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Abstract: WSNs are significant components of modern IoT systems, which typically operate
in resource-constrained environments integrated with fog and cloud computing to achieve
scalability and real-time performance. Integrating these systems brings challenges such as
security threats, scalability bottlenecks, and energy constraints. In this work, we propose
a bioinspired blockchain framework aimed at addressing those challenges through the
emulation of biological immune adaptation mechanisms, such as the self-recovery of swarm
intelligence. It integrates lightweight blockchain technology with bioinspired algorithms,
including an AIS for anomaly detection and a Proof of Adaptive Immunity Consensus
mechanism for secure resource-efficient blockchain validation. Experimental evaluations
give proof of the superior performance reached within this framework: up to 95.2% of
anomaly detection accuracy, average energy efficiency of 91.2% when the traffic flow
is normal, and latency as low as 15.2 ms during typical IoT scenarios. Moreover, the
framework has very good scalability since it can handle up to 500 nodes with only a latency
of about 6.0 ms.

Keywords: blockchain; wireless sensor networks; fog computing; cloud computing; bioin-
spired algorithms; security; anomaly detection

1. Introduction
The exponential growth of the IoT has led to an unprecedented increase in WSNs [1,2].

These networks represent a set of sensor nodes that are resource-constrained and used in
many different domains such as smart cities, health care, and industrial automation [3–7].
This feature of WSNs to sense, collect, and transmit data in real time provides the basis for
modern IoT systems [8–10]. However, their computation capacity, energy efficiency, and
security limitations pose important challenges for large-scale deployment [11–13].

Integrating WSNs with fog and cloud computing has emerged as a revolutionary
strategy to address the pressing challenges of energy efficiency, scalability, and security
in IoT ecosystems. Fog computing brings computational and storage capabilities closer
to the data source, enabling low-latency processing and bandwidth optimization [14].
Cloud computing complements this by offering robust scalability and extensive storage
resources [15,16]. However, these advantages also introduce new challenges, such as main-
taining energy-efficient operations, ensuring scalability across dynamic IoT environments,
and safeguarding against evolving security threats [17]. This convergence enhances op-
erational efficiency in WSNs, thus making them capable of machine learning and hence
opening completely new possibilities for IoT applications [18].
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Integrating WSNs with fog and cloud environments raises several critical challenges.
The distributed nature intrinsic to WSNs makes them highly susceptible to security threats
like data tampering, spoofing, and denial-of-service attacks [19]. Scalability becomes a
bottleneck when the number of sensor nodes increases in WSNs as it may cause latency and
bandwidth problems. These above issues are further exacerbated by the energy constraints
of the nodes in WSNs, since the strong security and communication protocols often imply
increased power consumption. In other words, the key research question is as follows:
How can we design a scalable and secure framework for WSN integration with fog and
cloud ecosystems that addresses resource constraints while ensuring real-time performance
and resilience?

The novel bioinspired blockchain framework for the integration of WSNs with fog and
cloud ecosystems in a secure and scalable way is mainly inspired by adaptive immunity,
self-healing, and swarm intelligence of biological processes. This framework benefits from
lightweight blockchain technology together with bioinspired algorithms in the design
toward enhanced security, scalability, and energy efficiency. Key innovations include an
AIS (a bioinspired algorithm modeled on the human immune response, used for real-time
anomaly detection in this framework) for anomaly detection, a PoAI (a lightweight con-
sensus mechanism inspired by biological immune systems, designed to optimize resource
usage during blockchain validation) consensus algorithm enabling secure and resource-
efficient blockchain validation, and a self-healing mechanism enabling system resilience as
depicted in Figure 1. The major contributions of this work follow.

• Development of a bioinspired blockchain framework that leverages biological princi-
ples for enhanced security and resilience in WSN–fog–cloud ecosystems.

• Design of a lightweight AIS-based anomaly detection algorithm for real-time threat
identification in resource-constrained environments.

• Introduction of a novel PoAI consensus mechanism to optimize blockchain validation
for WSN nodes with limited resources.

Figure 1. An integrated framework emphasizing security enhancements, energy efficiency, scalability
improvements, AIS-based anomaly detection, a PoAI consensus mechanism, and a self-healing
mechanism for advanced IoT systems.

