected
nature of organizational infrastructures. Standard random splits would leak information
since organizations often share infrastructure providers, certificate authorities, or content
delivery networks. We implemented organization-level splitting where all assets from a
given organization appeared together in either training or testing sets, never both. This
prevented overly optimistic performance estimates that would occur if the model could
learn organization-specific patterns from training data and apply them to test assets from
the same organization. The incident detection evaluation used a different validation ap-
proach since we needed confirmed security incidents as ground truth. These came from
participating organizations’ incident response teams, supplemented by public breach dis-
closures when available. We defined incidents conservatively as confirmed compromises
or exploitation attempts, excluding mere vulnerability scans or potential exposures that
were never actually exploited. Each incident classification required agreement from at least
two security analysts, achieving inter-rater reliability of 0.83.
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4. Results
4.1. Dataset and Setup

The experimental evaluation utilized 4.8 million heterogeneous OSINT records col-
lected through our automated framework over a 12-month observation period. The dataset
encompassed multiple data sources including DNS records (1.87 M entries), WHOIS
registrations (0.58 M), SSL/TLS certificates (1.05 M), and Certificate Transparency logs
(1.30 M). These records represented approximately 3800 organizations across diverse sectors
including technology (24%), financial services (19%), government entities (8%), healthcare
(14%), and other industries (35%).

Tables 15 and 16 summarizes the key characteristics of our experimental dataset,
showing the distribution across data sources and organizational sectors.

Table 15. Dataset characteristics and distribution across data sources.

Data Source Record Count Percentage Organizations Covered Update Frequency

DNS Records 1,870,000 38.9% 3234 Hourly
SSL/TLS Certificates1 1,050,000 21.9% 2876 Daily

WHOIS Data 580,000 12.1% 3800 Weekly
CT Logs 1,300,000 27.1% 2654 Real-time

Total 4,800,000 100% 3800

Table 16. Dataset characteristics and distribution across organizational sectors.

Sector Organizations Percentage Avg. Records/Org

Technology 912 24 1876
Financial Services 722 19 1654

Healthcare 532 14 987
Government 304 8 1234

Other 1330 35 876

Geographic diversity spanned 47 countries, with concentrations in North America
(34%), Europe (28%), and Asia-Pacific (26%).

4.2. Risk Classification (GBDT)

The GBDT-based risk classification achieved strong performance across all severity
categories, with particularly high accuracy for critical and high-risk assets. Overall accuracy
reached 93.3% on the test set, exceeding the design target of 90%. The model demonstrated
robust discrimination capabilities across the five risk categories, with performance patterns
that aligned with the feature importance analysis discussed in Section 3. Figure 14 illustrates
the precision-recall curves for each risk category, revealing particularly strong performance
for critical and minimal risk classifications. The area under the precision-recall curve
(AUPRC) values demonstrate the model’s ability to maintain high precision even at high
recall levels, which is crucial for security applications where missing critical vulnerabilities
carries severe consequences.

Table 17 presents detailed performance metrics across all risk categories. The results
demonstrate that the model maintains balanced performance, with weighted average preci-
sion and recall both reaching 0.91. This balance is particularly important for operational
deployment, as it ensures the system neither overwhelms analysts with false positives nor
misses critical threats.
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Figure 14. Precision-recall curves for GBDT risk classification showing area under curve (AUPRC) for
each risk category. Critical risks achieve AUPRC of 0.925, while minimal risks reach 0.945, indicating
strong discrimination at both extremes of the risk spectrum.

Table 17. GBDT classification performance metrics.

Risk Category Precision Recall F1-Score Support

Critical 0.94 0.91 0.92 2.480
High 0.92 0.89 0.90 6.800

Medium 0.88 0.93 0.90 17.200
Low 0.91 0.87 0.89 10.120

Minimal 0.95 0.94 0.94 3.440
Weighted Avg 0.91 0.91 0.91 40.040

The confusion matrix analysis revealed that misclassifications primarily occurred
between adjacent risk categories, which is operationally acceptable as these represent
gradual transitions in risk levels. Critical assets misclassified as high-risk represented
only 2.3% of critical instances, maintaining operational safety by ensuring truly critical
vulnerabilities receive appropriate attention. The most challenging distinction involved
medium-risk assets, where 7% were misclassified as low-risk. This pattern aligned with the
subjective nature of medium-risk assessments noted during the labeling process, where
expert agreement was the lowest (79.2%) for this category.

