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Abstract: Modern software systems consist of many software components; the source code of modern
software systems is hard to understand and maintain for new developers. Aiming to simplify the
readability and understandability of source code, companies that specialize in software development
adopt programming standards, software design patterns, and static analyzers with the aim of
decreasing the complexity of software. Recent research introduced a number of code metrics allowing
the numerical characterization of the maintainability of code snippets. Cyclomatic Complexity (CycC)
is one widely used metric for measuring the complexity of software. The value of CycC is equal to
the number of decision points in a program plus one. However, CycC does not take into account
the nesting levels of the syntactic structures that break the linear control flow in a program. Aiming
to resolve this, the Cognitive Complexity (CogC) metric was proposed as a successor to CycC. In
this paper, we describe a rule-based algorithm and its specializations for measuring the complexity
of programs. We express the CycC and CogC metrics by means of the described algorithm and
propose a new complexity metric named Educational Complexity (EduC) for use in educational
digital environments. EduC is at least as strict as CycC and CogC are and includes additional checks
that are based on definition-use graph analysis of a program. We evaluate the CycC, CogC, and
EduC metrics using the source code of programs submitted to a Digital Teaching Assistant (DTA)
system that automates a university programming course. The obtained results confirm that EduC
rejects more overcomplicated and difficult-to-understand programs in solving unique programming
exercises generated by the DTA system when compared to CycC and CogC.

Keywords: code metrics; software complexity; Cyclomatic Complexity; Cognitive Complexity; static
analysis; software design patterns; program analysis; software maintainability

1. Introduction

Growing demand for automation and digitalization leads to the rapid development of
software. With the increase in the capabilities of software systems, the time required for
the delivery of new features also increases. According to [1], software developers spend
more than a half of their working time on program comprehension. Aiming to simplify the
development and maintenance of large and complex software systems, researchers and
practitioners have proposed a number of guidelines and recommendations for writing clear
and maintainable code, known as software design patterns [2–4]. As is shown in [5], the
use of software design patterns with the aim of decomposing and refactoring a software
system can reduce the complexity of the system. As described in [6], an anti-pattern is an
ineffective and counterproductive solution to a common problem, so the maintainability of
a software system improves with the elimination of anti-patterns.

Static source code analyzers are widely used in development environments, allowing
the improvement of the quality of software systems by automating bug detection [7],
bug correction, the detection of code snippets suitable for parallelization [8], and anti-
pattern detection [9] with support for automatic code refactoring. In [9], the authors
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introduced a rule-based method for detecting anti-patterns in abstract syntax trees (ASTs)
in Python programs. The tool developed in [9] facilitated automatically finding code
snippets that violated Python programming idioms, and the found code snippets were
automatically refactored [9] with their idiomatic versions in order to improve the code
readability, maintainability, and performance. Many modern integrated development
environments (IDEs) such as IntelliJ IDEA™ 2023.3.4 from JetBrains® and Visual Studio™
2022 17.9.2 from Microsoft® support rule-based automatic refactoring for programming
languages that are widely used in industry.

However, an IDE is unable to automatically detect and refactor an anti-pattern based
on the preconfigured rules, as, during the software development process, developers face
unique problems and often propose novel solutions and algorithms. Therefore, modern re-
search in software design pattern and anti-pattern detection is focused on the development
of intelligent static source code analyzers that are able to learn from examples [10–12] and
on the development of source code metrics that can numerically characterize code snippets.
As is shown in [13–16], many intelligent static analysis problems can be reduced to the
algorithm detection problem. One of the first mentions of the algorithm detection problem
is in [16], where the authors used code metrics for feature extraction and applied a decision
tree model to source code classification. Code-metric-based intelligent source code analysis
algorithms were successfully applied to the method name prediction problem [13] and to
the design pattern detection problem [10,11].

Moreover, code metrics can be used for a quick quality assessment of a code snippet
during software development or code review. The simplest code metrics include the
number of lines of code (NLOC) metric and its variants [17,18], the number of methods
and the number of fields [10]. In [19], researchers annotated a collection of code snippets
by manually assigning subjective readability assessments to programs. Then, the decisions
made by the researchers were compared to the values of different simple code metrics. The
results show that such metrics as the count of identifiers in a program, maximum identifier
length, and average numbers of logical operators, conditionals, and loops correlate with
code readability. The obtained findings show that neither the NLOC nor the number of
methods and fields metrics are sufficient for readability assessment of a code snippet. The
widely used code metrics that allow us to numerically characterize the readability and
maintainability of a code snippet are the Halstead index [20,21] and Cyclomatic Complexity
(CycC) [22]. Snippets that are characterized by a high CycC value and a high Halstead index
value are considered anti-patterns. Recent research introduced the Cognitive Complexity
(CogC) metric [23], which was developed at SonarSource™; the CogC metric is a successor
to the CycC metric that better reflects source code readability aspects [24].

However, the existing source code complexity metrics are specialized and are not easily
extendable, so in this research, we propose a rule-based algorithm and its specializations
for measuring the complexity of Python programs, the specializations of the rule-based
algorithm support Python 3.12.2. We express such program complexity metrics as CycC and
CogC by means of the proposed algorithm and its specializations. In addition, we propose
a new code complexity metric for use in educational courses (EduC) which is at least as
strict as the CycC and CogC metrics are and includes additional checks that are based on
definition-use graph analysis of a program. We evaluate the CycC, CogC, and EduC metrics
using programs submitted to a Digital Teaching Assistant (DTA) system [25]; the DTA
system supports automatic generation and checking of unique programming exercises of
different types [26]. The obtained results confirm that EduC rejects more overcomplicated
and difficult-to-understand programs solving unique programming exercises generated by
the DTA system when compared to CycC and CogC. The results also show that the proposed
rule-based algorithm can be easily configured to conform to domain-specific requirements.

The paper is structured as follows. Section 2 briefly reviews the existing source
code complexity metrics. Section 3 describes the rule-based algorithm for source code
complexity assessment, as well as its specializations developed to express such code
metrics as CycC and CogC. Section 4 describes the new EduC metric and reports the results
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of the experimental evaluation. Section 5 presents a discussion regarding the obtained
results and highlights areas of future research.

2. Related Work

One of the well-known code quality metrics that analyzes the control flow graph of a
program is Cyclomatic Complexity (CycC), proposed by T.J. McCabe in [22]. For the control
flow graph G = (V, E) of a program, the value of the CycC metric can be computed as

CycC(G) = |E| − |V|+ 2p, (1)

where p denotes the count of the connected components in the control flow graph G, V is
the set of vertices of the graph G, and E is the set of edges of the graph G.

A simple Python function computing factorial is shown in Figure 1a. The AST [27]
of the function is shown in Figure 1c, and the control flow graph is shown in Figure 1b.
The graphs were visualized using Graphviz [28]. As is shown in Figure 1b, the control
flow graph of the considered program has 8 edges, 8 nodes, and 1 connected component.
According to (1), the CycC metric value for the function shown in Figure 1a is equal to 2.