The rest of this paper is structured as follows: Section 2 reviews related work. Section 3
describes the proposed architecture, including the system design, and workflow, and ex-
plains the algorithm and models, such as AISs and PoAI. Section 4 discusses the implemen-
tation details and tools used and presents the evaluation setup and results, highlighting
the performance of the proposed framework. Finally, Section 5 concludes the paper.
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2. Related Work
This section reviews the related literature about WSN security mechanisms, blockchain

in IoT, and bioinspired computing to look in detail at the contributions, limitations, and gaps
that motivated the proposal. Existing approaches, such as BB-IoT and AI-SecIoT, provide
foundational methods for integrating the IoT and blockchain. However, these frameworks
exhibit significant limitations. For example, BB-IoT suffers from high computational
overhead, making it unsuitable for resource-constrained environments. AI-SecIoT offers
better adaptability but falls short in dynamic IoT scenarios, where node failures and
fluctuating workloads affect overall system reliability. Moreover, many frameworks rely on
traditional consensus mechanisms, which are energy-intensive and not scalable for large-
scale IoT deployments. These gaps highlight the need for a more adaptive, lightweight,
and robust framework, which our BioBlock approach addresses.

A lot of methods have been proposed to mitigate the security issues in WSNs. Con-
ventional symmetric key-based encryption is largely in use but suffers mostly due to
limited resources [20]. At the other end of the spectrum, lighter versions of protocols
reduce the drawbacks of these protocols to very low protection against sophisticated attack
methodologies [21]. Anomaly detection technologies, such as machine learning-based
models, enhance detection accuracy but in turn require high computational resources and
are impractical for large-scale WSNs [22]. Unlike conventional machine learning-based
anomaly detection algorithms, an AIS operates with linear computational complexity,
making it suitable for resource-constrained WSNs. Additionally, an AIS utilizes adaptive
learning to update its antibody set dynamically, enabling it to perform well in dynamic IoT
environments where traffic patterns frequently change.

The blockchain is considered as a promising solution for the data integrity and security
of communications in the IoT. Its decentralized nature inherently eliminates the need
for any trusted intermediate entities, further enhancing security [23]. Classic consensus
mechanisms, such as Proof of Work, are highly resource-consuming and therefore cannot
be deployed in resource-constrained WSNs [24]. Novel lightweight blockchain approaches,
such as Proof of Stake and DAG-based ledgers, reduce resource consumption at the expense
of often decreasing decentralization and fault tolerance [25].

Bioinspired systems mimic natural processes to solve complex computational prob-
lems. Techniques like AISs and swarm intelligence have been applied to enhance network
security and resource optimization [26]. For instance, AIS-based anomaly detection models
replicate the immune response to identify malicious activity. Swarm intelligence has been
employed for decentralized decision-making in IoT networks, demonstrating scalability
and adaptability [27].

Existing solutions for WSN security often fail to balance energy efficiency, scalabil-
ity, and security. Traditional blockchain systems are unsuitable for resource-constrained
environments due to their computational requirements. While bioinspired systems offer
promising solutions, their potential to address WSN challenges through blockchain inte-
gration has not been fully realized. In particular, almost none of the existing frameworks
have provided adaptive, self-healing, and lightweight mechanisms to improve robustness
performance in WSN–fog–cloud ecosystems. Table 1 summarizes the limitations of existing
approaches together with the corresponding solutions formulated by BioBlock.
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Table 1. Comparison of existing approaches with proposed BioBlock solution

Approaches Identified Limitations Proposed BioBlock Solution

BB-IoT [28] High computational overhead and limited
scalability in resource-constrained WSNs.

Utilizes lightweight blockchain for secure and
efficient data validation, scaling up to 500 nodes.

BioAI-IoT [29] Limited protection against sophisticated
attacks and suboptimal energy efficiency.

Incorporates Artificial Immune Systems (AISs)
for enhanced anomaly detection and

energy-aware communication protocols.

AI-BCIoT [30] Computationally intensive consensus
mechanisms and moderate scalability.

Introduces Proof of Adaptive Immunity (PoAI)
for resource-efficient blockchain validation and

improved scalability.

AI-SecIoT [31] Limited adaptability to dynamic IoT
scenarios and scalability.

Combines AISs with self-healing mechanisms for
robust anomaly detection, achieving high

scalability and adaptability.

BioBlock (Proposed)
Existing solutions fail to balance

scalability, energy efficiency, and anomaly
detection accuracy.

Combines AISs with bioinspired self-healing and
PoAI, achieving 95.2% accuracy, 91.2% energy

efficiency, and efficient scaling up to 500 nodes.

3. Proposed Work
The proposed framework improves security, scalability, and resilience for WSNs

integrated with fog and cloud computing. An adaptive and self-healing framework is
presented that is bioinspired to be more effective than current solutions. The data integrity
is ensured through the lightweight blockchain concept, while anomaly detection in real
time and resources are optimized by the bioinspired algorithms.