Feature importance analysis confirmed that network topology features provided the
strongest discriminative power with an importance score of 0.18, followed by temporal
volatility features (0.15) and certificate-based features (0.12). This hierarchy aligns with
recent research on criticality assessment in distributed systems, where Hnatienko et al. [74]
demonstrated the importance of role-based analysis for determining critical elements in
system stability. Similarly, Palko et al. [75] identified key risk factors in modern distributed
information systems that correlate with our feature importance findings.

Figure 15 presents a comparative visualization of model performance across differ-
ent feature set configurations, demonstrating the value of our integrated approach. The
baseline GBDT using only traditional OSINT features achieved an F1-score of 0.865, while
progressive addition of specialized features improved performance incrementally.
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Figure 15. F1-score comparison across different feature set configurations. The integrated approach
combining GBDT with DBSCAN cluster assignments achieves the highest performance with F1-score
of 0.91, representing a 4.3% improvement over baseline GBDT.

The most significant performance gain came from incorporating DBSCAN cluster
assignments as additional features, which improved overall accuracy by 4.3% compared
to baseline GBDT without clustering features. This improvement validates our integrated
approach, where unsupervised anomaly detection complements supervised classification.
The enhanced feature vector that includes cluster membership indicators and distances to
cluster centroids provides the GBDT model with additional context about asset behavioral
patterns, enabling more nuanced risk assessments.

Analysis of tree depth sensitivity revealed that optimal performance required different
depths for different feature categories. Network topology features required deeper trees
(depth 8–10) to capture complex interconnections, while simpler features like certificate
validity performed well with shallower trees (depth 4–6). This finding influenced our final
ensemble configuration, which uses variable tree depths based on feature subsets.

The model’s performance remained stable across different organizational types and
sectors. Technology companies, which comprised 24% of our dataset, showed slightly
higher classification accuracy (94.1%) compared to healthcare organizations (92.8%). This
difference likely reflects the more standardized infrastructure patterns in technology com-
panies, which provide clearer signals for risk classification. Government entities, despite
representing only 8% of the dataset, demonstrated consistent classification performance
(93.5%), suggesting the model generalizes well across sectors.

Temporal stability analysis revealed that model performance degraded by only 8%
over a six-month period without retraining, significantly better than the 30–40% degrada-
tion reported in comparable studies [30]. This stability results from our temporal feature
engineering approach, which explicitly models infrastructure evolution patterns rather
than treating OSINT data as static snapshots. The adaptive learning rate schedule and
careful feature selection contributed to this robustness against concept drift.

The GBDT implementation’s computational efficiency proved suitable for produc-
tion deployment. Average inference time was 47 ms per asset on standard hardware,
enabling real-time risk assessment even for large-scale infrastructures. Memory consump-
tion remained below 500 MB during inference, aligning with the resource requirements
predicted in our methodology Section 3. The model’s interpretability through feature
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importance scores provides security analysts with insight into risk drivers, facilitating trust
and adoption in operational environments.

4.3. Anomaly Detection (DBSCAN)

DBSCAN anomaly detection demonstrated robust performance in identifying security
incidents across different organizational environments (Table 18). The computational
efficiency shown in Figure 11 enabled real-time anomaly detection even for large-scale
datasets. The overall detection rate reached 76.8% for confirmed security incidents while
maintaining a false positive rate of 13.2%.

Table 18. DBSCAN anomaly detection results by environment.

Environment Type Detection Rate False Positive Rate Outlier % Avg. Cluster Size

Enterprise networks 78.4% 12.7% 8.3% 124
Cloud infrastructure 81.2% 16.3% 11.2% 87
Small organizations 69.3% 21.8% 14.5 $ 43
Mixed environments 74.6% 10.2% 6.7% 156

Cloud infrastructure showed the highest detection rates, likely due to more standard-
ized configurations that made anomalies more apparent. The vulnerability patterns we
observed align with the software security recommendations by Grechko et al. [76], who
identified similar threat vectors in distributed systems. Their analysis of buffer overflow
vulnerabilities as basic threat examples supports our anomaly detection approach. Small
organizations exhibited higher false positive rates, which were attributed to greater infras-
tructure diversity and less mature security practices. The epsilon parameter optimization
proved critical, with values between 0.15 and 0.25 providing optimal clustering across
different environment types.

The optimized implementation using locality-sensitive hashing achieved the perfor-
mance improvements demonstrated in Figure 11, processing datasets of 1 million points in
under 30 s compared to over 5 min for standard implementations.

4.4. Comparative Analysis

Comparative evaluation against established baselines demonstrated significant im-
provements in both coverage and efficiency. The architectural advantages illustrated in
Figure 9 translated directly to operational benefits. We compared our framework against
traditional OSINT tools (Shodan), active scanning (Nmap), and a hybrid commercial
solution (Table 19).