Computers 2024, 13, x FOR PEER REVIEW 3 of 21 
 

The paper is structured as follows. Section 2 briefly reviews the existing source code 
complexity metrics. Section 3 describes the rule-based algorithm for source code complex-
ity assessment, as well as its specializations developed to express such code metrics as 
CycC and CogC. Section 4 describes the new EduC metric and reports the results of the 
experimental evaluation. Section 5 presents a discussion regarding the obtained results 
and highlights areas of future research. 

2. Related Work 
One of the well-known code quality metrics that analyzes the control flow graph of 

a program is Cyclomatic Complexity (CycC), proposed by T.J. McCabe in [22]. For the 
control flow graph 𝐺 𝑉, 𝐸  of a program, the value of the CycC metric can be com-
puted as 

CycC 𝐺 |𝐸| |𝑉| 2𝑝, (1) 

where 𝑝 denotes the count of the connected components in the control flow graph 𝐺, 𝑉 
is the set of vertices of the graph 𝐺, and 𝐸 is the set of edges of the graph 𝐺. 

A simple Python function computing factorial is shown in Figure 1a. The AST [27] of 
the function is shown in Figure 1c, and the control flow graph is shown in Figure 1b. The 
graphs were visualized using Graphviz [28]. As is shown in Figure 1b, the control flow 
graph of the considered program has 8 edges, 8 nodes, and 1 connected component. Ac-
cording to (1), the CycC metric value for the function shown in Figure 1a is equal to 2. 

def main(x): 
  y = 1 
  while x > 1: 
    y *= x 
    x -= 1 
  return y 

  
(a) (b) (c) 

Figure 1. A simple Python program computing factorial using a loop and its tree-based representa-
tions: (a) source code of the program computing factorial, “*=” is the compound assignment opera-
tor with augmented multiplication, “-=” is the compound assignment operator with augmented 
subtraction; (b) control flow graph of the program visualized using Graphviz [28]; (c) AST of the 
program obtained using the AST module from Python standard library [27] and visualized using 
Graphviz [28]. 

As T.J. McCabe showed in [22,29], the CycC of a program with one entry point and 
one exit point is equal to the number of decision points in the program plus one, and such 
decision points include conditional operators and loops. Hence, the CycC metric value 
can be computed during the traversal of an AST (see, for example, Figure 1c). For example, 
the “radon” library [30] computes CycC by traversing the AST and increasing the CycC 
value when an AST node with particular properties is encountered. Known applications 
of the CycC metric include refactoring prediction [31], malware detection [32], software 
testing [33], and test case reduction [34]. CycC is widely used in linters of programming 
languages, allowing them to quickly provide feedback to a programmer if a function or a 
method becomes too complex and hard to understand and maintain. Modified versions 
of the CycC metric exist [35,36], such as the pseudo path metric model. This model assigns 
different weights to different control structures of a program. The recommended maxi-
mum value of the CycC metric is 10 [22,30]. According to [22], the main motivation behind 
the empirically selected threshold is the aim of facilitating easy testing of all the independ-
ent parts of a software component. Since the invention of CycC [22], a threshold value 

Figure 1. A simple Python program computing factorial using a loop and its tree-based represen-
tations: (a) source code of the program computing factorial, “*=” is the compound assignment
operator with augmented multiplication, “-=” is the compound assignment operator with augmented
subtraction; (b) control flow graph of the program visualized using Graphviz [28]; (c) AST of the
program obtained using the AST module from Python standard library [27] and visualized using
Graphviz [28].

As T.J. McCabe showed in [22,29], the CycC of a program with one entry point and
one exit point is equal to the number of decision points in the program plus one, and such
decision points include conditional operators and loops. Hence, the CycC metric value can
be computed during the traversal of an AST (see, for example, Figure 1c). For example,
the “radon” library [30] computes CycC by traversing the AST and increasing the CycC
value when an AST node with particular properties is encountered. Known applications
of the CycC metric include refactoring prediction [31], malware detection [32], software
testing [33], and test case reduction [34]. CycC is widely used in linters of programming
languages, allowing them to quickly provide feedback to a programmer if a function or a
method becomes too complex and hard to understand and maintain. Modified versions of
the CycC metric exist [35,36], such as the pseudo path metric model. This model assigns
different weights to different control structures of a program. The recommended maximum
value of the CycC metric is 10 [22,30]. According to [22], the main motivation behind the
empirically selected threshold is the aim of facilitating easy testing of all the independent
parts of a software component. Since the invention of CycC [22], a threshold value equal
to 10 (CycC ≤ 10) is widely used in industry [30,37] when assessing the complexity of
methods or functions.

However, as is shown in [23,38], the CycC metric does not increase penalties for nested
structures that break the linear control flow, such as nested loops and nested conditional
operators that complicate readability. Aiming to resolve this, a novel Cognitive Complexity
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(CogC) metric was proposed in [23] and integrated into SonarSource™ analyzers. The
CogC metric takes nesting levels into account and multiplies increments for control flow
breakers by their nesting levels. This encourages developers to write simpler code with low
nesting. According to the comprehensive study conducted in [24], CogC correlates with
the time it takes a developer to understand the source code and with subjective ratings of
the code’s understandability. The results published in [39] indicate that CycC, CogC, and
other code complexity metrics are correlated with each other.

The CycC metric was formulated in a FORTRAN environment in 1976 [22], so the
CogC metric was introduced to address syntactic structures in modern languages, such
as the try catch blocks, lambdas, and decorators available in such languages as C++, C#,
Python, Java, JavaScript, and others [23,24]. The CycC metric increases the source code
complexity by 1 for each syntactic structure that breaks the linear control flow of a program.
The CogC metric, in contrast, is based on three different types of increments, including a
simple increment, a nesting increment, and a nesting level increase.

A comparison of the CycC metric [22] and the CogC [23] metric on a sample Python
program ported from Java (see the code snippet on p. 9 in [23]) is shown in Table 1.

Table 1. Comparison of CycC [22] and CogC [23] code metrics on a sample Python program.

Line No. Source Code CycC CogC

1. def main(): +1 –
2. try: – –
3. if condition1: +1 +1 (nesting = 0)
4. for i in range(10): +1 +2 (nesting = 1)
5. while condition2: +1 +3 (nesting = 2)
6. pass – –
7. except Exception as e: +1 +1 (nesting = 0)
8. if condition2: +1 +2 (nesting = 1)
9. pass – –

Total complexity: 6 9

The highlighted Python programming language tokens in Table 1 are such tokens that
receive a complexity increment from either the CycC or CogC.