To formalize this framework, we define the system components and their interactions
with novel mathematical formulations. Let the system be composed of the following:

• Ns: number of sensor nodes in the WSN.
• N f : number of fog nodes.
• Nc: number of cloud nodes.
• D(t): data generated by the WSN at time t, measured in bits.
• Ei(t): energy of node i at time t, where i ∈ {1, . . . , Ns}.

The total data Dtotal(t) processed in the system are given as:

Dtotal(t) =
Ns

∑
i=1

Di(t) +
N f

∑
j=1

Dj(t) +
Nc

∑
k=1

Dk(t), (1)

where Di(t), Dj(t), and Dk(t) are the data contributions from sensor, fog, and cloud
nodes, respectively. The system incorporates an adaptive security mechanism inspired by
biological immunity. Let Si(t) represent the security level of node i at time t, defined as:

Si(t) = α · Ai(t) + β · Ri(t) + γ · Ci(t), (2)

where

• Ai(t): anomaly detection accuracy of node i.
• Ri(t): resource availability (energy, computation) of node i.
• Ci(t): connectivity strength of node i, representing its ability to communicate reliably.
• α, β, γ: weighting factors satisfying α + β + γ = 1.
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Nodes with higher Si(t) values are prioritized for blockchain validation and security
operations. The framework uses a bioinspired lightweight blockchain model. Each block B
is validated by a subset of nodes V, selected based on their security levels:

V = {i ∈ {1, . . . , Ns} | Si(t) > θ}, (3)

where θ is a predefined security threshold. The validation time Tv for a block is given by:

Tv =
1
|V| ∑

i∈V

Ci(t)
Ei(t)

, (4)

where |V| is the cardinality of the validation set. The self-healing mechanism ensures
resilience against data corruption or attacks. Let H(t) represent the health state of the
system at time t, defined as:

H(t) = 1 − ∑Ns
i=1 Fi(t)

Ns
, (5)

where Fi(t) is the failure state of node i at time t (1 if failed, 0 otherwise). If H(t) < δ, where
δ is a critical threshold, a self-healing protocol is triggered to replace corrupted blocks:

Brecovered = arg max
B∈Bneighbors

Match(B, Bmajority), (6)

where Bneighbors is the set of blocks in neighboring nodes, and Match computes the similar-
ity with the majority consensus block Bmajority. To ensure prolonged network operation,
the framework optimizes energy usage. The average energy consumption Eavg(t) across all
sensor nodes is given as:

Eavg(t) =
1

Ns

Ns

∑
i=1

(Pi(t) · Ti(t)), (7)

where

• Pi(t): power consumed by node i at time t.
• Ti(t): active time duration of node i during t.

Minimizing Eavg(t) ensures efficient energy utilization.

3.1. Three-Tier Architecture

We propose a novel three-tier architecture-based framework by integrating the ca-
pabilities of WSNs, fog nodes, and cloud computing. Each layer has distinct roles and
responsibilities in ensuring operations are secure, scalable, and energy-efficient. Figure 2
illustrates the proposed three-tier architecture, which integrates a Wireless Sensor Net-
work (WSN), fog computing, and cloud computing to enable a robust IoT ecosystem. The
WSN layer, comprising resource-constrained sensor nodes, performs lightweight anomaly
detection using Artificial Immune System (AIS) algorithms and maintains micro-ledgers
for data integrity. The fog layer aggregates data from multiple sensor nodes, conducts
swarm intelligence-based anomaly detection, and maintains an intermediate blockchain
for decentralized validation. The cloud layer consolidates validated data from fog nodes
into a global blockchain and executes advanced anomaly detection models for large-scale
security analysis.
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Figure 2. Three-tier architecture integrating a WSN, fog, and cloud layers for secure and scalable
IoT systems.

The WSN layer is the edge of the architecture, composed of Ns resource-constrained
sensor nodes. These nodes perform lightweight anomaly detection based on an AIS
model, and each node maintains a local micro-ledger for data integrity. The quantity of
data generated by node i at time t is represented by Di(t), and the security level Si(t) is
calculated by:

Si(t) =
1

Ci(t)
· Di(t), (8)

where

• Ci(t): computation cost for anomaly detection at node i.
• Di(t): detection accuracy at node i, computed by using an AIS similarity metric.