Table 19. Comparative analysis with baseline approaches.

Approach Coverage Precision Recall Analyst Hours/Week Cost per Org

Traditional (Shodan) 67% 72 65 120 $234
Active scanning (Nmap) 78% 81 71 80 $156

Hybrid commercial 85% 84 78 40 $123
Our framework 94% 91 89 8 $19

The proposed system reduced manual workload by approximately 58% compared
to traditional approaches and 50% compared to hybrid commercial solutions. Coverage
improvements resulted from comprehensive passive data collection that captured assets
missed by active scanning. The precision gains reflected sophisticated feature engineering
and ML-based risk assessment rather than simple threshold-based classification. Our ap-
proach extends the criticality determination methods proposed by Hnatienko et al. [74], the
risk identification framework by Palko et al. [75], and incorporates mathematical modeling
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principles from decision-making systems [76] and predictive modeling approaches [77],
demonstrating how machine learning can enhance traditional risk assessment methodolo-
gies in distributed systems

4.5. Scalability and Efficiency

The distributed architecture demonstrated near-linear scalability following the pat-
terns established in Figure 7. Processing rates reached approximately 312,000 records
per hour on a 16-node cluster, validating our architectural decisions. Figure 16 presents
the empirical scalability measurements, showing processing throughput as a function of
cluster size.

Figure 16. System scalability showing processing throughput versus cluster size with near-linear
scaling up to 16 nodes.

System scalability showing processing throughput versus cluster size with near-linear
scaling up to 16 nodes. The blue solid line tracks actual measured performance as nodes
are added to the cluster, while the red dashed line represents theoretical ideal linear scaling.
Green dots mark empirical measurement points collected during testing, and the shaded
green area around the performance line denotes the 95% confidence interval across multiple
runs. The system follows ideal scaling closely up to 12 nodes, after which coordination
overhead causes a slight efficiency drop. Throughput continues to increase at 16 nodes,
though not as efficiently as the theoretical model, with the performance gap remaining
within acceptable bounds for production deployment.

The system achieved near-real-time processing with end-to-end latency averaging
4.7 s from data ingestion to risk score generation. Figure 17 illustrates the latency break-
down across different processing stages.

Memory utilization remained stable at approximately 68% even under peak load,
validating the column sampling strategy for GBDT that reduced memory requirements by
65%. The optimized DBSCAN implementation maintained sub-second response times for
clustering operations on datasets up to 1 million points.

Horizontal scaling tests confirmed that adding nodes beyond 16 continued to improve
throughput, though with diminishing returns due to coordination overhead. The system
maintained stable performance characteristics even when processing the full 4.8 million
record dataset, demonstrating production readiness.
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Figure 17. End-to-end latency breakdown across processing pipeline stages.

Beyond scalability measurements, practical deployment requires understanding la-
tency characteristics and operational costs. The system maintains a mean end-to-end
latency of 4.7 s from data ingestion to risk score generation, with 95th percentile latency
reaching 8.9 s. These extended latencies occur primarily when processing assets requiring
correlation across multiple OSINT sources, representing approximately 12% of cases. Such
scenarios typically involve organizations with highly distributed infrastructures spanning
multiple cloud providers or geographic regions.

Cost analysis reveals the framework processes one million events for approximately
$4.46 using the 16-node AWS configuration described earlier. This breaks down as follows:
compute resources account for $2.67 per million events, storage contributes $0.89, and data
transfer adds $0.90. These figures represent steady-state operational costs excluding initial
setup, model training, or personnel requirements.

Compared to commercial SIEM solutions charging $15–25 per million events for similar
capabilities, our framework achieves approximately 72–82% cost reduction. This efficiency
stems from the optimized DBSCAN implementation using locality-sensitive hashing and
the column sampling strategy for GBDT that reduced memory requirements by 65%.
Organizations processing over 50 million events daily achieve substantial savings that
quickly offset deployment and maintenance costs, while smaller organizations processing
under 10 million events daily should evaluate whether managed services might prove
more economical when factoring in operational overhead.

4.6. Summary of Results

Overall, the automated OSINT framework achieved its design objectives across all key
metrics. Risk classification accuracy exceeded 92%, with particularly strong performance
for critical assets where precision matters most. The system reduced manual workload by
50–58% compared to existing approaches while maintaining higher accuracy and coverage.
Anomaly detection successfully identified 76.8% of security incidents with manageable
false positive rates.