As is shown in Table 1, the CycC metric increments the complexity for each syntactic
structure that breaks the linear control flow of a program, including such syntactic elements
as Try, If, For, and While. As is shown in line 1 of Table 1, the CycC metric starts the function
complexity analysis with its value equal to 1. According to (1), the CycC metric counts the
decision points in a program, so conditional operators, loops, and exception handlers cause
complexity increments.

The CogC metric starts with 0 (see line 1 in Table 1) and does not increment the com-
plexity for a Try block [23]. Instead, CogC increments its value for each Except statement in
a Try block (see line 7 in Table 1). In addition, CogC increases the nesting level for such
syntactic elements as If, For, and While. Nesting increments in CogC use the current nesting
level as a multiplier (see lines 4, 5, and 8 in Table 1). As a result, the CogC metric value
for a program with many nested loops and conditionals is higher than the value of the
CycC metric. According to [23], nested syntactic structures increase the mental demand of
understanding the code, so the CogC metric increment sizes depend on the current nesting
level. A complete definition of the CogC metric is available in [23].

The demand on software developers is increasing with ongoing digitalization, and
this results in an increase in the burden on academic workers. University programming
courses and massive open online courses (MOOCs) widely adopt specialized software for
automated assessment of the solutions to programming exercises [25,40,41]. The CycC code
metric is commonly used for checking the complexity of programs submitted by students
to autograding systems [25,40] with the intention of encouraging students to write not only
syntactically correct code solving a given task but also simple, readable, and maintainable
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code. For example, in the autograding system described in [25], student submissions are
checked for their compliance with the PEP8 Python programming standard. PEP8 limits
line lengths, indents, and the count of spaces and other special characters that are known to
complicate the code readability [19]. In addition, the DTA system [25] checks the values of
the CycC of the submitted code snippets, encouraging students to refactor their programs
into small and readable functions or classes. However, we are not aware of educational
autograding systems that use the CogC metric [23] developed at SonarSource™.

3. Materials and Methods
3.1. A Rule-Based Algorithm for Measuring Code Complexity

The existing code complexity metrics are not easy to extend. CycC is strictly defined as
(1) [22], and the definition of CogC in the Java programming language is provided in [23].
However, both of the complexity metrics can be expressed as sets of rules, where each rule
is applied to every syntactic element during the traversal of an AST. In this section, we
present a rule-based algorithm for assessing the complexity of programs based on AST
analysis. The algorithm is inspired by the CogC metric [23].

As is shown in Section 2, CogC assigns different weights to complexity increments
depending on the nesting level of a syntactic element. Thus, every rule in the rule-based
algorithm for assessing the complexity of a code snippet can be represented as a tuple
(r, w), where:

• r : V ×V → B is a predicate that checks whether the complexity value should be
incremented or whether the nesting level should be increased for a given AST node
n ∈ V and its parent node np ∈ V,

(
n, np

)
∈ V ×V, V is the set of all nodes belonging

to the analyzed AST, B is the Boolean set, and B = {0, 1}.
• w : V ×M→ Z is a mapping which computes the increment size or the nesting

level increase size for a given AST node n ∈ V and the given context set M ∈ M,
(n, M) ∈ V ×M, where V is the set of nodes in an AST, M is the set of all possible
context sets, and Z is the set of integers.

The proposed algorithm for measuring the code complexity is given as follows:
In the first step, Algorithm 1 initializes an empty set M that can be used to store the

context used by complexity increment rules of different types. For example, the M set
can store variables that are accessible at the analyzed AST node n. In the second step,
Algorithm 1 uses the R1 set to compute the simple increment σn (see line 1) for the AST
node n. For each rule (r, w) ∈ R1 which is represented by a pair consisting of a predicate r
and a mapping w, Algorithm 1 checks whether the rule should be applied to the AST node
n if the parent node for the n node is np. If r

(
n, np

)
returns 1, then the rule weight w(n, M)

is computed for the n node and the context set M; otherwise, if r
(
n, np

)
returns 0, the rule

is skipped, and the weighting function w is ignored. According to the complexity formula
(see line 4 in Algorithm 1), the simple increment σn does not depend on the current nesting
level λ of the node n. In the third step, the R2 set is used to compute the increase in the
nesting level λn for the AST node n (see line 2). In the fourth step, the set of rules R3 is
used to compute the nesting increment ηn for the AST node n (see line 3) that is multiplied
by the current nesting level λ (see line 4). Increments for AST nodes might depend on their
parents, hence the predicate r : V ×V → B accepts both the AST node n and its parent
node np as input (see lines 1–3). The value of the increment computed by the mapping
w : V ×M→ Z might depend on the shared context M used during the AST traversal,
and because of that, the mapping w accepts both the AST node n and the context set M as
input (see lines 1–3). The described process recursively repeats for each of the descendant
AST nodes (see lines 5–8 in Algorithm 1).
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Algorithm 1. A Rule-Based Algorithm for Measuring Code Complexity

Input: n ∈ V ▷ An AST node.
np ∈ V ▷ Parent node of the n AST node.
λ ∈ Z ▷ Current nesting level, 0 by default.
R1 ▷ The set of rules for simple increments.
R2 ▷ The set of rules for increasing the nesting level.
R3 ▷ The set of rules for nesting increments.
M = ∅. ▷ The set used as the shared context during AST traversal.

1. σn = ∑
(r,w)∈R1: r(n,np) ̸=0

w(n, M). ▷ Compute simple increment based on R1.

2. λn = ∑
(r,w)∈R2: r(n,np) ̸=0

w(n, M). ▷ Compute nesting level increase based on R2.

3. ηn = ∑
(r,w)∈R3: r(n,np) ̸=0

w(n, M). ▷ Compute nesting increment based on R3.

4. sn = σn + λ× ηn. ▷ Compute the complexity of the AST node n.
5. For each child node nc of the n node do:
6. snc = Algorithm 1 ( nc, n, λ + λn, R1, R2, R3, M).
7. sn ← sn + snc .
8. End loop.
9. Return sn. ▷ The complexity of the n AST node.

For example, if Algorithm 1 is configured to replicate the behavior of the CycC met-
ric when assessing the complexity of an AST of the program shown in Table 1, then
the rules in the R1 set are used to compute simple complexity increments σn (see line
1 in Algorithm 1) during the recursive traversal of the AST (see lines 5–8). The rules
from the R1 set increment the complexity if the type of the visited node n belongs to the
set {FunctionDef, If, For, While, ExceptHandler} (see Table 1), and the other rule sets are
empty: R2 = ∅, and R3 = ∅. The shared context M can be used, for example, for such
complexity assessment rules that analyze the definition-use graph of a program.

A complexity metric can be defined by the sets of rules R1, R2, and R3 passed as
arguments to Algorithm 1. In the subsequent sections, we define the R1, R2, and R3 sets
for such existing complexity metrics as CycC and CogC for the Python programming
language. A sample Python AST is shown in Figure 1c, and the Python programming
language’s formal grammar is documented in [27]. Additionally, we define the R1, R2, and
R3 sets for the new EduC source code complexity metric designed for use in educational
programming courses.

