
Citation: Lohmann, S.; Tutsch, D. The

Doubly Linked Tree of Singly Linked

Rings: Providing Hard Real-Time

Database Operations on an FPGA.

Computers 2024, 13, 8. https://

doi.org/10.3390/computers13010008

Academic Editors: Paolo Bellavista,

Richard Chbeir, Mirjana Ivanović,

Yannis Manolopoulos and Claudio

Silvestri

Received: 22 September 2023

Revised: 5 December 2023

Accepted: 14 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

The Doubly Linked Tree of Singly Linked Rings: Providing Hard
Real-Time Database Operations on an FPGA
Simon Lohmann * and Dietmar Tutsch *

Chair of Automation/Computer Science, University of Wuppertal, Rainer-Gruenter-Str. 21,
42119 Wuppertal, Germany
* Correspondence: slohmann@uni-wuppertal.de (S.L.); tutsch@uni-wuppertal.de (D.T.)

Abstract: We present a hardware data structure specifically designed for FPGAs that enables the
execution of the hard real-time database CRUD operations using a hybrid data structure that combines
trees and rings. While the number of rows and columns has to be limited for hard real-time execution,
the actual content can be of any size. Our structure restricts full navigational freedom to every but
the leaf layer, thus keeping the memory overhead for the data stored in the leaves low. Although
its nodes differ in function, all have exactly the same size and structure, reducing the number of
cascaded decisions required in the database operations. This enables fast and efficient hardware
implementation on FPGAs. In addition to the usual comparison with known data structures, we also
analyze the tradeoff between the memory consumption of our approach and a simplified version that
is doubly linked in all layers.

Keywords: FPGA; RTDB; database; data structure; real-time; hard real-time; CRUD; ring; tree

1. Introduction
1.1. Motivation
1.1.1. Hard Real-Time Databases

Classical database systems are not designed for real-time operation. The use of
database concepts can, however, simplify the complicated task of designing real-time
systems for tasks based on table data, e.g., tracing individual work pieces through auto-
mated production facilities to adapt further machining steps to the production history of
the individual work pieces. Current real-time database (RTDB) systems with guaranteed
deadlines work by gracefully aborting queries when a deadline cannot be met. While this
may be a valid approach for some practical applications, it basically replaces the guarantee
for a complete execution of the query with a guarantee for a timely answer, which is now
allowed to be deadline could not be met, query aborted. Our long-time goal is to build a hard
real-time RTDB that guarantees both the successful execution of the queries and their
timely completion.

1.1.2. Operations on Tables

Regarding the operations Insert and (Create in the commonly used Create, Read, Update,
Delete (CRUD) acronym), Update and Delete build the foundation of table storage in a
database system. While insertion at any position would be sufficient for a real-time database,
inserting at specific positions can be beneficial for performance as it additionally allows
storing orderedtables. (While relational databases do not have an inherent order of table
entries, this can be useful, e.g., for time series). Apart from changing the dataset, we also
need Primary-Key-Access to a specific row/value from its primary key and an operation
to Read the actual data. Being able to execute all these operations in hard real-time is
therefore essential.

Computers 2024, 13, 8. https://doi.org/10.3390/computers13010008 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13010008
https://doi.org/10.3390/computers13010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1554-8477
https://orcid.org/0009-0008-6495-5128
https://doi.org/10.3390/computers13010008
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13010008?type=check_update&version=2

Computers 2024, 13, 8 2 of 32

1.2. Issues to Address
1.2.1. DB-Operations vs. Hard Real-Time

The CRUD operations operate on previously unknown amounts of data. As this is
the first point where the data enter our system (or are deleted), we cannot assume that
tricks like simply linking an existing object containing all the data in place via a pointer are
applicable. We actually have to keep our system capable of hard real-time operation while
touching every bit of information during Read/Insert/Update.

1.2.2. Dynamic Data Width

While most database columns in practical applications are probably of constant width
(e.g., numbers, booleans, and timestamps), variable widths are common as well, e.g., for
storage of strings or large numbers or binary large objects (BLOBs). This rules out purely
static data structures like arrays.

1.2.3. Memory Allocation and Deallocation

Dynamic insertion and deletion of data requires the allocation and deallocation of
memory. Updating a DB entry of dynamic width will most likely involve a change in the
amount of used memory as well. As the allocated memory can shrink by large amounts with
the deletion of a single row, an algorithm handling hard real-time deallocation of arbitrary
amounts of memory is crucial. Allocation is equally important, but less complicated, since
it can be completed step by step as new data arrive from a data stream (see Section 3.3).

