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Abstract: This research article delves into the development of a reinforcement learning (RL)-based
continuous authentication system utilizing behavioral biometrics for user identification on computing
devices. Keystroke dynamics are employed to capture unique behavioral biometric signatures, while
a reward-driven RL model is deployed to authenticate users throughout their sessions. The proposed
system augments conventional authentication mechanisms, fortifying them with an additional
layer of security to create a robust continuous authentication framework compatible with static
authentication systems. The methodology entails training an RL model to discern atypical user
typing patterns and identify potentially suspicious activities. Each user’s historical data are utilized
to train an agent, which undergoes preprocessing to generate episodes for learning purposes. The
environment involves the retrieval of observations, which are intentionally perturbed to facilitate
learning of nonlinear behaviors. The observation vector encompasses both ongoing and summarized
features. A binary and minimalist reward function is employed, with principal component analysis
(PCA) utilized for encoding ongoing features, and the double deep Q-network (DDQN) algorithm
implemented through a fully connected neural network serving as the policy net. Evaluation results
showcase training accuracy and equal error rate (EER) ranging from 94.7% to 100% and 0 to 0.0126,
respectively, while test accuracy and EER fall within the range of approximately 81.06% to 93.5%
and 0.0323 to 0.11, respectively, for all users as encoder features increase in number. These outcomes
are achieved through RL’s iterative refinement of rewards via trial and error, leading to enhanced
accuracy over time as more data are processed and incorporated into the system.

Keywords: behavioral biometrics; continuous authentication; keystroke dynamics; Markov decision
process (MDP); Q-learning; reinforcement learning (RL); static authentication; user authentication;
identification

1. Introduction

In today’s fast-paced business environment, traditional methods of security are becom-
ing increasingly inadequate [1]. With the rise of sophisticated cyberattacks, it has become
easier for hackers to gain access to systems and steal user identities. Even if an organization
has a strong security system in place, employees may still inadvertently compromise secu-
rity by sharing passwords or digital keys [2,3]. As a result, businesses are facing significant
losses due to weakened security systems that rely solely on static authentication methods.
Research studies have shown that relying solely on static authentication methods, such
as usernames and passwords, is no longer enough in preventing cyberattacks. In fact,
according to the Verizon 2021 Data Breach Investigations Report [4], stolen credentials were
the most common initial access vector in data breaches. This highlights the need for a more
reliable and secure authentication system.

Moreover, many businesses have experienced significant financial losses due to data
breaches. For example, the Equifax data breach in 2017 cost the company over USD
1.4 billion in settlements and legal fees. Therefore, implementing a trusted authentication
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system that continuously verifies user identity is crucial for businesses to protect their
assets and maintain customer trust.

Furthermore, traditional authentication methods such as knowledge-based authenti-
cation (KBA) or two-factor authentication (2FA) have been proven to be ineffective against
social engineering attacks, where attackers manipulate users into revealing sensitive in-
formation [5]. This emphasizes the need for a more advanced and secure authentication
system that can resist such attacks.

To mitigate these risks, it is crucial for businesses to have a system that is reliable and
trusted for identifying and authenticating users, to protect sensitive assets and financial data.
To further strengthen security, it is important for the system to continuously authenticate
users in addition to static authentication methods. Authentication can be broadly classified
into two types: static (one-time) authentication and continuous authentication. Static
authentication typically involves the use of a password or multifactor authentication
methods [6–8], where users enter their credentials at the time of logging in to the system,
and the backend database is where the verification takes place. The user is allowed to
enter, access, or remain in the system if their credentials match and typing pattern matches;
else, access is refused [9]. Contrarily, continuous authentication calculates the probability
that a user who logs in repeatedly during a session is the same person they first claimed
to be. This is carried out by analyzing the user’s behavior, such as keystroke dynamics,
without the need for external devices. It is important to use both static and continuous
authentication methods to provide a more secure and user-friendly authentication system.
Static authentication provides an initial level of security while logging in, while continuous
authentication continuously monitors the user’s behavior to ensure that the same person is
accessing the system throughout the session.

This article presents a new approach to continuous authentication using a reinforce-
ment learning (RL)-based anomaly detection method to be integrated with the current
exiting static authentication architectures. To achieve this goal, the following has been
investigated and proposed:

• Innovative Approach to existing Continuous Authentication: Investigated the most
advanced continuous authentication technology currently available, with a focus on
keystroke dynamics as a form of the behavioral biometrics. This approach aims to
enhance existing static authentication systems.

• Development of Reinforcement Learning Model: Developed a novel reinforcement
learning-based anomaly detection model for continuous authentication of keystroke
dynamics. Evaluated the proposed model using real-world data, and a comparison
with existing methods. The reinforcement learning (RL) environment gym is devel-
oped and the proposed model has been implemented from scratch to provide a proof
of concept application.

• Open Source Contribution: This reinforcement learning (RL) gym-based environ-
ment code is made available on GitHub (GitHub: to the domain researchers to
explore and utilize. https://github.com/PriyaBansal68/Continuous-Authentication
-Reinforcement-Learning-and-Behavioural-Biometrics) (accessed on 18 April 2024).

The rest of article is structured as follows. Section 2 reviews the existing research
on behavioral-based user authentication using machine learning. Section 3 explains how
reinforcement learning fits into the broader field of machine learning and reviews the
essential concepts. The proposed methodology comes in Section 4 after introducing the
general reinforcement learning framework and exploring the different methodologies that
can be used to train the reinforcement learning models. Finally, the results of this research
are presented and discussed in Section 5.

2. Background and Literature Review

Continuous authentication involves continuously verifying and validating a user’s
identity during their entire session or interaction with a system, rather than relying solely
on a single authentication event at the beginning. It helps to enhance security [10] by

https://github.com/PriyaBansal68/Continuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics
https://github.com/PriyaBansal68/Continuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics
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constantly monitoring and assessing the user’s behavior, characteristics, or biometrics to
ensure their identity remains valid and authorized. The following are some of the ways user
can be authenticated continuously are behavioral biometrics, Facial or voice recognition.