3.2. Rules for Cognitive Complexity

The CogC metric, according to its definition in the SonarSource™ paper [23], supports:

• Simple increments;
• Nesting level increases;
• Nesting increments.

Table 2 lists the rules for simple increments in the proposed rule-based algorithm for
computing code complexity. Such rules belong to the R1 set in Algorithm 1 (see line 1).
The rules from Table 2 are used during the traversal of a Python AST (see Figure 1c for
an example) obtained using the standard library [23]. In Table 2, t : V → T is a mapping
which maps an AST node n ∈ V to its type. The Vn ⊆ V set is the set of nodes belonging to
a subtree of the analyzed AST, the root of the subtree is n, and np is a parent for n.

The rules listed in Table 2 are specific to the Python programming language AST
format and to the names of the edges connecting the AST nodes; the formal definition of
the Python language AST’s format is available in [27]. The mapping t which maps an AST
node n ∈ V to its type yields one of the known AST node types listed in [27]. However, the
rules can be adapted to support other programming languages with a similar syntax.
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Table 2. Simple increments in the CogC metric for Python, the R1 set of rules in Algorithm 1.

Rule No. Description The Predicate r
(
n,np

)
The Mapping w(n,M)

1. Conditional operator
with two branches

t(n) = If∧ |n.orelse| > 0∧
¬(|n.orelse| = 1∧ t(n.orelse0) = If).

1.

2. Recursive function
t(n) ∈ {FunctionDef, AsyncFunctionDef}∧
∃nc ∈ Vn : (t(nc) = Call∧ t(nc.func) = Name∧

nc.func.id = n.name)
1.

3. Branching in loops and
Error-handling operators

t(n) ∈ {For, AsyncFor, While, Try}∧
|n.orelse| > 0. 1.

4. Control flow breakers t(n) =


ListComp, DictComp, SetComp,

GeneratorExp, For, AsyncFor,
While, Match, ExceptHandler,

IfExp, If

. 1.

5. Generators and branching
in generators t(n) ∈

{
ListComp, DictComp, SetComp,

GeneratorExp

}
.

∑
ng∈G

∣∣ng.ifs
∣∣, where

G = n.generators.

6. A chain of Boolean operators t(n) = BoolOp. 1.

As listed in Table 2, CogC increments the complexity for syntactic structures that break
the linear control flow of a program (see rule 4), for chains of Boolean operators (see rule 6),
for recurrent functions (see rule 2), for branching in loops, error-handling operators, and
conditional operators (see rules 1, 3), as defined in [23]. In addition, simple increments
also include the generators and conditional operators inside them (see rule 5), as they add
branching to the control flow graph of a program.

Table 3 lists the rules for increasing the nesting level. As is shown in Table 3, CogC does
not increase the nesting level based on decorators (see rule 2) due to the added exception,
as described on p. 15 in [23]. Also, the nesting level is not increased for every new else-if
operator (see rule 1), as is suggested in the specification of the CogC metric for Java (see
p. 16 in [23]). Table 4 lists the rules for CogC nesting increments.

Table 3. Nesting level increases in the CogC metric for Python, the R2 set of rules in Algorithm 1.

Rule No. Description The Predicate r(n,np) The Mapping w(n,M)

1. A conditional operator
which is not an else-if

t(n) = If∧ ¬
(
t
(
np

)
= If∧∣∣np.orelse

∣∣ = 1∧ np.orelse0 = n
)
. 1.

2. A function which is not
a simple decorator

t(n) ∈ F ∧
¬
(
|n.body| = 2∧ t

(
n.body0

)
∈ F ∧ t(n.body1) = Return

)
,

where F = {FunctionDef, AsyncFunctionDef}.
1.

3. A syntactic construct which
increases the nesting level t(n) ∈


ListComp, DictComp, SetComp,

GeneratorExp, For, AsyncFor, While,
Match, ExceptHandler, IfExp, With,

AsyncWith, ClassDef, Lambda

. 1.

Table 4. Nesting increments in the CogC metric for Python, the R3 set of rules in Algorithm 1.

Rule No. Description The Predicate r
(
n,np

)
The Mapping w(n,M)

1. A conditional operator
which is not an else-if

t(n) = If∧ ¬
(
t
(
np

)
= If∧∣∣np.orelse

∣∣ = 1∧ np.orelse0 = n
)
. 1.

2. Control flow breaker

t(n) ∈
ListComp, DictComp, SetComp,

GeneratorExp, For, AsyncFor,
While, Match, ExceptHandler, IfExp

.
1.
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3.3. Rules for Cyclomatic Complexity

In contrast to the CogC metric, CycC does not maintain the nesting level and does
not support nesting increments [22]. As a result, when defining CycC using Algorithm 1,
we assume that R2 = ∅ and R3 = ∅. The rules from the set R1 that are used for simple
increments are listed in Table 5, where t : V → T is a mapping that obtains the type of the
AST node n, np is the parent node for the n AST node, and M is the shared context set (see
the M parameter in Algorithm 1).

Table 5. Simple increments in the CycC metric for Python, the R1 set of rules in Algorithm 1.

Rule No. Description The Predicate r
(
n,np

)
The Mapping w(n,M)

1. Exception handling t(n) = Try.
|n.handlers|+ a, where

a =

{
1, |n.orelse| > 0
0, |n.orelse| = 0 .

2. Every Boolean operator t(n) = BoolOp. |n.values| − 1.

3. Pattern matching t(n) = Match. |n.cases|.

4. Generators and branching
in generators t(n) ∈

{
ListComp, DictComp,

SetComp, GeneratorExp

}
.

∑
ng∈G

(∣∣ng.ifs
∣∣+ 1

)
, where

G = n.generators.

5. Control flow breakers t(n) ∈ {For, AsyncFor, While}.
1 + a, where

a =

{
1, |n.orelse| > 0
0, |n.orelse| = 0 .

6. Conditional operators and
function definition t(n) ∈

{
If, IfExp, FunctionDef,

AsyncFunctionDef

}
. 1.

A comparison of the CycC and CogC metric rule sets applied to the AST of the code
from Table 1 is shown in Figure 2; the visualizations were obtained using Graphviz [28].
The 6 nodes highlighted in red in Figure 2a caused CycC increments according to the
rules listed in Table 5, so the resulting CycC metric value for the AST is 6. The five nodes
highlighted in red in Figure 2b caused CycC increments and nesting level increases, and
the brightness of the red color is proportional to the size of the total complexity increment
for the highlighted AST nodes. As listed in Table 1, the “While” node shown in Figure 2b
receives +3 (see rule 4 in Table 2 and rule 2 in Table 4), the “For” node receives +2, and the
“ExceptHandler” node receives +1. The two conditional operators receive +1 and +2 due to
the different levels of nesting.