1.2.4. Performance on FPGAs

As the implementations regarding our current research towards hard real-time databases
take place on field programmable gate arrays (FPGAs), we also want to consider that FPGA
designs favor parallel operations and/or pipelining. Long sequences of decisions, in contrast,
come at the cost of reduced maximum operation frequency of the FPGA design. Keeping
the amount of dependent decisions low for each clock cycle allows higher operation speeds.
Our target is therefore to keep the amount of dependent decisions low, while the amount of
parallel execution paths is not of concern.

1.3. Contribution

We present the doubly linked tree of singly linked rings, a hierarchical-node-based data
structure providing the CRUD operations for hard real-time databases while keeping all
elements in all hierarchy levels of identical structure, reducing the amount of sequential
decisions (and completely omitting primary key lookup) and thus improving achievable
performance on FPGAs. Only the typically small higher-hierarchy layers provide full
navigation freedom (up/down/successor/predecessor), while the leaves are restricted
to up/successor, reducing their memory footprint. It additionally provides interesting
non-real-time options like hierarchic ascent and cyclic read from any entry point. We
discuss the tradeoff vs. a completely doubly linked version and show in which aspects our
structure outperforms well-known alternatives. Apart from an example interface, we also
show how limited depth recursions used in one of our operations can be implemented for
FPGAs in a synthesizable way using what we call a context switching state machine.

1.4. Content

The first section motivates the problem and presents issues to address. An overview
of related work is provided in Section 2. In Section 3, we introduce our system model
and explain basic notation and nomenclature. Section 4 presents our data structure and
defines operations on it, followed by the corresponding real-time proofs in Section 5, an
experimental evaluation in Section 6, and a comparison to other data structures as well
as a double-linked ring variation in Section 7. Section 8 concludes the paper. An example
interface is presented in Appendix A. Instructions on synthesizable implementation of the
utilized limited depth recursion are provided in Appendix B.

Computers 2024, 13, 8 3 of 32

2. Related Work
2.1. Real-Time Databases

A real-time database (RTDB) can process queries in real time. Typical applications
include cyberphysical systems and stock trading. For hard real-time, every single query
has to be finished before its individual deadline. Therefore, such systems must be designed
with worst-case execution time (WCET) in mind—in contrast to non-real-time database
systems, which are often optimized towards average case performance.

In practical applications, this restriction can be reduced to performing only queries
involving database content in real time, while operations on the databases schema usually
involve human interaction at some point (non-real-time). Another reason why we do
not consider schema changes as hard real-time operations is that such a change implies
reevaluation of the system’s query execution plans and deadlines, which might find that the
updated system cannot comply with the old deadlines. This is therefore better completed
outside the hard real-time domain until deadline-compliant operations have been ensured
by a real-time analysis.

Remark 1. Classical database systems are not designed for real time. Despite some large players
in the database market using the term “real-time” prominently in their advertising, what they sell
would mostly be scientifically classified as active databases.

Kao and Garcia-Molina [1] Ramamritham et al. [2,3], and Shanker et al. [4] provide
good overviews on earlier publications in the field of RTDB research. A great deal of research
has been completed on concurrency control [5] and transaction scheduling [6–9] and its
influence on deadlines and new real-time-capable algorithms [10]. Other well-covered topics
include locking protocols [11–16] and distributed real-time databases [5,13,17]. Only a few
of the existing RTDB prototypes target hard real-time operation:

MDARTS by Lortz et al. [18] “provides hard real-time transaction times” by precalcu-
lating the worst-case execution time of every transaction. The authors discuss bounds on
transaction overheads from preemption, locks, and interrupts. However, the quite essential
calculation of actual transfer WCETs is not further explained; in the described experiments,
WCETs are always “estimated” and “assumed” without further calculations. One could
compare MDARTS to a real-time operating system: it provides a solid foundation on which
the actual task (the real-time query) still has to be built.

Nyström et al. suggests database pointers, a mechanism for bypassing slow access paths
in a DBMS [19], also targeting hard real-time control systems. The idea is to supplement a
regular database (using regular index structures) with a second access layer, which is meant
to be used for hot data (data queried at high frequency compared to the rest of the database).
While the access method is more direct than the regular key lookup, it still provides features
like type checking and locking via an additional database pointer table. Using a database
pointer requires an initial call to the bind(ptr, q) operation, which looks up the physical
address of the data in q and binds it to a new entry in the database pointer table.