Significant endeavors have been dedicated to the development of user recognition
systems based on keystroke dynamics, aiming to enhance efficiency. This becomes par-
ticularly crucial considering the substantial volume of data produced by users, which
may fluctuate over time due to contextual factors. While the quantity of studies exploring
keystroke dynamics specifically in relation to text-based input is comparatively lower
than those examining fixed text, there have been several notable studies conducted in this
domain. During our background review on this topic, we encountered both supervised
and unsupervised techniques, but we did not come across any noteworthy information
regarding reinforcement learning. The remainder of this section will concentrate on the
most significant studies in the subject of behavioral biometrics in Table 1.

Table 1. Comparison study of the features, model, dataset used, and models of the recent literature.

Study # of Users Behavioral Biometrics Features Used ML Type ML Model Performance

[11] 5 Keystroke
Hold and flight time,
latency, interkey time,

acceleration
Supervised Neural network FAR 2.2%, FRR 8.67%,

EER 5.43%

[12] 10 Keystroke Dwell and flight time,
latency, interkey time Supervised Bayesian network

classifier
Accuracy 82.18%, FAR

2.0%, FRR 17.8%

[13] 42 Keystroke
Dwell and flight time,
latency, interkey time

and pressures
Supervised

Random forest
classifier, Bayes

network classifier,
K-NN

EER 3% (2-class), EER
7% (1-class)

[14] 15 Keystroke and
gyroscope

Hold time, flight time,
latency, interkey time Supervised Distance algorithm,

1-class classification EER 6.93%

[15] 10 Keystroke and finger
pressure

Dwell and flight time,
latency, interkey time Supervised Probabilistic neural

network

Accuracy 99%, EER
hold-time (H) 35%, EER

interkey (I) 40%, EER
finger pressure (P) 1%

[16] 63 Keystroke
Dwell and flight time,
latency, interkey time

and pressures
Supervised

Weighted probabilistic
classifier, Bayesian-like

classifiers

Accuracy 83.22% to
92.14%

[17] N/A Keystroke Dwell and flight time,
latency, interkey time

Unsupervised,
supervised

K-means, Bayes net,
and neural networks FRR 1.45% FAR 1.89%

[18] 54 Keystroke
Dwell and flight time,
latency, interkey time,

key pressures
Supervised

Random forest
classifier, Bayes net

algorithms, and KNN

EER random forest
classifier: for

second-order feature
set 5%; for full feature

set 3%

[19] 81 Mouse
Dwell and flight time,
latency, interkey time,

touch pressure
Supervised Long short-term

memory (LSTM)

Random impostor:
80–87%; AUC skilled

impostor: 62–69% AUC

[20] 40 Mouse Speed, clicks,
movement Supervised

1-dimensional CNN,
artificial neural
network (ANN)

Test accuracy 85.73%
for the top 10 users,

peak accuracy 92.48%

[21] 73/80 Keystroke
down–down time,

down–up time up–up
time, up–down time

Supervised MLP, CNN, RNN,
CNN-RNN

Buffalo dataset:
Accuracy: 98.56%, EER:

0.0088; Clarkson
Dataset: Accuracy:
91.74, EER:0.0755

[22] 54 Keystroke
Interval, dwell time,

latency, flight time, up
to up

Supervised
Neural network

layers—convolutional,
recurrent, and LSTM

Accuracy: 88%

[23] 103 Keystroke Dwell and flight time,
latency, interkey time Supervised

SVM, random forest
(RF), multilayer

perceptron (MLP)

Accuracy (93% to 97%),
Type I and Type II
errors (3% to 8%)

This study 117 Keystroke Key, dwell and flight
time, interkey

Reinforcement learning
(RL)

Double deep Q
networks (DDQN)

Train: Acc: 94.77%,
EER: 0.0255, FAR:

0.0126, FRR: 0.045, Test:
Acc: 81.06%, EER:

0.0323, FAR: 0.0356,
FRR: 0.0174

In a paper, Asma Salem et al. [11] investigated if an identity and verification system
can be used on touch-screen-based mobile devices. Using WEKA, the authors build a
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multilayer perceptron (MLP) neural network-based categorization model. Timing and
non-timing elements are combined in the article, and it concludes that non-timing features
raise the bar for security. Five users are included in the study, and the dataset has four
attributes that are taken out. The writers bring up the issue of using different keyboards
and create a virtual keyboard for collecting the data.

Jeanjaitrong et al. [12] conducted a literature review on keystroke dynamics and
touch dynamics, highlighting the authentication process based on biometric behavior. The
authors stressed the significance of protecting mobile devices because they are essential to
daily life and pose a high risk of data theft. To categorize the data, the scientists retrieved
4 features: dwell duration, interval timing ratio, button spacing, and interval time. Ten users
were asked to choose one of sixteen four-symbol passwords to enter data. To determine
the relationship between feature elements, the authors created a Bayesian network and
compiled it throughout the classification phase.

Antal M. et al. [13] conducted research on mobile device keystroke authentication
using one-class and two-class classification algorithms. To examine the EER values for
two-class classification, they trained a dataset on random forest classifiers and Bayesian
networks. One-class classification was used to identify the user, whereas two-class classi-
fication was used to validate the user after separating them from outliers. According to
the authors’ research, random forest has the highest EER value for a dataset of 42 users
and 71 characteristics, and all one-class classifiers performed better when categorizing the
negative class than the positive class.

Lee et al. [14] used one one-class classification technique to perform research on
keystroke authentication for mobile devices. To determine the user’s typing pattern, the
authors presented a feature ex-traction method combining accelerometer and gyroscope
sensors. The model was developed using a test population of 15 users, and the authors
preprocessed, scaled, and standardized their data to provide good EER results.

A classification accuracy of 99% was attained with efficiency by P. Bhattarakosol
et al. [15]. Using a notebook as the input device, they gathered data from eight females
and four male users. The k-NN model was created by the authors using three features:
hold time, the interkey, and finger pressure. The accuracy falls to 71% when only hold
duration and the interkey elements are used, but increases to 91% when all three features
are utilized, according to the authors.

In order to address cybersecurity issues such as network intrusion and malicious
assaults, Monrose [16] used factor analysis to evaluate user typing patterns to provide a
lower dimensional representation based on correlations and dependencies among features,
which he then used to build dynamic biometric approaches. The generated feature subset
contained examples of both common and uncommon user typing patterns. Monrose
employed a k-NN (nearest neighbour) classifier to classify data by visualizing covariance
matrices for several features. Keystroke dynamics has the potential to be coupled with any
authentication system to increase its security layer, according to Monrose’s conclusion.