The nodes that have a nonzero nesting level during AST traversal and receive no
complexity increments are highlighted in orange in Figure 2b, and the brightness of the
color is proportional to the nesting level at the highlighted AST node. The resulting CogC
metric value for the AST shown in Figure 2b is 9 (see Table 1).

As is shown in Figure 2, the complexity increments in CycC and CogC differ, and
programs containing many nested syntactic structures are considered more complex by the
CogC code metric. However, both complexity metrics can be expressed as sets of rules in
Algorithm 1.
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3.4. Rules for Educational Complexity

The extensibility of Algorithm 1 simplifies the definition of new code complexity
metrics and the modification of existing code complexity metrics.

In this section, we define a novel EduC code metric for use in autograding systems that
automates some of the teacher’s activities in educational programming courses, such as
the DTA autograding system [25] that is used in the massive Python programming course
at RTU MIREA. The DTA system supports automatic generation of unique programming
exercises of different types [26], as well as automatic checking of the submitted solutions
for their correctness [25]. In addition, the DTA system checks the CycC of the submitted
programs and rejects code snippets that exceed the allowed limit of 10 CycC points.

However, code that would be rejected during the code review stage in a real-world
company still passes the automatic review based on the CycC checks. The aim of the
proposed EduC metric is to be at least as strict as the CycC and CogC metrics and to
incorporate additional checks to detect anti-patterns that hurt the readability of the source
code. Such anti-patterns include, for example, the reuse of a variable with the same name for
two unrelated purposes, as it is known that this anti-pattern hurts code maintainability [42].

In the novel EduC code metric, we use the CogC metric rule sets in Algorithm 1
as defined in Tables 2–4. However, the R1 set is extended with the additional simple
increment rules listed in Table 6. Rules 1–3 in Table 6 make the EduC metric at least as
strict as the CycC metric, rule 4 increments for structures that break the linear control
flow, and rules 5–8 detect variables that are reused for completely different purposes (see
Table 6). In the variable reuse antipattern (see rules 5–8 in Table 6), we distinguish between
assignments of the form “a = a + 1” and assignments of the form “a = 1”. In the second
case, it is assumed that the name “a” is used in a completely new context, and a second
assignment in a new context incurs a penalty. In the students’ code, we noticed that these
assignments are commonly used in programs written in a low-level, imperative style, using,
for example, complicated logic with flags. With the EduC rules responsible for the variable
reuse anti-pattern detection, we intend to encourage students to write code in a more
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declarative manner, similar to functional programming. Also, we noticed that using an old
variable name in a new context often indicates that the student was too lazy to come up
with different names for two different concepts.

Table 6. Additional simple increment R1 rules used in the EduC metric for Python.

Rule No. Description The Predicate r
(
n,np

)
The Mapping w(n,M)

1. Distinct Boolean operators t(n) = BoolOp. max(0, |n.values| − 2).

2. Pattern-matching cases t(n) = Match. max(0, |n.cases| − 1).

3. Function body t(n) ∈ {FunctionDef, AsyncFunctionDef}. 1.

4. Loop iteration stop t(n) ∈ {Continue, Break}. 1.

5. Variable reuse in assignment
statement or expression t(n) ∈


Assign,

AnnAssign,
NamedExpr

.

(D, U) = Algorithm 2 (n);
s = |{d : d ∈ D ∧ d ∈ M ∧ d /∈ U}|;

M← M ∪ D ;
Return s.

6. Augmented assignment t(n) = AugAssign.
(D, U)← Algorithm 2 (n);

M← M ∪ D ;
Return 0.

7. Variable definition t(n) = Name∧ t(n.ctx) = Store. M← M ∪ {n.id} ;
Return 0.

8. Argument definition t(n) = arg. M← M ∪ {n.arg} ;
Return 0.

The mappings in rules 5–8 that compute the complexity increment for an AST node n
are represented by sequences of statements. The statements update the shared context M
(see the M parameter of Algorithm 1) containing variables that are available at a given AST
node n. The rules 5 and 6 in Table 6 depend on Algorithm 2, which the extracts defined
and variables used from an AST to enable basic data flow analysis. The algorithm traverses
an AST starting from its root n (see lines 7–9) and maintains the D set of defined variable
names (see lines 4–6) and the U set of used variable names (see line 1–3). The complexity of
Algorithm 2 is O(|V|), where V is the set of nodes belonging to the analyzed AST.

Rules 5, 6, and 8 in Table 6 are applied to every AST node during AST traversal; this
is required to maintain the context set M containing the available variables. Rules 6–8
do not increment the complexity and are only required to maintain the M set. Rule 5 in
Table 6 increments the complexity by the count of variables that are reused in a different
context [42]. Such variables are defined (belong to the D set received from Algorithm 2),
have been defined earlier (belong to the M shared context set), and are not used on the
right-hand side of the assignment operator (do not belong to the U set received from
Algorithm 2).

Algorithm 2. Extraction of defined and used variables from a Python AST

Input: n ∈ V ▷ An AST node to extract defined and used variables from.
D ▷ The set of defined variables, D = ∅ by default.
U ▷ The set of used variables, U = ∅ by default.

1. If t(n) = Name∧ t(n.ctx) = Load then:
2. U ← U ∪ {n.id} .
3. End if.
4. If t(n) = Name∧ t(n.ctx) = Store then:
5. D ← D ∪ {n.id} .
6. End if.
7. For each child node nc of the n node do:
8. (D, U)← Algorithm 2 (nc, D, U).
9. End loop.

10. Return (D, U). ▷ The defined and used variables.
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The intended use of the EduC metric is assessment of source code in educational
programming courses, MOOCs, and automated systems for interviewing candidates for
employment. EduC adds additional complexity increments with the aim of detecting
anti-patterns that make code less maintainable [42], so the metric can be used to analyze
and refactor existing software systems either manually or automatically, as is shown in [43].

4. Comparison of the Code Complexity Metrics
4.1. Sample Programs

The considered code complexity metrics were compared using programs from the [23]
dataset. The programs were ported from the Java programming language to Python,
Algorithm 1 (see Section 3.1) was used to measure the complexity of the programs.

For the CycC metric (see Section 3.2), the R1 set contained rules from Table 5, R2 = ∅,
and R3 = ∅. For the CogC metric (see Section 3.3), the R1, R2, and R3 sets contained
rules from Tables 2–4. For the EduC metric (see Section 3.4), the R2 and R3 sets contained
rules from Tables 3 and 4, and the R1 set included rules from Tables 2 and 6. Table 7
lists the increments in complexity for CycC, CogC, and EduC for a sample program from
p. 18 of [23]. The results for other sample programs are provided in [44], and the code
implementing the CycC, CogC, and EduC metrics is also available in [44].

Table 7. The comparison of CycC, CogC, and EduC code metrics.