The framework demonstrated scalability to millions of records with stable perfor-
mance, processing over 300,000 records per hour on a 16-node cluster. Cost reductions of
approximately 90% made continuous security monitoring accessible to a broader range
of organizations. The confidence distributions shown in Figure 12 and the risk score un-
certainty propagation illustrated in Figure 13 remained manageable even for complex
organizational infrastructures.



Computers 2025, 14, 430 44 of 54

These results validate both the theoretical approach and practical implementation,
confirming that comprehensive OSINT analysis can be effectively automated while main-
taining operational quality standards. The framework’s success in identifying critical
system elements validates the theoretical foundations established in related work on
system criticality [74] and distributed system risks [75] while addressing the security vul-
nerabilities identified in software development practices [76]. The integration of GBDT
classification with DBSCAN anomaly detection proved particularly effective, with the
combined approach outperforming either technique in isolation.

5. Discussion
5.1. Interpretation of Key Findings

The experimental results demonstrate that our automated OSINT framework achieved
its primary objectives, with risk classification accuracy reaching 92–93% and weighted
F1-scores maintaining 0.91–0.92 across all risk categories. Perhaps most significantly,
the system reduced analyst workload by approximately 50–58%, transforming OSINT
analysis from a labor-intensive manual process into an efficient automated capability.
These performance metrics align with the theoretical predictions from Chen and Guestrin’s
XGBoost framework [20], while extending their application to the specific domain of
cybersecurity reconnaissance.

These performance metrics translate directly to operational benefits. The high precision
rates, particularly for critical assets (0.94), mean that security teams can confidently priori-
tize their response efforts without wasting resources on false alarms. The 76.8% detection
rate for security incidents through DBSCAN anomaly detection provides early warning
capabilities that traditional threshold-based systems miss, validating Ester et al.’s [10]
density-based approach for security applications. Organizations can now identify exposed
assets within hours rather than days, enabling proactive vulnerability management before
adversaries exploit weaknesses.

The integration of GBDT and DBSCAN proved particularly effective, with cluster
assignments enhancing classification accuracy by 4.3%. This synergy demonstrates that
combining supervised and unsupervised approaches captures both known risk patterns
and emerging threats, supporting Zhou’s [64] ensemble method principles. The frame-
work’s ability to process 312,000 records per hour on a 16-node cluster means even
large enterprises can maintain continuous monitoring of their entire digital footprint,
addressing the scalability limitations identified by Durumeric et al. [43] in traditional
scanning approaches.

5.2. Comparison with Existing Work

Our comparative analysis reveals substantial improvements over existing OSINT plat-
forms and traditional approaches. As demonstrated in Table 18, the framework achieved
94% coverage compared to 67% for Shodan-based approaches and 78% for active scanning
with Nmap. These improvements validate the architectural decisions inspired by New-
man’s microservices patterns [50] and the distributed processing approaches of Marz and
Warren [56]. More importantly, precision improved to 91% while reducing analyst hours
from 120 per week for traditional methods to just 8 h with our automated system.

These improvements directly address the limitations identified in our related work
analysis. Szymoniak et al. [15] highlighted data quality inconsistencies as a primary
challenge in OSINT methodologies, which our preprocessing pipeline addresses through
sophisticated normalization and validation mechanisms. The system resolves the scala-
bility constraints documented by Pastor-Galindo et al. [14], where traditional approaches
struggled with the volume and velocity of modern digital infrastructure data.
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The architectural advantages over existing platforms stem from our integrated ap-
proach leveraging Kafka’s stream processing capabilities [55]. While Shodan excels at
device discovery and Censys provides comprehensive certificate analysis, as noted in
Table 1, neither combines multiple data sources with intelligent risk assessment. Our frame-
work’s ML-enhanced processing addresses the cross-correlation limitations that Kaufhold
et al. [17] identified as a critical gap in current methodologies. The ability to automatically
correlate DNS patterns, certificate anomalies, and WHOIS inconsistencies provides threat
visibility that single-source approaches miss.

Furthermore, our approach extends beyond the capabilities documented in recent
research. The criticality determination methods by Hnatienko et al. [74] and risk identi-
fication framework by Palko et al. [75] provide theoretical foundations that our system
operationalizes through automated feature extraction and ML-based assessment. This
bridges the gap between academic risk models and practical security operations, address-
ing the implementation challenges identified by Riebe et al. [27] in integrating machine
learning with OSINT workflows.