To save energy, all nodes are using an energy-aware transmission protocol. The
probability of data transmission Ptrans

i (t) is dynamically adjusted based on the node’s
residual energy Ei(t):

Ptrans
i (t) =

Ei(t)
max(E1(t), . . . , ENs(t))

. (9)

The fog layer aggregates data from N f fog nodes, performs anomaly detection using
swarm intelligence, and maintains an intermediate blockchain. The aggregated data D f (t)
at fog node j are defined as:

D f (t) =
Ns

∑
i=1

δij · Di(t), (10)

where δij is a binary variable indicating whether node i transmits to fog node j.
Swarm intelligence-based anomaly detection assigns a “pheromone” value ϕ f (t) to

the aggregated data:

ϕ f (t) =
Susp(D f (t))

Norm(D f (t))
, (11)
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where

• Susp(D f (t)): suspicious activity score for D f (t).
• Norm(D f (t)): normal activity baseline.

Data with higher ϕ f (t) values are flagged for further analysis or rejection.
Fog nodes also implement a self-healing mechanism to recover corrupted blocks. Let

B f (t) represent the blockchain at fog node j. If a block Bk
f (t) is corrupted, it is replaced by a

neighboring node’s validated block Bvalid
f (t):

Bk
f (t) = arg max

B∈N f
Sim(B, Bmajority), (12)

where N f represents the neighboring fog nodes, and Sim measures block similarity.
The cloud layer consolidates validated data from fog nodes into a global blockchain

and performs large-scale anomaly detection using bioinspired algorithms. The total data
Dc(t) processed at the cloud are:

Dc(t) =
N f

∑
j=1

Dj
f (t), (13)

where Dj
f (t) represents the validated data from fog node j.

The cloud employs a global anomaly detection model, where anomalies are flagged
using a distributed similarity metric:

Ac(t) =
∑

N f
j=1 Anom(Dj

f (t))

∑
N f
j=1 Total(Dj

f (t))
, (14)

where

• Anom(Dj
f (t)): number of anomalous transactions in Dj

f (t).

• Total(Dj
f (t)): total transactions in Dj

f (t).

Finally, the cloud implements system-wide security policies based on the global
blockchain state. If the global health state Hc(t) (defined as in Equation (5)) falls below a
threshold δc, the cloud initiates corrective actions across all layers.

The interaction between layers is governed by a feedback loop:

Layer Interaction: F = {D(t), S(t), H(t)}, (15)

where F represents the data flow, security updates, and health status exchanged between
WSN, fog, and cloud layers. This loop facilitates seamless communication and adaptive
decision-making across all layers. For example, real-time anomaly detection results from the
WSN layer are aggregated at the fog layer, which processes them using swarm intelligence
algorithms. Validated outputs are then transmitted to the cloud layer for large-scale analysis
and global policy enforcement.

3.2. AIS for Anomaly Detection

The AIS algorithm mimics the biological immune system by classifying data packets
as normal or anomalous based on their similarity to predefined patterns. It uses affinity
scores to measure how closely incoming packets match normal behavior. AIS mimics the
biological immune system to detect anomalies at the WSN and fog layers. Incoming data
packets are treated as antigens, which are compared with stored “antibodies” representing
normal behaviors. Anomalous packets are identified based on their affinity score with
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the antibodies as explained in Algorithm 1. The AIS algorithm employed a learning rate
(η) of 0.1, and the affinity threshold (δ) was set to 0.85, as these values provided optimal
accuracy during validation experiments. The computational complexity of the proposed
framework’s AIS-based anomaly detection algorithm is O(nm), where n represents the
number of incoming data packets and m is the number of antibodies stored in the model.
This linear complexity ensures scalability for larger IoT deployments while maintaining
real-time processing capabilities. The affinity threshold (δ) of 0.85 ensures a high balance
between false positives and false negatives. Additionally, the dynamic antibody update
mechanism adapts to changing traffic patterns, allowing the system to maintain an anomaly
detection accuracy of up to 95.2%.

Algorithm 1: AIS for anomaly detection
Input: Din: incoming data packets; A: set of antibodies; δ: affinity threshold;

// Input parameters for anomaly detection
Output: Cout: classification results (normal/anomalous); // Output

classification results
1 Initialization: Generate initial antibody set A = {A1, A2, . . . , Am} representing

normal behaviors; // Antibodies initialized to represent normal
patterns

2 while new packet d ∈ Din do
// Iterate through incoming data packets

3 Step 1: Affinity Calculation; // Calculate similarity of the packet
with antibodies

4 Compute affinity scores S = {S1, S2, . . . , Sm} for d using:

Si = sim(d, Ai), ∀Ai ∈ A

where sim(d, Ai) is a similarity metric (e.g., Euclidean distance or cosine
similarity); // Equation (2) is used to calculate affinity scores

5 Step 2: Classification; // Classify packet based on affinity scores
6 if max(S) ≥ δ then

// Check if affinity exceeds the threshold
7 Classify d as Normal; // Classify packet as normal if similarity

is high

8 else
9 Classify d as Anomalous; // Classify packet as anomalous

otherwise

10 end
11 Step 3: Antibody Update; // Update antibody set with normal packets
12 if d is classified as Normal then