RTDB by Nogiec and Desavouret [20] is “a fast, memory resident object database” with
triggers, versioning, and bitfield-based attribute queries. It relies on the users directly using
pointers after an initial name lookup, which provide direct access to the objects stored as is.
The authors, however, do not elaborate on execution times, apart from a general statement
that they see in-memory databases as “especially suited” for real-time systems due to their
“short and predictable access times”.

Another in-memory RTDB is the open source KogMo-RTDB, a time series object
database by Goebl and Farber [21] that specifically targets event processing for cogni-
tive automobiles. The history of each sensor is stored in a dedicated ring buffer of limited
size [22]. KogMo-RTDB allows to query objects relative to a given timestamp (younger,
older, or exact timestamp). It also provides queries that will wait for creation/deletion of
objects. Another option is to query the most current data of an object, optionally waiting
for the creation of new data if there are no data existing after the associated timestamp.

Computers 2024, 13, 8 4 of 32

Introducing new object types is possible but requires recompilation of the database system.
This includes compound object types with members of an existing type.

The recently released eXtremeDB/rt by McObject claims to be the “first” and “only”
RTDB “that guarantees transaction deadlines” [23]. It achieves hard real-time aware
execution of database queries by applying a policy of “successfully aborting” queries in
hard real-time if it is detected that the deadline of a query cannot be met [24].

2.2. FPGAs and Databases

Field Programmable Gate Arrays (FPGAs) are configurable integrated circuits that
host user-defined logic circuits. FPGAs are increasingly used in the database field [25,26].
Their applications are mostly limited to acceleration of database queries [27–30] controlled
by a processor-based database management system, where they achieve quite remarkable
speedups compared to CPU implementations. As FPGAs are reconfigurable, custom
acceleration processors can be specifically adapted to the most intensive processing tasks.

Glacier [31,32] by Müller et al. compiles queries to custom FPGA designs, which are
then synthesized for use in the target FPGA. This approach of synthesizing a dedicated full
FPGA configuration for every new query is, however, only viable for very time-intensive
workloads as synthesis of FPGA design itself is a rather time-consuming process and may
easily eat up the expected speedup of smaller queries.

A different approach is the use of prebuilt processing modules in conjunction with
partial reconfiguration of the FPGA. Queries are built by loading the correct modules into a
universal datapath. This approach is used by Sukhwani et al. in [33,34], Dennl et al. in [35],
and Ziener et al. in [28].

2.3. Hard Real-Time and Hardware Data Structures

Data structures for hard real-time mostly include well-known concepts like arrays
(constant-time-index-based access) or linked lists (constant time insert/delete). Balanced
tree structures like the B-tree [36] and its variants are also sometimes considered due to
their low complexity of O(log(N)). As the depth of balanced trees grows with increasing
data load, they are only capable of hard real-time when the amount of data is limited.

Hash tables are famous for their exceptional average performance of O(1), but they
exhibit large execution times in worst-case scenarios. While the title of Space Efficient Hash
Tables with worst-case Constant Access Time by Fotakis et al. [37] suggests a hash table with
hard real-time capabilities, the presented method still suffers from the collision problem
typical for hash tables: they “prove that at most γn vertices overflow whp” (with high
probability, so not guaranteed), and moves on, only storing data without collisions, leaving
the problematic cases to the usual collision-handling systems.

Bloom et al. suggests augmenting real-time systems with hardware data structures
(HWDS) of commonly used data structures to speed up operations and reduce latency
and jitter introduced by main memory accesses, resulting in overall WCET reduction [38].
Variations in the concept have been discussed earlier regarding specific target applications
like network queues (Moon et al. [39]), sort queues (Kohutka and Stopjakova [40,41]),
schedulers (Burleson et al. [42]) or string matching (Cameron and Lin [43]).

2.4. Dynamic Memory Management in FPGAs

Dynamic memory management is rarely seen in the world of FPGA designs. Most
applications use FPGA-internal memory like LUT-RAM and Block-RAM, which is nor-
mally a direct part of the FPGA design architecture and fixed to the modules using it.
Larger memory may be attached to the FPGA externally. However, even then, most FPGA
applications assign fixed memory ranges to the individual modules in the FPGA design;
this is also the approach in the AXI ecosystem by ARM [44]. This has the advantage that
inter-client-communication can be performed by simply reading/writing the other client’s
memory range.