The goal of the research by C. F. Araujo et al. [17] is to develop time delay features
that will enhance authentication and reduce the incidence of erroneous rejection and false
acceptance rates. They suggest an adaptive method that replaces outdated templates with
fresh ones made from fresh samples. This method creates a two-trial authentication system
by altering the conventional deviation and thresholds for each feature. While the user types
on the screen, the biometric system logs keystroke information such as key up, key down,
and ASCII codes. When the password is not a secret, the authors improve the current
password authentication process using four key elements.

Antal, M. et al. [18] discussed different types of biometric systems used for authentica-
tion, including static and dynamic methods, as well as continuous authentication, which
involves monitoring how the user interacts with the system over time. The author does,
however, draw attention to the difficulty of cross-device authentication, which necessitates
a model trained to identify users across various computing devices due to the possibility of
differing keyboard layouts and screen coordinates.
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A standardized experimental methodology and benchmark have been created by G.
Stragapede, et al. [19], to allow for fair comparisons of emerging approaches with currently
used ones in the area. They suggest a system that employs an LSTM architecture (long
short-term memory). At the score level, the architecture has triplet loss and modality fusion.
The average AUC of the individual modalities is 58.75%, whereas the best modality’s
average AUC is 66.22%, representing a relative improvement of 12.71%. With a score of
68.72% AUC, the model performs best when all modalities are combined for the keystroke
task. As comparison to using touch data alone, the combination of modalities yields an
improvement of about 10%. The other modalities’ performance is comparable.

N. Siddiqui, et al. [20] used three distinct machine learning and deep learning algo-
rithms to evaluate a dataset of 40 users. The authors looked at two evaluation scenarios,
one using multi-class classification and the other utilizing binary classifiers for user au-
thentication. A one-dimensional convolutional neural network, which had the average
test accuracy of (average) 85.73% for top ten users, was the best performer for binary
classification. The maximum accuracy on the chosen dataset was attained with the help of
artificial neural network (ANN) for multiclass classification, which reached a peak accuracy
of 92.48%.

A group of researchers from Syracuse University [21] analyzed typing behavior to
categorize it under benign or adversarial activity. They collected the data from users and
asked the users to perform certain tasks. They proposed 14 additional features for analysis.
The data were trained using SVM, RF, and NLP models using the eight least correlated
features. As a result of the experiments, they were able to achieve 97% accuracy and a type1
(false positive) and type2 (false negative) error less than 3%.

Attinà et al. [22] propose a convolutional neural network (CNN) with cut-out regu-
larization. A hybrid model combining a CNN and a recurrent neural network (RNN) is
also developed. The study uses the Buffalo free-text keystroke dataset. Two models are
evaluated, with a CNN applied to the KDI image-like features, while a hybrid CNN-RNN
model is applied to the KDS features. The Clarkson II keystroke dataset is also analyzed,
which is a free-text keystroke dynamics dataset collected from 101 subjects in a completely
uncontrolled and natural setting over a period of 2.5 years.

The study uses five time-based features—duration, down–down time (DD-time), up–
down time (UD-time), up–up time (UU-time), and down–up time (DU-time)—extracted
from consecutive keystroke events. The performance of the models is evaluated using
accuracy and equal error rate (EER). The results show that the CNN model generated
better results than the RNN-CNN model, and the performance on the Buffalo dataset
was better than that of the Clarkson II dataset, likely due to noisier data in the latter.
In conclusion, the study proposes effective feature engineering strategies and compares
two feature structures for authentication based on free-text keystroke dynamics. Pawel
Kasprowski, Zaneta Borowska, and Katarzyna Harezlak [23] investigated the impact of
altering neural network architecture and hyperparameters on biometric identification using
keystroke dynamics. A publicly available dataset of keystrokes was utilized to train models
with diverse parameters. The neural network configurations encompassed convolutional,
recurrent, and dense layers in various arrangements, combined with pooling and dropout
layers. The outcomes were subsequently compared with those achieved by the state-of-the-
art model, using the identical dataset. The results exhibited variability, with the highest
attained accuracy reaching 82–88% for the identification task involving 20 subjects.

All the existing approaches are performed on fixed text, whereas this study takes
into account the free text and any change in environment that can cause change in user
behavior. It can detect unusual patterns and detect suspicious activities by interacting with
an environment, receiving feedback in the form of rewards or penalties, and maximizing
cumulative rewards over time.
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3. Deep-Dive Analysis for the Proposed Methodology

A subset of machine learning called reinforcement learning (RL) sheds light on teach-
ing models for how to make decisions in ambiguous situations. In the context of behavioral
biometrics, reinforcement learning can be used to train models to make decisions about
a user’s identity dependent on their typing dynamics, mouse movement, and other be-
havioral patterns. The main idea behind reinforcement learning [24] is to train an agent
to make decisions that will lead to the best outcome, or reward, over time. However, its
application to user authentication is relatively new.

In the case of behavioral biometrics, the agent would be trained on a dataset of typing
dynamics or other behavioral patterns from a set of users. The agent would then use this
training to make decisions about whether a new user is the same person as the one who
was previously authenticated, or if they are an imposter [25].

One of the advantages of using reinforcement learning for behavioral biometrics is
that it allows for continuous and dynamic adaptation of the model to the user’s behavior
changes over time. This is because the agent can learn from its past decisions and update
its decision-making strategy accordingly. Additionally, reinforcement learning can be used
in a transparent way to the user, which means that the user does not have to actively
participate in the authentication process [26].

In the subsequent section, we will delve into the conventional framework employed
for behavioral biometrics, prior to introducing our proposed RL framework.

3.1. Traditional Frameworks

In the machine learning subset, supervised learning is where a labeled dataset is
used to train an algorithm, with each input having a corresponding known output or
target. The objective is to develop a function that can map inputs to their respective
outputs, allowing the model to forecast fresh events and unseen data [24]. In the context
of keystroke dynamics, this involves training a supervised learning model on a dataset of
keystroke data from known users, where the output is the user’s identity. Thus, the model
can predict the user identity depending on their keystroke data, as shown in Figure 1.