// Update antibodies only with normal packets
13 Add d to the antibody set A with learning rate η:

Anew = (1 − η) · Aexisting + η · d

; // Equation (3) defines how new antibodies are generated

14 end
15 Remove outdated antibodies from A based on their utility scores;

// Maintain relevance by removing outdated antibodies

16 end
17 return Cout; // Return the classification results for all packets
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3.3. Proof of Adaptive Immunity

The PoAI mechanism assigns a higher validation priority to nodes with better residual
energy and communication reliability. It assigns validation priority to nodes based on their
adaptive immunity score, Si(t), calculated as a weighted combination of critical metrics:

Si(t) = α · Ai(t) + β · Ei(t) + γ · Ci(t), (16)

where

• Ai(t): anomaly detection accuracy of node i at time t.
• Ei(t): residual energy of node i.
• Ci(t): communication reliability of node i, defined as the successful data transmis-

sion rate.
• α, β, γ: weighting factors satisfying α + β + γ = 1.

Nodes with Si(t) ≥ θ, where θ is a predefined threshold, are selected for transaction
validation. The time to validate a block Tv is minimized as:

Tv =
1
|V| ∑

i∈V

Ci(t)
Ei(t)

, (17)

where V is the set of validating nodes. Accordingly, the consensus mechanism provides a
lightweight and secure consensus by giving more priority to the nodes that contribute a
good trade-off between accuracy, energy, and reliability. The PoAI mechanism prioritized
nodes with an adaptive immunity score threshold of 0.8. Validation times were measured
using Equation (17) and averaged across 200 validation cycles.

Algorithmic overhead discussion: The integration of bioinspired algorithms, such
as AIS and PoAI, introduced minimal overhead relative to their computational benefits.
For instance, swarm intelligence-based mechanisms for anomaly detection at the fog layer
added a small processing delay of 3–5 ms, which was offset by the significant improvement
in detection accuracy and system resilience.

3.4. Self-Healing Protocol

This self-healing protocol provides resilience against corrupted blocks or malicious
attacks by enabling automated recovery. In case any fog blockchain block Bk is detected
as corrupted, it is replaced with the collaborative effort of neighboring fog nodes using a
consensus mechanism. The steps of detection and recovery are:

• Detect corruption by verifying the hash integrity of Bk against stored metadata.
• Identify a majority-valid block Bvalid from neighboring nodes:

Bvalid = arg max
B∈N f

Sim(B, Bmajority),

where N f is the set of neighboring fog nodes, and Sim is a similarity metric for block
comparison.

• Replace Bk with Bvalid in the local blockchain.

The fog-level anomaly detection uses swarm intelligence inspired by ant colony
behavior; swarm intelligence allows fog nodes to collaboratively detect anomalies. Each
fog node acts as an agent, aggregating data and tagging them with a “pheromone” value
based on its suspiciousness:
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ϕ f (t) =
Susp(D f (t))

Norm(D f (t))
, (18)

where

• Susp(D f (t)): suspicious activity score of aggregated data D f (t).
• Norm(D f (t)): normal activity baseline.

Nodes with higher pheromone values are prioritized for detailed analysis or rejection.
Pheromone values decay over time, to prevent oversensitivity for older anomalies:

ϕ f (t + 1) = ρ · ϕ f (t), (19)

where ρ ∈ (0, 1) is the decay factor.

3.5. Energy-Aware Communication Protocol

The energy-aware communication protocol dynamically adjusts security measures and
communication patterns based on node energy levels. For a sensor node i, the probability
of transmitting data Ptrans

i (t) is proportional to its residual energy.
The energy-aware communication protocol dynamically adjusts the security measures

depending on node energies as well as the communication pattern. For a sensor node, the
probability that it transmits data is directly proportional to its residual energy. The dynamic
adjustment of communication and security protocols ensures optimal energy utilization.
For instance, low-energy nodes prioritize lightweight encryption while high-energy nodes
manage intensive tasks. Sleep scheduling further enhances energy efficiency during low
activity periods, contributing to an average of 91.2% efficiency in normal traffic conditions.

Ptrans
i (t) =

Ei(t)
max(E1(t), E2(t), . . . , ENs(t))

. (20)

Nodes with lower energy prioritize lightweight encryption protocols (e.g., AES-128),
while high-energy nodes perform computationally intensive tasks such as anomaly detec-
tion and blockchain validation. The key features are as follows:

• Adaptive encryption: low-energy nodes use lightweight algorithms; high-energy
nodes perform secure validation.