5.3. Practical Implications

The framework’s demonstrated capabilities have immediate applications across criti-
cal infrastructure sectors. Financial services organizations, which comprise 19% of our test
dataset, can leverage continuous OSINT monitoring to identify shadow IT assets and verify
third-party security postures. The 81.2% anomaly detection rate in cloud environments
addresses the dynamic nature of modern infrastructure where traditional periodic assess-
ments fail, supporting the findings of Kholidy and Baiardi [9] on cloud-based intrusion
detection requirements.

The economic impact extends beyond direct cost savings. This democratization of
security capabilities addresses the resource constraints identified by Evangelista et al. [18],
where manual OSINT analysis required 40–60 analyst hours per organization. Government
entities, despite representing only 8% of our dataset, showed consistent detection patterns,
suggesting the framework’s applicability to high-security environments with appropriate
data handling modifications.

Real-time monitoring capabilities transform incident response dynamics. With
4.7 s end-to-end latency, security teams receive alerts about infrastructure changes al-
most immediately. This speed proves critical when adversaries can exploit vulnerabilities
within hours of disclosure, as demonstrated by Bilge and Dumitras [40] with mean exploita-
tion times of 3.8 days for critical vulnerabilities. The framework essentially compresses
the defender’s OODA loop, enabling response actions before attackers’ complete recon-
naissance, addressing the temporal challenges identified by Akidau et al. [44] in stream
processing systems.

The 50% reduction in manual triage directly addresses the cybersecurity skills shortage
highlighted in industry reports [37]. Security analysts can focus on high-value investiga-
tion and response activities rather than routine data collection and initial classification.
The framework’s success in identifying critical system elements validates the theoretical
foundations established by Hnatienko et al. [74] on system criticality and extends them to
practical implementation. One large financial institution in our study reported reassigning
four analysts from OSINT collection to threat hunting, improving their overall security
posture while reducing operational costs.

5.4. Limitations

Despite strong performance metrics, several limitations warrant consideration. The
framework’s effectiveness depends fundamentally on OSINT data quality, which varies
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significantly across sources. WHOIS data showed 11.8% missing values in our dataset,
consistent with the data quality challenges identified by Szymoniak et al. [15]. Privacy
regulations increasingly restrict access to registration information, and while our imputation
strategies based on correlated attributes mitigate some quality issues, organizations with
limited public exposure may receive less accurate risk assessments.

Expert labeling subjectivity introduced unavoidable bias into supervised learning
components. Although we achieved 0.76 inter-rater reliability, the 79.2% expert agreement
for medium-risk assets indicates persistent ambiguity in risk assessment. This subjectivity
propagates through model training, potentially affecting classification boundaries between
risk categories. The challenge mirrors issues identified by Jacobs et al. [32] in developing
EPSS, where expert disagreement on exploit likelihood created model uncertainties.

DBSCAN’s computational complexity poses scalability challenges beyond our tested
configurations. While locality-sensitive hashing reduced complexity to O(n log n), process-
ing datasets exceeding 10 million records still requires substantial computational resources,
as noted by Azar et al. in their analysis of load balancing algorithms. The algorithm’s
sensitivity to epsilon and MinPts parameters necessitates environment-specific tuning, as
evidenced by the performance variations across organizational types in Table 17. Small
organizations with heterogeneous infrastructures showed 21.8% false positive rates, sug-
gesting the need for adaptive parameter selection mechanisms like those proposed by
xgiddo and Modha [61].

The framework also exhibits temporal limitations consistent with concept drift chal-
lenges identified by Gama et al. [73]. Our 90-day training window balanced model freshness
with stability, but rapidly evolving threats may outpace model updates. While our temporal
decay functions based on Bilge and Dumitras [40] partially address this issue, zero-day
exploits and novel attack vectors remain challenging to detect through historical pattern
analysis. The performance degradation of 8% over six months, though better than the
30–40% reported by Kan et al. [30], still necessitates continuous model retraining.

A more fundamental limitation concerns adversarial robustness, which we acknowl-
edged but did not thoroughly address in our experimental validation. The framework
was developed and tested under the assumption of normal operating conditions, where
data evolves naturally rather than being deliberately manipulated. Our temporal decay
mechanisms and periodic retraining procedures help when threat patterns shift organically,
but they provide minimal protection against intentional adversarial manipulation. An
attacker who understands our feature extraction process could potentially craft evasive
inputs that maintain malicious characteristics while appearing benign to our classifiers.
Similarly, poisoning attacks that introduce mislabeled training data could degrade the
GBDT model’s accuracy substantially, though we have not quantified this vulnerability.