Figure 1. Existing continuous authentication framework for behavioral biometrics.
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3.2. The Proposed RL Framework

To begin with reinforcement Learning, we formulated our problem in reinforcement
learning (RL) mathematically in MDP [24]. The mathematical framework known as the
Markov decision process is the foundation of any RL to model sequential decision-making
problems. It consists of various states, actions, and rewards, and some rules for transitioning
between states based on the actions taken. In the context of behavioral biometrics, MDP
(in Figure 2) can be used to model the process of authenticating a user depending on their
keystroke dynamics. The states in the MDP could represent different observations of the
user’s keystrokes, such as the timing between two subsequent key presses, the duration
of time between of each key press, or the sequences of characters typed. The actions in
the MDP could represent different authentication decisions, such as allowing access or
denying access [27]. And the rewards in the MDP could represent the level of confidence in
the authentication decision, with higher rewards assigned to more confident decisions and
lower rewards assigned to less confident decisions.

Figure 2. Proposed MDP diagram for continuous authentication using behavioral biometrics.

The proposed reinforcement learning (RL)-based model (shown in Figure 3) for
keystroke dynamics that provide continuous authentication would involve the follow-
ing main elements which is in continuous interaction with agent unlike the traditional
framework in Figure 1:

1. Agent: The agent is the system that makes decisions based on the keystroke data.
The agent is responsible for analyzing the user’s keystroke patterns and determining
whether the user is who they claim to be.

2. Reward: The reward is a scalar value that the agent receives after each step of the
authentication process. A positive reward is given when the agent correctly identifies
the user, while a negative reward is given when the agent fails to identify the user.
The agent attempts to maximize the long-term reward accumulated.

3. Action: This is the decision that the agent makes, based on the keystroke data. In this
case, the action would be to either authenticate or reject the user.

4. Environment: This is the overall system that the agent interacts with. It includes the
user’s keystroke data, the decision-making process of the agent, and the feedback
from the system.

5. State: The state represents the current typing pattern of a user, including factors such
as typing speed, rhythm, and key press duration. The state could also include other
features such as mouse movement, website activity, and other behavioral data that
can be used to identify the user [28]. The state is an essential component of the MDP
because it is used to inform the decision-making process of the agent and determine
which action to take. This process is dependent on the present/current state and the
rewards it receives for different actions.

The below image (Figure 3) shows how a reinforcement learning model integrated to
develop a learning-based user authentication system analyzing keystroke dynamics.
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Figure 3. Proposed RL framework.

4. Methodology

By combining the two approaches of reinforcement learning and behavioral biometrics,
we have developed a framework as shown in Figure 3 from scratch that can continuously
learn and adapt to changing user behavior and environmental conditions, providing reliable
user authentication. We will discuss the various components of the proposed methodology,
including data collection, feature extraction, reinforcement learning algorithms, and eval-
uation metrics [29]. Additionally, we will provide insights into the implementation and
experimental results of our proposed method.

The following is a high-level overview of our approach to construct the reinforcement
learning (RL)-based user authentication system using keystroke dynamics. The detailed
construction is described in the subsections that fellow.

1. Collect a dataset of keystroke dynamics data from several users. This should include
a variety of different typing patterns, such as the time difference between key presses
and the duration of time of each key press. In our case, we used the data from
IEEE dataport website called BB-MA DATASET [30], as the data collection is a time-
consuming task. As an addition, we collected our own data of keystrokes and trained
the agent for testing purposes.

2. Preprocess the data to extract relevant features that can be used as inputs to the
reinforcement learning algorithm. This might include mean, median, or the standard
deviation of various keystroke features, and other statistical measures.

3. Define the reinforcement learning (RL) environment. This could be a simple decision
tree, where the agent must choose between two actions: “accept” or “reject” the user’s
authentication request.

4. Define the reward function. This will determine what the agent is trying to optimize
for. In the case of user authentication, the reward could be dependent on the accuracy
of the agent’s predictions. For example, the agent could receive a high reward for
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correctly accepting an authentic user and a low reward for incorrectly rejecting an
authentic user.

5. Train the agent using the collected keystroke dynamics data and the defined reward
function. This could be performed using a variety of reinforcement learning (RL)
algorithms, such as Q-learning or SARSA.

6. Test the trained agent on a separate dataset to evaluate its performance.

Figure 4 shows the flow of data and how the user would be authenticated at each step:

Figure 4. Data process flow for RL model.

4.1. Process Flow

The process flow of training an agent for continuous authentication using RL with
behavioral biometrics is as follows (Figure 5):

1. Preprocessing the historical data: The first step is to gather a dataset of historical
keystroke data from users. These data are then preprocessed to clean and format them
for training. This may include removing any irrelevant data, normalizing the data,
and dividing the data into sets for training and testing.

2. Creating episodes on the cleaned data: Next, the cleaned data are used to create
episodes for training the agent. An episode is a sequence of observations and actions
that the agent takes to learn from. Each episode is created by randomly selecting a
user from the dataset and creating a sequence of observations and actions based on
their keystroke data.

3. Fetching observation from the environment: The agent then fetches an observation
from the environment. An observation is a set of data that the agent uses to decide. In
this case, the observation is the keystroke data for a user.

4. Predicting user or hacker on the given observation: Using the observation, the agent
makes a prediction of whether the user is an authorized user or a hacker. The agent’s
prediction is according to the user typing patterns and characteristics it has learned
from the training data.
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5. Giving feedback to user in form of rewards: The agent then receives feedback in the
rewards form. A reward is a value that the agent receives for making a prediction.
The reward is according to the accuracy of the agent’s prediction. A positive reward
is given for correctly identifying an authorized user and a negative reward is given
for incorrectly identifying a hacker.

6. Train on multiple-episode runs: The agent is then trained on multiple episodes, with
each episode providing the agent with new observations and rewards. As the agent
receives feedback in the form of rewards, it updates its parameters and improves its
ability to predict whether a user is an authorized user or a hacker. This process is
repeated over multiple episodes until the agent reaches a satisfactory level of accuracy.
This process flow is repeated for every user, to create an agent per user, which can
be used to continuously authenticate users throughout a session by monitoring their
behavior and predicting whether they are authorized users or imposters.

Figure 5. Code flow.
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4.1.1. Data Preprocessing

About Original Dataset: The SU-AIS BB-MAS dataset [30] is a collection of keystroke
data from multiple users performing various activities on different devices. The dataset was
created by Syracuse University and Assured Information Security to provide a benchmark
for behavioral biometrics research. The dataset was initially released in 2017 and contains
data from 117 users performing 6 different activities on 5 different devices. The dataset
provides a valuable resource for researchers in this field, allowing them to compare their
algorithms and techniques with a standardized benchmark.