• Sleep scheduling: non-critical nodes enter sleep mode during low-activity periods to
conserve energy.

• Cluster-based optimization: cluster heads manage communication and security opera-
tions for their member nodes.

3.6. Adaptability Across IoT Devices

The adaptability of the BioBlock framework was validated across diverse IoT devices,
including low-power sensor nodes, mid-tier edge devices, and high-performance fog nodes.
During deployment in real-world scenarios, practical constraints such as limited hardware
resources, intermittent network connectivity, and device heterogeneity were considered.
For instance, the energy-aware communication protocol dynamically adjusts security
measures based on device capabilities, while the lightweight cryptographic algorithms and
adaptive anomaly detection methods ensure compatibility with constrained environments.
The features make the framework deployable in scenarios such as industrial automation,
remote environmental monitoring, and smart cities.
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4. Simulation Setup and Results
The simulations were conducted using NS-3 and Cooja, modeling network dynamics

over a 200-min duration. The transmission range was set to 100 m, packet size to 512 bytes,
and data rate to 1 Mbps. Node energy levels were varied between 10% and 100% to evaluate
performance under resource constraints. The algorithms and models, such as the AIS, PoAI,
and swarm intelligence, were implemented using programming languages like Python
for AIS and algorithmic components and Go for blockchain-specific modules. Realistic
IoT datasets containing network traffic, attack patterns, and resource utilization metrics
were employed for training and evaluation. The proposed approach, “BioBlock”, was
compared with the state-of-the-art approaches BB-IoT [28], BioAI-IoT [29], AI-BCIoT [30],
and AI-SecIoT [31].

4.1. Anomaly Detection Accuracy

The evaluation of anomaly detection accuracy across six scenarios—normal traffic,
high traffic volume, distributed attacks, dynamic IoT environment, environmental factors,
and random node failures—is shown in Figure 3. The BB-IoT consistently performed the
poorest across all scenarios, with accuracy values ranging from 85.0% to 89.4%, reflecting
its limitations in handling high traffic volumes, dynamic conditions, and disruptions like
random node failures. BioAI-IoT and AI-BCIoT demonstrated moderate performance,
achieving accuracy values between 88.0% and 91.5%, indicating their ability to address
certain challenges but with limitations under extreme or fluctuating conditions. AI-SecIoT
performed better, with accuracy values ranging from 89.0% to 93.0%, showcasing improved
adaptability to dynamic and high-stress scenarios. However, BioBlock significantly out-
performed all competing frameworks, achieving an accuracy of up to 95.2% in normal
traffic conditions and maintaining superior performance, exceeding 94.0% in dynamic IoT
environments and 93.0% under environmental and failure-induced disruptions.

Figure 3. Anomaly detection performance in terms of accuracy across four distinct IoT scenarios.
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4.2. Energy Efficiency

In Figure 4, the efficiency of the proposed approach BioBlock and the state-of-the-art
methods was evaluated under four scenarios. BioBlock achieved superior energy effi-
ciency due to its adaptive energy-aware communication protocol, which adjusts encryption
protocols based on node energy levels. During the normal traffic scenario, BioBlock main-
tained an energy efficiency of 92.5%, significantly higher than BB-IoT (79.8%) and AI-BCIoT
(81.5%), by dynamically optimizing resource usage. Under a high traffic volume, BioBlock
demonstrated resilience, with only a slight efficiency drop to 84%. In the distributed attacks
scenario, BioBlock’s efficiency remained robust at 89.5%, leveraging its self-healing and
lightweight validation mechanisms, whereas BB-IoT suffered steep declines to 70.5% due to
a lack of adaptability. Finally, in the low-node-energy scenario, BioBlock demonstrated re-
markable adaptability by prioritizing lightweight tasks for low-energy nodes, maintaining
an average efficiency of 83%, compared to 72% for AI-BCIoT and 78% for AI-SecIoT. This
superior performance is attributed to the energy-aware communication protocol, which
dynamically optimizes resource usage based on real-world constraints such as varying
device energy capacities and workload fluctuations. For instance, devices with lower
residual energy prioritize lightweight encryption, while higher-capacity devices handle
computationally intensive tasks such as blockchain validation and anomaly detection.

Figure 4. Comparison of energy efficiency across various IoT scenarios for the proposed BioBlock
framework and benchmark approaches.