Line No. Source Code CycC CogC EduC

1. def add_version(entry, txn): +1 – +1
2. ti = persistit.transaction() – – –
3. while True: +1 +1 (nesting = 0) +1 (nesting = 0)
4. try: – – –
5. if first is not None: +1 +2 (nesting = 1) +2 (nesting = 1)
6. if first.version() > entry.version(): +1 +3 (nesting = 2) +3 (nesting = 2)
7. raise RollbackException() – – –
8. if txn.active(): +1 +3 (nesting = 2) +3 (nesting = 2)
9. for e in e.get_previous(): +1 +4 (nesting = 3) +4 (nesting = 3)
10. version = e.version() – – –
11. depends = ti.depenency(version, txn.status, 0) – – –
12. if depends == TimedOut: +1 +5 (nesting = 4) +5 (nesting = 4)
13. raise RetryException() – – –
14. if depends != 0 \ +1 +5 (nesting = 4) +5 (nesting = 4)
15. and depends != Aborted: +1 +1 +1
16. raise RollbackException() – – –
17. entry.set_previous(first) – – –
18. first = entry – – –
19. break – – +1
20. except RetryException as re: – +2 (nesting = 1) +2 (nesting = 1)
21. try: – – –
22. depends = persistit.transaction() – – +1 (variable reuse)
23. if depends != 0 \ +1 +3 (nesting = 2) +3 (nesting = 2)
24. and depends != Aborted: +1 +1 +1
25. raise RollbackException() – – –
26. except InterruptedException as ie: – +3 (nesting = 2) +3 (nesting = 2)
27. raise PersistitInterruptedException(ie) – – –
28. except InterruptedException as ie: – +2 (nesting = 1) +2 (nesting = 1)
29. raise PersistitInterruptedException(ie) – – –

Total complexity: 14 35 38

According to Table 7, the EduC metric value is the highest among the considered
metrics, and the CycC metric is the lowest, as it does not take nesting levels into account.
The highlighted Python programming language tokens in Table 7 are such tokens that
receive a complexity increment at least from one of the CycC, CogC, and EduC metrics.
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The EduC metric is at least as strict as the CycC and CogC metrics are. Line 11 and line 22
in Table 7 define a variable, “depends”. This variable is redefined at line 22 with a newly
received value and has a different meaning compared to a variable defined earlier at
line 11. This is an example of a well-known variable reuse anti-pattern that complicates the
understandability of code [42], and the EduC metric adds +1 to the complexity value here
(see rule 5 in Table 6).

4.2. Programs Solving Unique Programming Exercises

The DTA autograding system described in [25] automates some of the teacher activities
in a massive Python programming course at RTU MIREA. The DTA system is capable of
automatic generation of unique programming exercises of different types using methods
and algorithms described in [26]; static analysis programs submitted by students; checking
the correctness of the submitted programs [25]; and maintenance of the statistics on students’
performance and achievements. A program submitted by a student is first checked for
its compliance with the PEP8 Python code formatting standard, which was developed to
simplify code readability and maintainability. If the program passes the PEP8 code style
check, the CycC metric is then used to measure the complexity of the program. If the
CycC value is below the allowed threshold (CycC ≤ 10), then the program is checked for
correctness; otherwise, the program is rejected.

The DTA system supports automatic generation and automatic checking of tasks
of 11 types, including formal notation into source code translation tasks and conversion
between data format tasks. The task types supported in DTA are [45]:

1. Implement a mathematical function;
2. Implement a piecewise function formula;
3. Implement an iterative formula;
4. Implement a recurrent formula;
5. Implement a function that processes vectors;
6. Implement a function computing a decision tree;
7. Implement a bit field converter;
8. Implement a text format parser;
9. Implement tabular data transformation;
10. Implement a finite state machine as a class;
11. Implement a binary format parser.

Examples of each of the listed task types are available in [45], and examples of pro-
grams solving unique programming exercises of 11 types are also available in [45]. However,
as can be seen from the source codes of the accepted programs, the system accepts code that
is poorly readable despite the presence of the CycC check. Students overuse nested loops,
nested functions, classes, and conditionals and do not pay attention to variable naming,
even if the same variable is reused in different contexts. This issue can be resolved by
incorporating either CogC or EduC instead of the CycC metric into the DTA system.

In the Spring semester of 2023, the DTA system received 100,691 programs [45] solving
unique automatically generated programming exercises. A total of 18,683 programs were
automatically checked and accepted by the system, and 82,008 programs were rejected.
Meanwhile, 2851 of the 82,008 rejected programs passed the PEP8 standard compliance
check and were rejected because of an excessive CycC metric value.

Aiming to compare the CycC, CogC, and EduC metrics (see Section 3), we prepared a
dataset containing 21,534 programs solving unique programming exercises of 11 different
types. The dataset included 18,683 programs that were checked and accepted by the DTA
system, and the 2851 programs that were rejected due to a too-high CycC metric value
(CycC > 10). Analysis of the source code of the programs from the dataset was carried out
with the aim of answering two research questions (RQs).

Question 1 (RQ1). Which of the well-known CycC and CogC metrics is stricter in the complexity
assessment of programs solving unique programming exercises?
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Aiming to answer this research question, we calculated the count of programs that
exceed CycC (CycC > 10) but do not exceed CogC (CogC ≤ 10) and the count of programs
that exceed CogC (CogC > 10) but do not exceed CycC (CycC ≤ 10) per task type. The
CycC metric was calculated for each program using Algorithm 1 and the rules from Table 5,
the CogC metric was calculated for each program using Algorithm 1 and the rules from
Tables 2–4. The results are shown in Figure 3.
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According to Figure 3, more than 700 programs exceed CogC (CogC > 10) but do
not exceed CycC (CycC ≤ 10). According to the values of the CogC metric, students use
the most complex solutions for tabular data transformation (task of type 9) and decision
tree computation (task of type 6). The naive programmatic solutions to the decision tree
computation task include a lot of nested conditional operators, the naive solutions to the
tabular data transformation task include nested loops and conditionals, and the CogC
metric increases penalties for nested “ifs” and loops (see Figure 2a,b and Table 7).

Aiming to compare the count of programs that exceed both metrics, the count of
programs that exceed one of the two metrics, and the count of programs that do not exceed
either metric, we obtained the plots shown in Figure 4.
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Figure 4. A comparison of the count of programs that exceed both complexity metrics, the count
of programs that exceed one of the two complexity metrics, and the count of programs that do not
exceed either CycC or CogC.

According to Figure 4, the CycC and CogC metrics agree on rejecting 3132 programs
and agree on accepting 17,534 programs with the maximum allowed complexity threshold
set to 10. The metrics disagree for 868 programs, and CogC rejects more poorly readable
programs where refactoring is necessary. This indicates that CogC is stricter than CycC
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in the assessment of Python programs solving educational exercises. However, programs
that exceed CycC but do not exceed CogC also exist. Hence, one of the aims of EduC’s
development was to make a metric that is at least as strict as CycC and CogC.