A. Exploratory Data Analysis: Time difference between two consecutive events As a
part of analyzing the data for the 117 users in the data, we observed that none of the users
has consistent typing pattern throughout the session which made it difficult for us to train
the model with the features in the dataset. As a result, we researched and came up with
additional features for training. Figures 6 and 7 below show the time difference between
two consecutive events of two different users from the selected dataset.

Figure 6. Time (ms) difference between two consecutive events for user 11.

Figure 7. Time (ms) difference between two consecutive events for user 16.

B. Exploratory Data Analysis: Key hold time: The Figure 8 below show the key
holding time (ms) for key ‘t’.

C. Exploratory Data Analysis: Keyboard time length vs. full session: Keyboard time
length vs. full session (Figure 9) was an interesting development of all the features. This is
violin plot, which is hybrid of a box plot and a kernel density plot, which shows peaks in the
data similar to box plot. It reveals that a significant portion of users, approximately 70–98%,
spent their session time engaged in keyboard typing. This finding suggests that keyboard
interaction is a primary activity during user sessions, which can be used to analyze their
level of engagement and productivity.
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Figure 8. Key (‘t’) time (ms) for user 11.

Figure 9. Keyboard time length vs. full session.

Feature engineering and data preprocessing are important steps in training an agent
for continuous authentication using RL with behavioral biometrics. We performed the
below steps as preprocessing and designed the running and summary features in addition
to the normal features:

1. Standardized key names: To establish consistent naming conventions to make it
easier to read and understand what each event mean [28].

2. Removed consecutive duplicate pairs (key, direction): This can help to reduce the
number of data the agent needs to process, making the training process more efficient.

3. Added column “time_diff”, which is the time difference between consecutive
events: This can help to capture the unique typing rhythm of an individual, which is
a key behavioral biometric.

4. Added column “time_since_beginning”, which is the cumulative sum of the time
difference column: This column is used to capture the changes in behavior over time,
which can be useful for detecting anomalies or changes in the user’s behavior that
may indicate a security threat [19].

5. Added new flight features such as press_to_press (P2P), release_to_press (R2P),
hold_time (HT).
press_to_press: Assuming, we have two keys, say, I and K, then press time is I
presstime- K presstime. release_to_press: I presstime – K releasetime
hold_time: I releasetime – I presstime
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6. Removed direction of the key as the features: We only considered press direction for
our analysis.

4.1.2. Feature Engineering

Running features: Running features are used to capture the dynamics of the user’s
behavior over time. This feature was useful for the training reinforcement learning (RL)
with behavioral biometrics. This allows the agent to learn from the user’s behavior over
time, which can be important for detecting anomalies or the user’s behavioral changes that
may indicate a security threat.

A vector of size (n,) is created where the value is the hold time for the each key. This
vector is calculated for a single event. For example, if there are n unique keys, and a user
pressed the key ‘a’ for 2 s, the vector for that event would be [0, 2, 0, . . . 0], where the first
value represents the key ‘a’.

The 2D vector can then be used as an input to the RL agent, which can use it to learn
from the dynamics of the user’s behavior over time and make predictions about whether
the user is an authorized user or a hacker.

Summary features: Summary features are used to capture a summary or aggregate
of the user’s behavior over multiple events. This allows the agent to gain insight from
the broad trends and traits of the user’s behavior, which can be important for detecting
anomalies or changes in the user’s behavior that may indicate a security threat.

Summary features can be calculated from k multiple consecutive events like typing
speed, time_diff standard deviation, etc. [31]. These features summarize the user’s behavior
into a single value or set of values, making it easier for the agent to learn from the data.

4.2. Environment

The reinforcement learning (RL) agent would interact with the environment by observ-
ing the user’s keystroke patterns and other behavioral data, and then deciding on whether
to authenticate the user based on this information. The agent’s decisions would be based
on its learned policy, which is updated as it receives feedback from the environment in the
form of rewards or penalties. The training data would be labelled with the identity of the
user, so that the agent can learn to differentiate between different users’ keystroke patterns
and other behavioral data. The below equation plays a crucial role in the learning process
of RL algorithms by guiding them to make decisions that maximize cumulative rewards
over time. By iteratively updating the Q-values through this equation, RL models can learn
optimal behavior in an environment by exploring different actions and observing their
outcomes, ultimately leading to the acquisition of a strategy that yields the highest reward.

Q(s, a) = [1 − Lr]Q(s, a) + Lr[R(s, a) + ymaxQ(ss, aa)] (1)

where Q(s,a) represents the Q-value for state-action pair (s,a). Lr is the learning rate. R(s,a)
denotes the immediate reward for taking action a in state s. y is the discount factor. ss and
aa represent the next state and action.

4.2.1. Fetch State

For training an agent for continuous authentication using reinforcement learning (RL)
with behavioral biometrics, the environment plays an important role in fetching the state.
In addition to this, the environment is accounted for providing the agent with the data it
needs to make predictions.

There are two important parameters to understand when fetching the state:

1. No: Number of events in an observation. This parameter determines the number of
keystroke events that will be included in each observation.

2. Nh: Events that must occur before moving on to the following observation. This
parameter determines the number of keystroke events that will be skipped before
creating the next observation.
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For example, if No = 10 and Nh = 4, the environment will create an observation from
keystroke events 0–10 on the first iteration, keystroke events 4–14 on the second iteration,
and so on. This allows the agent to learn from different parts of the keystroke data of
each user. A user’s past data are iterated upon to generate an episode using the above
stated pattern. An episode is terminated if there are not enough data points to create
the observation.

4.2.2. Corruption/Randomization

Corruption or randomization of user keystroke data in reinforcement learning can be
used to provide the robustness of the model. Generally, in ML models, a model is trained
on data which is usually a sample of the real data. If this sample is not representative
of the real data, the model can be less accurate or perform poorly. By corrupting or
randomizing the user keystroke data, it helps the model to generalize better and be more
robust to different variations of the data. Corruption or randomization is a technique used
to introduce variability and randomness into the training data, to help the agent learn to
handle out-of-order behaviors and unexpected situations [17].