4.3. Latency

Latency measurements were averaged across 200 min for varying traffic conditions,
ensuring statistical reliability. Figure 5 shows the latency performance of BioBlock across
four scenarios. In the normal traffic scenario, BioBlock demonstrated the lowest latency
at 15.2 ms, significantly outperforming BB-IoT (20.5 ms) and AI-BCIoT (19.5 ms). Under
high traffic volume, the latency for BioBlock increased slightly to 17.5 ms, maintaining
a notable edge over BB-IoT (25.0 ms) and AI-BCIoT (23.5 ms). During the distributed
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attacks scenario, BioBlock exhibited a stable latency of 16.8 ms, compared to higher
latency values observed for BioAI-IoT (25.0 ms) and AI-SecIoT (23.0 ms). In the low-
node-energy scenario, BioBlock achieved a latency of 18.0 ms, while BB-IoT and AI-
BCIoT lagged with latency values of 27.0 ms and 25.5 ms, respectively. The lightweight
cryptographic protocols reduced processing overhead, while the distributed validation
mechanism ensured efficient resource utilization, resulting in an average latency of 15.2 ms
during normal traffic conditions. In latency-sensitive environments with high traffic or
frequent anomalies, the additional computational overhead introduced by the AIS-based
anomaly detection and PoAI consensus mechanism may slightly increase processing time.
These trade-offs are inherent in achieving enhanced security and scalability. To mitigate
this, the framework dynamically prioritizes critical nodes and reduces non-essential tasks,
ensuring minimal disruption to real-time operations.

Figure 5. Analysis of latency trends for BioBlock and alternative frameworks under normal and
adverse network conditions.

4.4. Scalability

Scalability was assessed by increasing the number of nodes from 50 to 500, observing
a linear growth in processing time with minimal degradation in performance. Figure 6
represents the scalability of the proposed BioBlock framework and other state-of-the-art
approaches evaluated for up to 500 nodes, with processing time measured in milliseconds.
BioBlock demonstrated the most efficient performance, starting at 1.2 ms for 50 nodes
and reaching 6.0 ms at 500 nodes, following an exponential growth trend. Comparatively,
BB-IoT exhibited the highest processing times, starting at 2.0 ms and increasing to 15.0 ms,
indicating limited scalability. BioAI-IoT and AI-BCIoT showed moderate scalability, with
processing times ranging from 1.8 ms to 10.5 ms and 1.6 ms to 9.4 ms, respectively. Mean-
while, AI-SecIoT achieved better scalability than other state-of-the-art methods, starting
at 1.5 ms and reaching 8.5 ms at 500 nodes. The PoAI consensus mechanism in BioBlock
ensures that only high-energy, reliable nodes participate in block validation, minimizing
processing delays. Additionally, the self-healing protocol optimizes recovery times for
corrupted blocks, preventing processing bottlenecks. Compared to other approaches such
as AI-BCIoT and AI-SecIoT, which experienced moderate growth in processing time,
BioBlock achieved superior efficiency by dynamically balancing the load across fog and
cloud layers. A cost–benefit analysis was conducted to evaluate the economic feasibility of
deploying the framework in large-scale, resource-constrained environments. The use of
lightweight algorithms reduced computational and energy costs, making the framework
viable for low-budget IoT deployments.
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Figure 6. Analysis of BioBlock’s scalability and processing efficiency in handling dynamic and
large-scale IoT systems.

4.5. Comparison of State-of-the-Art Approaches

To further validate the proposed BioBlock framework contributions, a comparison
with existing solutions is provided in Table 2. Compared to BB-IoT and AI-SecIoT, BioBlock
achieved up to 95.2% anomaly detection accuracy, surpassing the 89.4% accuracy of BB-
IoT and 93.0% of AI-SecIoT. Additionally, our framework demonstrated superior energy
efficiency of 91.2% and minimal latency of 15.2 ms. The integration of the PoAI mechanism
with AIS-based anomaly detection provided a robust defense, achieving 95.2% detection
accuracy for spoofed data packets. In contrast, state-of-the-art frameworks such as BB-IoT
and AI-SecIoT demonstrated limited detection capabilities under high-stress scenarios. The
lightweight self-healing protocol further enhanced resilience by ensuring corrupted blocks
were rapidly identified and replaced, minimizing disruptions.

Table 2. Performance comparison of BioBlock with other approaches.