Question 2 (RQ2). Is the developed EduC metric at least as strict as the well-known CycC and
CogC metrics are in the complexity assessment of programs solving programming exercises?

Figure 4 compares the strictness of the CycC and CogC metrics and shows that CogC
is stricter than CycC, but programs that pass the CogC check and do not pass the CycC
check also exist. Aiming to answer the second research question, we included the third
EduC metric in the comparison. Including the EduC metric with the same threshold value
10 in the comparison results in the histogram plot shown in Figure 5.
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The EduC metric was calculated for each program from the dataset using Algorithm
1 and the rules from Tables 2–4 and additional rules from Table 6. According to Figure 5,
the EduC metric is indeed at least as strict as the CycC and CogC metrics are, and no
programs exist that exceed either CycC or CogC but do not exceed EduC. As is shown in
Figure 4, 793 programs exceed CogC but do not exceed CycC, and 75 programs exceed
CycC but do not exceed CogC. However, if we include the new EduC code metric in the
comparison (see Figure 5), we find out that 0 programs exceed only CycC but do not exceed
EduC, and 0 programs exceed only CogC but do not exceed EduC. Moreover, EduC rejects
810 programs more when compared to using the CycC and CogC metrics simultaneously.

Aiming to verify that the proposed EduC metric is indeed at least as strict as the CycC
and CogC metrics are, we verified that the following condition was satisfied:

∀n ∈ P : EduC(n ) ≥ CycC(n ) ∧ EduC(n ) ≥ CogC(n), (2)

where P denotes the considered dataset containing 21,534 programs, n denotes an AST of a
program from the dataset P, CogC(n)’s value is computed using Algorithm 1 and the rules
from Tables 2–4, CycC(n)’s value is computed using Algorithm 1 and the rules from Table 5,
and EduC(n)’s value is computed using Algorithm 1 and the rules from Tables 2–4 and 6.

Aiming to compare the distributions of different code complexity metrics, we obtained
histograms of the occurrence frequencies of the metric values for the programs from the
considered dataset containing 21,534 source codes. The histograms are shown in Figure 6.

As is shown in Figure 6, there are many programs with a CogC value of zero. The
CycC metric values are often in the range of 1 to 5, and there is also a noticeable number
of programs with the CycC metric value in the range of 11 to 15. Small values of CogC
and EduC occur less often when compared to CycC. Aiming to better understand how the
distributions differ for programs with a higher complexity, we applied a logarithmic scale
to the vertical axis of Figure 6. The obtained result is shown in Figure 7.



Computers 2024, 13, 75 15 of 20

Computers 2024, 13, x FOR PEER REVIEW 15 of 21 
 

CycC but do not exceed CogC. However, if we include the new EduC code metric in the 
comparison (see Figure 5), we find out that 0 programs exceed only CycC but do not ex-
ceed EduC, and 0 programs exceed only CogC but do not exceed EduC. Moreover, EduC 
rejects 810 programs more when compared to using the CycC and CogC metrics simulta-
neously. 

Aiming to verify that the proposed EduC metric is indeed at least as strict as the CycC 
and CogC metrics are, we verified that the following condition was satisfied: ∀𝑛 ∈ 𝑃: EduC(𝑛)  CycC(𝑛) ∧ EduC(𝑛)  CogC(𝑛), (2) 

where 𝑃 denotes the considered dataset containing 21,534 programs, 𝑛 denotes an AST 
of a program from the dataset 𝑃, CogC(𝑛)�s value is computed using Algorithm 1 and the 
rules from Tables 2–4, CycC(𝑛)�s value is computed using Algorithm 1 and the rules from 
Table 5, and EduC(𝑛)�s value is computed using Algorithm 1 and the rules from Tables 2–
4 and 6. 

Aiming to compare the distributions of different code complexity metrics, we ob-
tained histograms of the occurrence frequencies of the metric values for the programs 
from the considered dataset containing 21,534 source codes. The histograms are shown in 
Figure 6. 

 
Figure 6. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for pro-
grams solving unique programming exercises [45]. 

As is shown in Figure 6, there are many programs with a CogC value of zero. The 
CycC metric values are often in the range of 1 to 5, and there is also a noticeable number 
of programs with the CycC metric value in the range of 11 to 15. Small values of CogC and 
EduC occur less often when compared to CycC. Aiming to better understand how the 
distributions differ for programs with a higher complexity, we applied a logarithmic scale 
to the vertical axis of Figure 6. The obtained result is shown in Figure 7. 

 
Figure 7. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for pro-
grams solving unique programming exercises [45], logarithmic scale. 

According to Figure 7, CogC and EduC values above 15 occur more often when com-
pared to CycC. Aiming to compare the relative values of the complexity metrics, we 

Figure 6. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for programs
solving unique programming exercises [45].

Computers 2024, 13, x FOR PEER REVIEW 15 of 21 
 

CycC but do not exceed CogC. However, if we include the new EduC code metric in the 
comparison (see Figure 5), we find out that 0 programs exceed only CycC but do not ex-
ceed EduC, and 0 programs exceed only CogC but do not exceed EduC. Moreover, EduC 
rejects 810 programs more when compared to using the CycC and CogC metrics simulta-
neously. 

Aiming to verify that the proposed EduC metric is indeed at least as strict as the CycC 
and CogC metrics are, we verified that the following condition was satisfied: ∀𝑛 ∈ 𝑃: EduC(𝑛)  CycC(𝑛) ∧ EduC(𝑛)  CogC(𝑛), (2) 

where 𝑃 denotes the considered dataset containing 21,534 programs, 𝑛 denotes an AST 
of a program from the dataset 𝑃, CogC(𝑛)�s value is computed using Algorithm 1 and the 
rules from Tables 2–4, CycC(𝑛)�s value is computed using Algorithm 1 and the rules from 
Table 5, and EduC(𝑛)�s value is computed using Algorithm 1 and the rules from Tables 2–
4 and 6. 

Aiming to compare the distributions of different code complexity metrics, we ob-
tained histograms of the occurrence frequencies of the metric values for the programs 
from the considered dataset containing 21,534 source codes. The histograms are shown in 
Figure 6. 

 
Figure 6. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for pro-
grams solving unique programming exercises [45]. 

As is shown in Figure 6, there are many programs with a CogC value of zero. The 
CycC metric values are often in the range of 1 to 5, and there is also a noticeable number 
of programs with the CycC metric value in the range of 11 to 15. Small values of CogC and 
EduC occur less often when compared to CycC. Aiming to better understand how the 
distributions differ for programs with a higher complexity, we applied a logarithmic scale 
to the vertical axis of Figure 6. The obtained result is shown in Figure 7. 

 
Figure 7. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for pro-
grams solving unique programming exercises [45], logarithmic scale. 

According to Figure 7, CogC and EduC values above 15 occur more often when com-
pared to CycC. Aiming to compare the relative values of the complexity metrics, we 

Figure 7. Histograms of occurrence frequencies of CogC, CycC, and EduC metric values for programs
solving unique programming exercises [45], logarithmic scale.