Corruption can also increase the diversity of the training data, making it less likely
that the model will be an overfit to the training data. As a result, the model is able to
generalize better to fresh and untested data.

Randomization of user keystroke data can also be used to make the model more robust
to adversarial attacks. Adversarial attacks are attempts to fool the model by providing it
with input that is specifically designed to cause an error. By randomizing the data, the
model can learn to be more robust to variations in the data, which can make it more difficult
for an attacker to fool the model [16].

This is necessary so that model is not always predicting the same user. This process is
being referred to as corruption [13].

4.2.3. Process to Create Observation

After fetching and randomly corrupting the state with some probability, the next step
is to create an observation for the agent. This is performed in three steps:

1. Calculate running features of the state: Running features provide the agent with
information about the dynamics of the behavior over time.

2. Encode the running features using trained encoder model: This helps to reduce the
data dimensionality and make it more manageable for the agent to learn from.

3. Calculate summary features and concatenate it with the encoded features: The final
step is to calculate summary features and concatenate them with the encoded features.
Summary features are a set of aggregate characteristics of the user’s behavior, such as
typing speed, time_diff standard deviation, etc. By concatenating the summary and
encoded features, the agent can learn from both the dynamics of the user’s behavior
over time and the overall patterns and characteristics of the user’s behavior.

4.2.4. Reward Function

The reward function is employed in reinforcement learning (RL) to give the agent
feedback on the effectiveness of its actions. The agent’s learning process and the ideal
conduct are both guided by the reward function. The reward function assigns 1 for true
negatives and true positives and 0 for false negatives and false positives.

Several key considerations in designing the reward function for RL in continuous
authentication include:

Task-Specifying Objective Reward Function: This reward function evaluates the
performance of the agent based on predefined objectives. It is used to assess how well the
agent is achieving its goals in the authentication process.

Internal Reward Function: The internal reward function guides the behavior of the
agent by providing feedback on actions taken during interactions. It plays a crucial role in
shaping the learning process and influencing decision making within the system.
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Optimal Internal Reward Function: The optimal internal reward function is deter-
mined based on the agent’s architecture, limitations, and objectives. It is essential to align
this internal reward function with the system’s goals to ensure effective learning and
decision-making.

Distinguishing Objective and Internal Rewards: Separating the task-specifying
objective reward from the internal reward allows for a clear distinction between evaluating
performance and guiding behavior. This separation enhances the system’s adaptability and
performance in continuous authentication scenarios.

The reward function is used to guide and improve the overall learning process of
agent by providing positive feedback for correct predictions and negative feedback for
incorrect predictions. This can help the agent to learn to make better predictions and to
improve its overall performance.

4.2.5. Feature Encoder

A feature encoder is a technique used to reduce dimensionality of data and make it
more manageable for the agent to learn from. In this case, the feature encoder used is the
principal component analysis (PCA) model. This technique, PCA, is used to recognize
patterns in data, by finding the directions of maximum variance in the data. This is useful
because it allows the agent to learn from a smaller set of features, which can make the
learning process more efficient and less computationally expensive.

4.3. Agent

The agent is the component of the reinforcement learning system that takes actions
and interacts with the environment. In the context of continuous authentication using rein-
forcement learning (RL) with behavioral biometrics, the agent is responsible for predicting
whether the user is an authorized user or a hacker. The standard DDQN (DDQN is an ex-
tension of the Q-learning algorithm, explained in next section) algorithm was implemented
for the agent. The architecture of the agent has of a fully connected neural network which
is used as the policy net in DDQN. The network has the following architecture:

• Hidden layer 1: 32 nodes
• Hidden layer 2: 16 nodes
• Output layer: 2 nodes
• The activation function used in each layer except the last one is the ReLU activation

function.
• The activation function used in the last layer is the SoftMax activation function.
• The optimizer used is the Adam optimizer, with a learning rate of 0.001.

RL Algorithm: DDQN

The Q-learning method, a kind of RL algorithm used to learn the best action-value
function for a certain environment, is extended by DDQN (as listed in Table 2). A primary
Q-network and a target Q-network are the two distinct Q-networks employed in DDQN.
While the target Q-network is used to create the target values for the primary Q-network
during training, the primary Q-network is utilized to make predictions about the action-
value function.

For keystroke dynamics, DDQN would learn to predict the user’s keystroke patterns
and other behavioral characteristics, and then use this information to decide on whether
to authenticate the user. By reducing overestimation bias, DDQN can better capture the
nuances of user behavior and adapt to changes in that behavior over time. This can help to
enhance the accuracy and effectiveness of the existing authentication system.

In the next section, we evaluate the model’s performance.
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Table 2. Reasons for choosing double deep Q-network (DDQN) for this task.

Target Network
There are 2 Q-networks, the primary network, and the
target network. The target network estimates the Q-values
for the next state, which then updates the primary network.

Action Selection This is dependent on the primary network, and the Q-value
estimation is performed using the target network.

Learning Stability

DDQN has better learning stability. This is because DDQN
reduces the overestimation of Q-values. This improvement
in learning stability is due to the use of the target network
in DDQN.

Exploration–Exploitation
Trade-off

In DDQN, the exploration–exploitation trade-off is bal-
anced by using the target network to approximates the
Q-values.

Performance
DDQN has improved learning stability, which leads to bet-
ter convergence to the optimal policy. Additionally, DDQN
can learn faster and requires fewer training samples.

5. Results and Discussion

Evaluation is the process of assessing the performance of the RL model using behav-
ioral biometrics for continuous authentication. The evaluation is performed on a test set and
several parameters are varied to evaluate the model’s performance. We performed multiple
experiments after changing the parameter combinations in config.json file. The experiment
that gave the best results has been dis-cussed below in this chapter. All the other experi-
ments results are upload on the GitHub (GitHub: https://github.com/PriyaBansal68/Con
tinuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics/tree/main
/output) (accessed on 18 April 2024) in output folder.

5.1. Evaluation Metrics

The effectiveness of keystroke analysis is often assessed using a variety of error rates,
including Accuracy, FAR, FRR, EER and ROC curve.