This gap means the framework, in its current state, should not be deployed as a
primary defense mechanism for mission-critical or safety-critical systems. Organizations
protecting critical infrastructure should treat it as a supplementary tool that enhances
visibility and reduces manual workload, not as a hardened security barrier against sophis-
ticated adversaries. The framework performs well for routine OSINT analysis where the
primary challenge is scale rather than adversarial evasion, but assuming a non-adversarial
environment becomes less realistic as attackers grow more sophisticated.

While approaches like adversarial training, robust optimization, or ensemble defenses
could potentially improve resilience, implementing these would substantially increase com-
putational requirements and complexity. The trade-off between robustness and efficiency
remains an open challenge that extends beyond our specific application to the broader field
of machine learning in security contexts.
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Our evaluation methodology has clear limitations that we should acknowledge. We
concentrated on showing that the integrated framework performs reliably under real-world
conditions, rather than testing it against every possible baseline. While adding DBSCAN
clustering features improved GBDT performance by about 4.3%, we did not run systematic
comparisons with other anomaly detection methods such as Isolation Forest or Local
Outlier Factor. These could reveal useful trade-offs between accuracy and efficiency in
some contexts, but that exploration was outside our scope.

The same applies to benchmarking against newer OSINT-specific or graph-based
discovery systems. In practice, many academic systems lack open implementations for
reproducible comparison, while commercial tools rely on proprietary approaches that
cannot be replicated. In truth, our emphasis was on designing an operational system
that could work in production rather than optimizing for marginal performance gains
across algorithms.

Another limitation is the lack of comprehensive feature ablation studies. Although we
reduced the engineered feature set from 347 to about 120–150 through selection, we did
not systematically test every combination or grouping. The bidirectional coupling between
GBDT and DBSCAN improved results, yet whether simpler alternatives might achieve
similar gains remains unanswered. Fully addressing these methodological questions would
require significant additional computation and might warrant a dedicated study focused
on machine learning analysis rather than system architecture and deployment.

Our evaluation methodology also had insufficient controls against data leakage, a
limitation we came to understand more clearly in retrospect. We applied temporal splits
with training data before January 2024 and testing afterward, yet the OSINT collection
itself was not strictly separated. For example, certificates issued in 2023 but still valid
in 2024 appeared in both sets, introducing subtle temporal leakage. A more critical gap
was our lack of control over cross-organization leakage through shared infrastructure.
Organizations relying on the same CDN providers, certificate authorities, or cloud plat-
forms shared predictable patterns that appeared in both training and test partitions. We
estimate that about one-third of test organizations overlapped with training organizations
in this way, although we did not track it systematically during the original evaluation.
When we retroactively enforced stricter temporal isolation on a subset, accuracy dropped
from 93.3% to about 87%, which suggests our earlier results were somewhat optimistic.
The performance decay beyond six months was also not systematically tested. The 8%
degradation we reported was observed informally in operational use rather than through
controlled experiments with expanding temporal windows. Taken together, these factors
indicate that performance on truly novel organizations with distinct infrastructure is likely
lower than what we originally reported, and this should be considered when assessing
deployment readiness.

Finally, reproducibility presents a serious limitation that affect the verifiability of our
results. The OSINT data we collected contains sensitive organizational information that
cannot be publicly shared for obvious privacy and legal reasons, even with anonymization.
While we documented hyperparameters in the text (learning rate starting at 0.1 with decay,
tree depths of 8–10 for network features, epsilon values between 0.15 and 0.25 for DBSCAN),
we did not maintain a comprehensive configuration repository with all settings, random
seeds, and environment specifications. The cache TTL formula and load balancing algo-
rithms are described mathematically, but our actual implementation involves engineering
choices and optimizations that are not fully captured in these equations. Creating synthetic
OSINT data that preserves the statistical properties of real infrastructure while removing
identifying information proved more challenging than anticipated. Random generation
produces unrealistic patterns, while data based on actual infrastructure risks leaking sensi-
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tive information even after transformation. We recognize this severely limits independent
verification of our results. The best we can offer is to share our preprocessing and ML
pipeline code with sanitized configuration files, though without representative data, others
cannot fully replicate our experiments. This is an inherent tension in security research
where the most interesting datasets are precisely those that cannot be freely distributed.
Future work might explore differential privacy techniques or synthetic data generation
methods that could enable sharing while preserving privacy, but for now, reproducibil-
ity remains limited to those with access to similar OSINT sources who can collect their
own data.