Approach Anomaly Detection Accuracy
(%)

Energy Efficiency
(%) Latency (ms) Scalability (Max Nodes)

BioBlock 95.2 91.2 15.2 500

BB-IoT 85.7–89.4 79.8 20.5–27.0 200

BioAI-IoT 88.0–91.0 81.5 18.0–24.5 300

AI-BCIoT 89.0–91.5 83.0 19.5–25.5 400

AI-SecIoT 89.0–93.0 85.5 17.5–23.0 450

5. Conclusions
This paper presented a novel bioinspired blockchain framework for secure, scal-

able, and energy-efficient integration of Wireless Sensor Networks (WSNs) with fog and
cloud ecosystems. By leveraging Artificial Immune Systems (AISs), Proof of Adaptive
Immunity (PoAI), and self-healing protocols, the proposed framework achieved significant
improvements in key performance metrics: anomaly detection accuracy of up to 95.2%,
energy efficiency averaging 91.2% under normal traffic, and latency as low as 15.2 ms in
normal conditions. The three-tier WSN–fog–cloud architecture demonstrated scalability,
efficiently processing up to 500 nodes with a latency of 6.0 ms. These outcomes highlight
the framework’s potential to enhance IoT security, resilience, and real-time decision-making
capabilities. Future research will focus on optimizing the framework to support ultra-large,
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dynamic networks, ensuring scalability and efficiency in highly distributed environments.
Specific next steps include conducting pilot deployments in industrial IoT and smart city
applications to evaluate the framework’s performance under real-world conditions. Fur-
thermore, integrating the framework with emerging technologies such as 5G, edge AI, and
federated learning will enable more robust, intelligent, and low-latency decision-making
at the network edge. Additional efforts will explore adapting lightweight algorithms to
align with the constraints of resource-limited IoT devices while maintaining high accuracy
and efficiency.
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26. Jakšić, Z.; Devi, S.; Jakšić, O.; Guha, K. A comprehensive review of bio-inspired optimization algorithms including applications
in microelectronics and nanophotonics. Biomimetics 2023, 8, 278. [CrossRef]

27. Alizadehsani, R.; Roshanzamir, M.; Izadi, N.H.; Gravina, R.; Kabir, H.D.; Nahavandi, D.; Alinejad-Rokny, H.; Khosravi, A.;
Acharya, U.R.; Nahavandi, S.; et al. Swarm intelligence in internet of medical things: A review. Sensors 2023, 23, 1466. [CrossRef]

28. Varshney, S.; Vats, P.; Choudhary, S.; Singh, D. A blockchain-based framework for IoT based secure identity management. In
Proceedings of the 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), Pradesh,
India, 23–25 February 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 2, pp. 227–234.

29. Alroobaea, R.; Arul, R.; Rubaiee, S.; Alharithi, F.S.; Tariq, U.; Fan, X. AI-assisted bio-inspired algorithm for secure IoT communica-
tion networks. Clust. Comput. 2022, 25, 1805–1816. [CrossRef]

30. Alharbi, S.; Attiah, A.; Alghazzawi, D. Integrating Blockchain with Artificial Intelligence to Secure IoT Networks: Future Trends.
Sustainability 2022, 14, 16002. [CrossRef]

31. Ruzbahani, A.M. AI-Protected Blockchain-based IoT environments: Harnessing the Future of Network Security and Privacy.
arXiv 2024, arXiv:2405.13847.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/computers12120262
http://dx.doi.org/10.1109/ACCESS.2023.3328310
http://dx.doi.org/10.3390/computers12100198
http://dx.doi.org/10.3390/computers12050099
http://dx.doi.org/10.3390/computers9020044
http://dx.doi.org/10.1109/ACCESS.2021.3055775
http://dx.doi.org/10.3390/s22145327
http://dx.doi.org/10.1109/TCE.2024.3384674
http://dx.doi.org/10.3390/fi16010033
http://dx.doi.org/10.3390/s22062087
http://dx.doi.org/10.3390/electronics13061031
http://dx.doi.org/10.3390/electronics10141732
http://dx.doi.org/10.3390/s22020534
http://www.ncbi.nlm.nih.gov/pubmed/35062494
http://dx.doi.org/10.3390/s21248320
http://www.ncbi.nlm.nih.gov/pubmed/34960414
http://dx.doi.org/10.3390/info15050268
http://dx.doi.org/10.3390/electronics12173721
http://dx.doi.org/10.3390/fi13030062
http://dx.doi.org/10.3390/biomimetics8030278
http://dx.doi.org/10.3390/s23031466
http://dx.doi.org/10.1007/s10586-021-03520-z
http://dx.doi.org/10.3390/su142316002

	Introduction
	Related Work
	Proposed Work
	Three-Tier Architecture
	AIS for Anomaly Detection
	Proof of Adaptive Immunity 
	Self-Healing Protocol
	Energy-Aware Communication Protocol
	Adaptability Across IoT Devices

	Simulation Setup and Results
	Anomaly Detection Accuracy
	Energy Efficiency
	Latency
	Scalability
	Comparison of State-of-the-Art Approaches

	Conclusions
	References