Accuracy: This metric represents the overall effectiveness of the keystroke dynamics
system. It is calculated as follows in Equation (1):

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

where TP is the number of true positives and TN is the number of true negatives.
False Rejection Rate (FRR)/Type I error: This calculates the proportion of legitimate

users that are flagged as impostors. This kind of error is known as a Type I error in statistics.
FRR is described in Equation (2):

FRR = FN/(FN + TP) = 1 − TPR (3)

False Acceptance Rate (FAR)/Type II error: In statistics, FAR is the likelihood that an
unauthorized person will obtain access to a secured system. The ideal scenario is to have
both the FAR and FRR (Type I error) at 0%. While minimizing false acceptance is crucial
from a security perspective, it is also important to minimize false rejection, as legitimate
users may become frustrated if they are mistakenly rejected by the system. FAR is described
in Equation (3):

FAR = FPR = FP/(FP + TN) (4)

https://github.com/PriyaBansal68/Continuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics/tree/main/output
https://github.com/PriyaBansal68/Continuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics/tree/main/output
https://github.com/PriyaBansal68/Continuous-Authentication-Reinforcement-Learning-and-Behavioural-Biometrics/tree/main/output
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Equal Error Rate (EER): EER is a widely used metric to evaluate biometric systems,
which determines the point where the FAR and FRR are equal. A lower EER value indicates
higher accuracy of the biometric system. EER is described in Equation (4):

ERR = (FRR + FAR)/2 (5)

ROC Curve: In the context of continuous authentication of behavioral biometrics
using reinforcement learning (RL), the ROC curve and AUC can help system developers to
evaluate and compare the performance of different machine learning algorithms, feature
sets, or training methods [9]. They can also help to identify the optimal threshold value
for the classifier algorithm, balancing the system sensitivity and specificity, and ultimately
improve the accuracy and reliability of the authentication system. A perfect classification
system would have an ROC curve that passes through the point (0, 1), which represents
a TPR of 100% and a FPR of 0%. The area under the ROC curve (AUC), a measure of the
system’s overall performance, is employed in practise because the curve is typically not
perfect. With a value of 1 showing perfect discrimination and a value of 0.5 suggesting
performance no better than random chance, a higher AUC indicates greater performance.

5.2. Hyperparameter Tuning

We tuned the model on the below hyperparameters that are also available in the public
version (in config.json file). Trying different combinations of the below parameters, the
model can be tuned further.

1. No: 100;
2. Nh: 50;
3. num_encoder_features: 10;
4. num_corrupted_users: 10;
5. corrupt_bad_probability: 0.5;
6. num_episodes: 20;
7. c_update: 2;
8. eps_start: 0.1;
9. eps_decay: 200;
10. eps_end: 0.01;
11. train_split: 0.7.

5.3. Results

Below are results (Figures 10 and 11, Tables 3–5) of the experiments we performed:

Figure 10. Heatmap results on full dataset of 117 users.
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Figure 11. Heatmap results on users (randomly chosen) 1, 71, 99, 116.

Table 3. Below are the results when the full dataset of 117 users is run.

Metrics Accuracy EER FAR FRR

Training 94.77% 0.0255 0.0126 0.045

Test 81.06% 0.0323 0.0356 0.0174

• In the testing phase, the accuracy achieved was 84.06%, indicating that the system
successfully identified users with a high level of accuracy during the testing process.

• The EER achieved during testing was 0.0323, indicating that the system reached a
balance where the rates of false acceptance and false rejection were roughly equal.

• In the testing phase, the system had a FAR of 0.0356, suggesting that approximately
3.56% of unauthorized users were incorrectly accepted.

• In the testing phase, the FRR achieved was 0.0174, indicating that around 1.74% of
legitimate users were falsely rejected.

• The drop in accuracy from train to test is due to the inconsistent typing behavior of
users that affect the model’s ability to accurately recognize their keystroke patterns
during testing.

It can be observed from the results in Table 4 that the relationship between the user
parameters and the accuracy of the model is not linear. Several factors that lead to this
nonlinear relationship are as below:

1. Individual Differences: Each user has different characteristics, behaviors, or patterns
that affect the performance of the model. These individual differences result in
variations in accuracy, even if the user parameters are changing linearly.

2. Exploration vs. Exploitation: Users need to balance exploration (trying out new
actions to learn more about the environment) and exploitation (leveraging known
actions for optimal results). The user with 100% accuracy may have effectively
balanced exploration and exploitation strategies, leading to superior performance
during training. In contrast, the user with 96.5% accuracy might have faced difficulties
in finding the right balance, resulting in slightly lower overall accuracy.

3. Complexity of User Parameters/Behavior: The user parameters considered in the ta-
ble capture intricate interactions and dependencies. As a consequence, minor changes
in these parameters lead to substantial fluctuations in the model’s performance, re-
sulting in nonlinear relationships between the parameters and accuracy.
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4. Data Availability and Quality: The number and quality of data available for each
user parameter differ. Insufficient or noisy data for certain parameter values af-
fect the model’s ability to accurately learn and generalize, leading to nonlinear
accuracy trends.

Table 4. Below are results when each user is run separately.

User Training Accuracy Test Accuracy Training EER Test EER Average FAR Average FRR

1 96.5% 89.6% 0.0 0.07 0.31 0.29

71 96.7% 93.5% 0.0 0.11 0.39 0.28

99 96.8% 81.2% 0.049 0.06 0.19 0.34

116 100% 85.7% 0.0 0.13 0.26 0.32

Training Accuracy/EER: Figure 12 shows the graphical representation of the training
phase of user 116. It shows that with each iteration of the episode, the agent tries to increase
rewards by exploring the environment and targets to reduce the EER.

Figure 13 shows how the EER is decreasing with each iteration for four randomly
chosen users.

Figure 12. Iterations for user 116 vs. exploration, rewards, and EER.

Figure 13. Graph for users 1, 2, 3, and 4 showing decreasing EER with no. of iterations.

Test Accuracy/EER: Figure 13 shows the testing performance of the continuous au-
thentication system on four randomly chosen users.

This test provides insight into the accuracy and reliability of the system for individual
users, which is particularly important for personalized systems, such as those used in
healthcare or financial applications.
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By analyzing the test accuracy and EER values for individual users, system developers
can identify potential areas for improvement and tailor the system to the specific needs and
characteristics of each user [21]. For example, if a user consistently exhibits unique typing
patterns that are difficult to distinguish from those of unauthorized users, the system can
be fine-tuned to better recognize the user’s individual typing patterns and reduce false
rejections [26].