The interpretability and justification of our risk scoring parameters represent another
limitation worth acknowledging. While decay rates were empirically derived from an-
alyzing 50,000 historical CVE lifecycles, the composite score weights (α = 0.4, β = 0.3,
γ = 0.3) resulted from iterative tuning across organizations rather than principled opti-
mization. We observed that varying these weights by ±20% changed overall accuracy
by less than 3%, suggesting reasonable robustness, but we did not conduct comprehen-
sive sensitivity analysis across the full parameter space. The absence of formal decision
curve analysis means we cannot provide definitive guidance on optimal risk thresholds
for triggering responses. Organizations in our study used different thresholds based on
their risk tolerance and resources, typically acting on scores above 0.7 for critical assets, but
we did not systematically evaluate the utility trade-offs of different operating points. The
framework allows organizations to adjust these parameters for their specific contexts, but
without sensitivity analysis, we cannot guarantee performance stability under significant
parameter changes. This makes it difficult to provide concrete operational guidance beyond
noting that our default parameters worked reasonably well across diverse organizations.

Our approach to ethical and legal compliance represents a final limitation that deserves
transparency. While we implemented practical privacy safeguards including deterministic
anonymization, consent from participating organizations, and restricted data access, we
did not prepare formal compliance documentation expected under frameworks like GDPR.
We lacked a documented Legitimate Interest Assessment, did not conduct a comprehensive
Data Protection Impact Assessment for continuous monitoring, and did not formally verify
compliance with all vendor terms of service beyond staying within API rate limits. The
research operated under institutional ethical guidelines and academic licensing agreements,
but these do not fully address the legal complexities of processing infrastructure data
that, while publicly accessible, might contain indirect personal information. Organizations
considering deploying this framework should conduct their own compliance assessments,
particularly regarding the legal basis for continuous OSINT collection in their jurisdiction.
The gap between academic research practices and operational compliance requirements
remains a challenge for security research that analyzes real-world infrastructure.

5.5. Threats to Validity

Beyond the specific limitations discussed above, several broader threats to validity
affect our findings. Dataset drift poses an ongoing challenge as the infrastructure patterns
we observed during our 12-month study period continue evolving. The OSINT landscape
itself changes as organizations adopt new technologies, migrate to different cloud providers,
or implement privacy-enhancing measures that reduce their observable footprint. Our
model’s performance on current infrastructure may differ from what we reported.

Honeypot contamination represents another validity threat we could not fully quantify.
Some observed assets in our dataset likely included deliberate deception infrastructure
designed to mislead attackers. While these honeypots serve legitimate defensive purposes,
they introduce noise into our training data. We estimate based on known honeypot signa-
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tures that fewer than 2% of assets were deceptive, but sophisticated honeypots designed to
appear completely legitimate would evade our detection.

Geographic and sectoral bias in our dataset may limit generalizability. Despite includ-
ing 47 countries, our data skewed toward North America and Europe, which comprised
62% of organizations. Similarly, technology and financial services represented 43% of our
sample. Performance in underrepresented regions or sectors might differ substantially.
Small organizations with unique infrastructure patterns showed higher false positive rates,
suggesting our model learned patterns more common in larger, standardized deployments.

Temporal validity affects our risk assessments in ways beyond simple concept drift.
Our CVE detection was validated against vulnerabilities known at testing time, but the
framework’s ability to identify precursors to future zero-day exploits remains unproven.
The six-month observation period may have been insufficient to capture seasonal patterns
or longer-term infrastructure evolution cycles that could affect model stability.

5.6. Future Work

Several promising directions emerge to enhance the framework’s capabilities. Integra-
tion with the Exploit Prediction Scoring System (EPSS) [33] could improve risk prioritization
by incorporating real-world exploitation probabilities. Current CVSS-based scoring treats
all critical vulnerabilities equally, but EPSS data shows only 26.6% of critical CVEs are
exploited in practice. Combining EPSS predictions with our OSINT-derived features could
reduce false positives while maintaining high detection rates for exploited vulnerabilities.

Cloud-native and containerized environments require specialized adaptation building
on Shamim et al.’s [34] work on Kubernetes security. Our results showed higher false posi-
tive rates for cloud infrastructure (16.3%), suggesting the need for cloud-specific features.
Integrating with cloud provider APIs could enable real-time configuration monitoring,
while container registry scanning would address the software supply chain risks identified
by Ponta et al. [35]. Kubernetes admission controllers could provide runtime validation of
our risk assessments, creating a feedback loop for continuous improvement.

Natural language processing integration offers substantial potential for enriching
threat intelligence, extending the NLP capabilities analyzed in Table 10. Security advi-
sories, threat reports, and underground forum discussions contain valuable context missing
from technical OSINT data. Preliminary experiments with transformer-based models
showed promise in extracting indicators of compromise from unstructured text. Com-
bining NLP-derived intelligence with our technical features could improve detection of
sophisticated threats that maintain normal-appearing infrastructure, addressing the covert
communication patterns identified by Zhang et al. [21].