According to Figure 7, CogC and EduC values above 15 occur more often when
compared to CycC. Aiming to compare the relative values of the complexity metrics, we
applied min–max normalization to the set containing the computed values of the CycC
metric, to the set containing the computed values of the CogC metric, and to the set
containing the computed values of the EduC metric. The metric values were obtained from
programs from the dataset [45] (see Figure 7).

The set Xs containing normalized values of a metric was computed as:

Xs =


x−min

xi∈X
xi

max
xi∈X

xi −min
xi∈X

xi

∣∣∣∣∣∣ x ∈ X

, (3)

where Xs is the set containing scaled complexity metric values from the X set, and x denotes
the value of the complexity metric before scaling.

Histograms of the occurrence frequencies of the scaled CycC, CogC, and EduC metric
values are shown in Figure 8 with logarithmic scaling.
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According to Figures 7 and 8, the EduC metric is more likely to produce higher
complexity values for complex programs when compared to CycC and CogC. EduC reaches
higher complexity values by design (see Figure 7), but even after applying a normalization
scheme, EduC appears to be stricter when compared to the other metrics.

In addition, we calculated the occurrence frequencies of different code complexity
metrics for each task type, and the results are shown in Figure 9.
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As is shown in Figure 9a, in the first block of the exercises which contain tasks where
a student should implement a function computing a given mathematical formula, EduC
increases the penalties for functions with conditional operators (type 2 in Figure 9a) and
for functions with nested loops (type 3 in Figure 9a); see p. 4 of [45] for task formulation
examples. It is expected that a student either refactors the nested loops into separate
functions or uses such Python language features as generator expressions.

As is shown in Figure 9b, EduC increases the penalties for complex implementations of
functions that compute decision trees (type 6). It is expected that a student either refactors
the nested ifs into small Python functions or uses a declarative approach to describing the
computation rules for decision trees. EduC also increases the penalties for functions that
transform tabular data. Again, it is expected that a student either splits the complex code
into small functions or uses list comprehensions or generator expressions.

A comparison of the program counts rejected by the three metrics is shown in Figure 10.
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As is shown in Figure 10, the EduC metric is the strictest metric, rejecting 1603 more
programs when compared to the CycC metric, which was previously used in the DTA
system [25,45]. We suggest the use of the same threshold for EduC as for CycC (EduC ≤ 10)
in autograding systems automating educational programming courses, including the DTA
system. Programs that exceed the maximum allowed EduC metric value are rejected in
the new version of the DTA system. In addition, a report is shown to students, listing
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the complexity increments for the syntactic elements of a program. An example of such a
report is shown in Figure 11.
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students or ordinary developers refactor and simplify specific parts of their code. Figure 
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Figure 11. The user interface of the task submission page in the DTA system [25]: (a) example of a
report generated based on code complexity analysis performed using the specialized implementation
of Algorithm 1 with rules listed in Tables 2–4 and 6; (b) example of task submission page UI when a
program was successfully checked and accepted by the DTA system.

In addition, the textual output of the complexity check report generated by the devel-
oped eDSL [44] based on Algorithms 1 and 2 was used in an extension to the Visual Studio
Code® editor. The developed extension is able to highlight the lines causing complexity
increments if the analyzed function exceeds the configured code complexity limit, as is
shown in Figure 12. The numerical complexity value does not help much with refactoring
a code snippet with the aim of removing anti-patterns, too-high nesting levels, and other
things that complicate readability. The user interface of the code editor which is shown in
Figure 12 highlights lines with syntactic elements that cause complexity increments based
on the textual output (see Figure 11a), aiming to provide tips to a developer or a student
that help with refactoring a code snippet.
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The use of colors and labels in the developed extension (see Figure 12) simplifies the
understandability of the generated complexity check reports (see Figure 11a), suggesting
students or ordinary developers refactor and simplify specific parts of their code. Figure 12a
shows a program computing a recurrent formula and solving a task of type 4 from the con-
sidered dataset, while Figure 12b shows a refactored version of the original program with a
reduced EduC metric value. In the refactored version of the program shown in Figure 12b,
the variable reuse anti-pattern was refactored into multiple variable assignments.

5. Conclusions

In the conducted research, we described a rule-based algorithm, Algorithm 1, for
complexity assessment of code snippets. We described the rules required to express the
well-known CycC metric [21,22,29] and the CogC metric, which was proposed in [23] and
extensively studied in [24,38]. Table 5 contains CycC simple increment rules for use in
Algorithm 1. Tables 2–4 contain CogC simple increment, nesting level increase, and nesting
increment rules for use in Algorithm 1. In addition, we proposed a new complexity metric,
EduC, for use in autograding systems that automate educational programming courses.
The EduC metric reuses the CogC rules (see Tables 2–4) but also includes simple increment
rules from Table 6. The additional rules from Table 6 make the EduC metric at least as
strict as the CycC and CogC metrics are when used simultaneously. Moreover, EduC also
includes rules for detecting the variable reuse anti-pattern described in [42].

The proposed EduC metric can be used for the assessment of programs in software
that supports automatic checking of programming exercises, such as the DTA system [25].
The aim of the incorporation of the EduC metric is to motivate students to write simple,
maintainable, and reusable functions and classes. We expressed the CycC, CogC, and
EduC metrics using the developed Python-based eDSL [44] and evaluated the metrics
on programs submitted to the DTA system in the Spring semester 2023 [45]. The results
confirm that CogC is stricter than CycC and that the EduC metric is indeed at least as
strict as CycC and CogC are. The EduC metric rejects more overcomplicated and difficult-
to-understand programs solving unique programming exercises generated by the DTA
system. The EduC metric can be further extended with additional rules that increment
the complexity based on code duplication and other anti-patterns. Moreover, Algorithm
1 can be used to check the compliance of software to corporate programming standards
expressed as the sets of rules R1, R2, and R3 in Algorithm 1 using the developed eDSL [44],
and the EduC metric is an example demonstrating how Algorithm 1 can be configured to
solve a domain-specific problem.

Future work could focus on the development of additional rules for Algorithm 1
that can detect the “magic number” anti-pattern [46], object-oriented programming anti-
patterns, and functional programming anti-patterns. Moreover, automatic synthesis of the
R1, R2, and R3 rule sets in Algorithm 1 from a labeled dataset of programs is a promising
research area. However, the described rule-based algorithm Algorithm 1 currently lacks
support for complex control flow graph analysis, data flow graph analysis, or call graph
analysis of software; the algorithm only supports complexity increments that can be com-
puted separately for every node of an AST using the shared context M. Future research
could focus on more advanced methods and algorithms that operate on graph-based rep-
resentations of programs and software systems with the aim of detecting and refactoring
more complex antipatterns such as semantic code duplication.
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