All the factors listed for Table 4 are significant reasons for the difference in train and
test phases of the ROC curve (Figures 14 and 15) at user level. For ideal scenario, the ROC
in training and testing should look alike. The major factor for difference in ROC curves is
the user behavior, which is not consistent due to multiple external factors. In this case, the
model is able to recognize the pattern of users 1, 2, and 3 (above the assumed threshold of
75%) in comparison to user 4. Hence, the model can retrained for user 4.

Figure 14. (TRAIN) ROC curve for users 1, 2, 3, and 4.

Figure 15. (TEST) ROC curve for users 1, 2, 3, and 4.

Comparison of Supervised Learning vs. Reinforcement Learning results:
Table 5 shows the comparison between supervised learning and reinforcement learn-

ing. The same dataset was used to perform this comparison. It was observed that the
reinforcement learning accuracy is greater even when all the keys are used. We also made a
comparison to one of the literature review who had used subset of the same dataset used
in this study. The literature review [30] used a subset of the dataset and used 10 unigraphs
and 5 digraphs. The EER in the case of reinforcement learning (RL) is quite lower than
in the case of supervised learning for both of these studies. Figure 16 shows the heatmap
representation of train accuracy, test accuracy and EER of these three results. Continuous
authentication systems employ the EER as a crucial performance metric, quantifying the
balance between false acceptance and false rejection rates. Lower EER values indicate
superior performance, presenting multiple advantages for continuous authentication.
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Figure 16. Heatmap results for comparison between supervised learning and reinforcement learning.

Table 5. Supervised learning vs. reinforcement learning result.

Metrics Literature Review [21] State-of-the-Art Model [23] This Study (SL) This Study (RL)

ML type Supervised learning Supervised learning Supervised learning Reinforcement learning

Dataset SU-AIS BBMAS subset Buffalo and Clarkson dataset SU-AIS BBMAS [30] SU-AIS BBMAS [30]

No. of users 102 54 117 117

Keys 10 unigraphs, 5 digraphs NA All keys All keys

Model Neural network Neural network Random forest DDQN

Train/test accuracy 97%/NA 88% 89.34%/79.89% 94.77%/81.06%

EER 0.03–0.06 = average 0.045 NA 0.157 0.0323

6. Conclusions

From the results, it is concluded that combining reinforcement learning and behavioral
biometrics can provide a powerful approach to continuous authentication in the digital age.
By continuously learning and adapting to changing behavior patterns, this approach can
provide more secure and personalized authentication, reducing the risk of cyberattacks
and unauthorized access. As a result, by continuously learning and adapting to changing
behavior patterns, this approach can provide more secure and personalized authentication,
lowering the possibility of unauthorized access and cyberattacks. Overall, the use of
reinforcement learning and behavioral biometrics for continuous authentication has the
potential to significantly enhance security in the digital age and is effective in identifying
each user.

RL models can be deployed on the client side where the model can adapt to learn the
change in user behavior, and diminishes the need to retrain the model, unlike supervised
learning models.

Another additional advantage of using this approach and feature is that there is no
need to get rid of any keys for analysis. We have used all the keys in the research, unlike the
other research, where some have only selected 30 keys; unigraph or bigraphs are included
as a part of the analysis.

Moreover, to conclude, we achieved benchmark results on Keystroke dynamics using
RL, on the full dataset with overall Training and test accuracy as 94.77% and 84.06% and
EER as 0.0255 and 0.0323, respectively.

As an addition, the dependency on the data would decrease as the model would learn
eventually to recognize the pattern on its own.

Reinforcement Learning has the potential in the domain of behavioral biometrics,
overcoming multiple challenges that occur in supervised learning. By allowing agents
to learn from their own experiences, reinforcement learning can adapt to changes in the
data and provide accurate predictions, even when labelled training data are limited or
difficult to obtain. The agent learns from the feedback it receives based on its actions. This
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approach can be particularly useful in scenarios where the data are highly variable and
subject to noise.

Below are some of the areas where the continuous authentication applications proves
to be very beneficial:

1. Healthcare: In a hospital setting, medical professionals access sensitive patient data
on computers located in public areas. With continuous authentication, the system
verifies that only authorized personnel are accessing the data, reducing the risk of
unauthorized access, and protecting patient privacy.

2. Financial institutions: In the financial sector, it is crucial to ensure that only au-
thorized personnel can access sensitive financial data. Continuous authentication
prevents unauthorized access to banking systems by verifying the identity of users
throughout their session.

3. Remote work: With an increasing number of employees working from home, it
is important for companies to ensure that their networks are secure. Continuous
authentication is particularly useful in remote work environments, where employees
may be working from unsecured locations or using unsecured devices. It is also used
to track employee’s productivity of the day.

4. Behavioral Profiling for User Insights: Keystroke dynamics are used for behavioral
profiling to gain insights into user behavior, preferences, and typing habits, helping in
personalized user experiences and targeted marketing.

Future Work

The proposed reinforcement learning model for continuous authentication using
behavioral biometrics has potential for future improvements.

1. Autoencoder feature encoder: In the current model, a PCA model is used as a fea-
ture encoder. However, autoencoders can also be used as a feature encoder. Autoencoders
are neural networks that are trained to reconstruct their inputs. They can be used to reduce
the dimensionality of the data and extract features that are important for the task. Using an
autoencoder as a feature encoder can improve the accuracy of the model by reducing the
dimensionality of the data and extracting important features.

2. Augmentation techniques: In the current model, the data are not augmented.
However, augmentation techniques such as adding small noise to the data can be used
to improve the robustness of the model. Augmenting the data can help the model to
generalize better to new data and make it more robust to variations in the data.

3. One way to carry this out could be to use a large language model (LLM) to generate
text that the user would type, and then use reinforcement learning to authenticate the user
based on their typing patterns. This could involve pretraining on a large dataset of text and
then fine-tuning it on a smaller dataset of text that is specific to the user. The user would
then be prompted to type the text generated by LLM models and their typing patterns
would be analyzed by the reinforcement learning model.

However, there can be some challenges that might occur in adopting such applications
in the real world, related to privacy concerns, variability and adaptability of user data,
robustness and anti-spoofing measures, etc.

The article concludes with a call to action for researchers, practitioners, and developers
to collaborate and advance the field of continuous authentication using keystroke dynamics,
highlighting the importance of this technology in ensuring secure and reliable access to
information systems.
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