The framework would benefit from semi-supervised and online learning capabilities
to combat concept drift [77]. Neural network methods have demonstrated effectiveness
in prediction tasks across various domains [78] and could potentially enhance OSINT
analysis through improved pattern recognition capabilities, particularly for identifying
subtle behavioral anomalies that gradient boosting methods might miss. Current batch
training requires complete retraining for model updates, creating windows of degraded
performance. Online learning algorithms could continuously adapt to evolving threat
landscapes while maintaining classification stability. Semi-supervised approaches might
leverage the 95% of unlabeled data in production environments, improving model ro-
bustness without extensive manual labeling. This would address the temporal factors
highlighted by Antonakakis et al. [24] in their analysis of evolving malware infrastructure.

Finally, developing explainable AI components would enhance operational trust and
enable security analysts to understand risk assessments. While GBDT provides some
interpretability through feature importance scores, complex interactions between features
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remain opaque. Techniques like SHAP (SHapley Additive exPlanations) could provide
instance-level explanations, helping analysts validate automated assessments and identify
potential model failures. This transparency becomes crucial for adoption in regulated
industries and aligns with the privacy and ethical considerations raised by Riebe et al. [16]
regarding OSINT technologies.

The integration of our framework with broader security orchestration platforms repre-
sents the next frontier in proactive cybersecurity. By combining continuous asset discovery,
real-time vulnerability assessment, and intelligent threat correlation, these systems promise
to fundamentally transform how organizations approach security monitoring and incident
response. The success demonstrated in our experiments, building upon the theoreti-
cal foundations of distributed systems [50,56] and machine learning applications [20,64],
confirms that comprehensive OSINT analysis can transition from manual processes to scal-
able, automated capabilities that enhance organizational security posture while reducing
operational costs.

6. Conclusions
This study presented a comprehensive framework for automated digital asset dis-

covery and cyber risk assessment through the integration of Open-Source Intelligence
methodologies with advanced machine learning techniques. The proposed system suc-
cessfully combines passive reconnaissance capabilities for continuous asset discovery,
sophisticated risk scoring mechanisms leveraging GBDT classification, and anomaly detec-
tion through DBSCAN clustering. By addressing the fundamental limitations of traditional
OSINT approaches identified in contemporary literature [14,15], our framework transforms
labor-intensive manual processes into scalable, automated capabilities that maintain high
analytical precision significantly reducing operational overhead.

The experimental validation demonstrated compelling performance metrics that vali-
date our architectural and algorithmic choices. The framework achieved 93.3% accuracy in
risk classification, with particularly strong performance for critical assets where precision
matters the most. The system reduced manual analyst workload by 50–58% compared to
existing approaches, enabling organizations to monitor 15–25 entities per analyst per week
versus 1–2 with traditional methods. Processing capabilities exceeded 312,000 records per
hour on a 16-node cluster, demonstrating scalability to millions of records while maintain-
ing stable performance characteristics. These results confirm that the integration of dis-
tributed processing architectures [50,56] with ensemble machine learning methods [20,64]
can effectively address the volume, velocity, and variety challenges inherent in modern
OSINT analysis.

The practical implications extend across critical infrastructure sectors, with immediate
applicability for Security Operations Centers, financial services, and government entities.
The framework’s ability to reduce per-organization assessment costs from $234 to $19
makes continuous security monitoring accessible to a broader range of organizations,
democratizing access to sophisticated threat intelligence capabilities. Real-time processing
with 4.7 s end-to-end latency enables proactive vulnerability management, while the 76.8%
detection rate for security incidents provides early warning capabilities essential for modern
cyber defense. The successful identification of critical system elements validates theoretical
foundations on system criticality [74] and distributed system risks [75], demonstrating how
academic research can translate into operational security improvements.

The convergence of OSINT methodologies, machine learning algorithms, and dis-
tributed processing architectures demonstrated in this work represents a significant ad-
vancement in proactive cybersecurity capabilities. As digital infrastructures continue to
expand in complexity and attack surfaces evolve at unprecedented rates, automated recon-
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naissance and risk assessment systems will become increasingly critical for maintaining
defensive advantage. Our framework provides a foundation for this evolution, demonstrat-
ing that comprehensive security intelligence can be generated automatically, accurately,
and affordably. The transition from reactive to proactive security postures, enabled by
continuous automated OSINT analysis, offers organizations a path toward more resilient
and adaptive cyber defense strategies in an era of escalating digital threats.
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