Computers 2024, 13, 8 5 of 32

Although uncommon, approaches at (dynamic) memory management in FPGAs do ex-
ist: In A Comprehensive Memory Management Framework for CPU-FPGA Heterogenous SoCs [45],
Du et al. presents a memory management framework for the Zynq-7000 MPSoC Series.
This framework is targeted at use with the high level synthesis toolchain of Xilinx Vivado
and seeks to automatically optimize the performance in designs with multiple clients by
providing optimal data placement across BRAM and DDR-RAM as well as optimized cache
partitioning based on the expected access frequency of the individual memory ranges
assigned to the clients.

Adaptive Dynamic On-Chip Memory Management for FPGA-based Reconfigurable Architec-
tures [46] by Dessouky et al. presents DOMMU, a dynamic memory management unit for
sharing Block-RAM resources in an FPGA between multiple clients. It keeps a map of the
currently unallocated, allocated, and deallocated BRAM elements. DOMMU includes a
mechanism for automatic deallocation: If a BRAM is not accessed for a user-configurable
time, its elements are automatically deallocated (except for the last element, which has to
be deallocated manually) to make the memory available to other clients. The system is not
targeted at hard real-time.

Another example of dynamic memory management on an FPGA is described in FPGA
Implementation of Memory Management for Multigigabit Traffic Monitoring [47] by Trzepinski
et al.: While this is an application-specific management approach for a single client, it does
provide true dynamic memory allocations. The management organizes the available/used
memory with three different types of linked lists: the EmptyList contains pointers to the free
memory, while the start list holds items with a Bloom filter as well as links to the matching
list of records. The list of records holds several addresses and corresponding fingerprints,
locating existing items if performed by iterating over successive Bloom filters until some-
thing is found and then checking the fingerprint. However, due to the probability-based
construction of the data structure using recursive Bloom filters, this manager is not suitable
for hard real-time applications.

Low Latency Hardware-Accelerated Dynamic Memory Manager for Hard Real-Time and
Mixed-Criticality Systems by Kohútka et al. presents a worst-fit approach at dynamic mem-
ory management for real-time applications [48]. Available blocks of memory are sorted
by size in a max queue. For every allocation request, the largest available block is used,
trimming excess memory into a new, smaller block. On deallocation, the deallocated block
is recombined with neighboring free blocks (if available). Defragmentation of free blocks
separated by allocated blocks is not addressed. An important limitation of the system is the
size of the queue, which has to be large enough to hold all free blocks in case of maximum
fragmentation. In the worst-case scenario, every second block is allocated at minimum
blocksize—resulting in the queue holding entries for half the available addresses.

Hardware Dynamic Memory Manager for Hard Real-Time Systems by Kohútka et al.
presents the same system again, this time using their rocket queue [41] to reduce the large
amount of comparators required for the massive sort queue by sharing a smaller set of
comparators in a tree-like structure. This comes at the price of more multiplexers and an
additional subtree counter per queue item [49]. At first sight, this seems to result in more
comparators since the counter values have to be compared at each level to decide which
subtree has the least amount of items. However, the examples from [41] show how using
counter widths much smaller than the data width can result in overall resource reduction
where only a smaller number of queue items are required.

In Hard Real-Time Memory-Management in a Single Clock Cycle (on FPGAs) [50], we
presented a memory management system specially optimized towards FPGAs, which will
be used as the theoretical base for this paper to build upon. It divides the memory space
into linkable nodes of equal size called memory cells, each having a pointer (linking to other
cells) and a data section containing its payload (which can hold at least one additional
pointer called a data-pointer for more complicated linking used in our real-time database
application). Each memory cell is either under user control or part of the list of unused cells,
a linked list stored in the unused cells themselves. Apart from that, the only management

Computers 2024, 13, 8 6 of 32

data consist of two counters c f ree (free cells) and crbnu (reserved but not used cells) and the
pointer ptrUnused to the list of unused cells.

The process of allocating memory is divided into reservation—marking that a certain
amount of memory has been reserved—and picking up the actual memory cells one by one
from the list of unused cells, passing control over the cell to the user. This differs from the
widely used allocation approach, where reservation, providing a matching contiguous block
of memory (may include time-intensive memory defragmentation) and passing control
over to the user are completed in a single operation.

Remark 2. Picking up the reserved memory cells one by one instead is not as much of a practical
restriction as it might seem as all memory addresses have to be written individually anyway. This
complete allocation on write approach matches how memory is actually used: addresses should
only be read if they have been written before (apart from special control registers that do not take part
in memory management), and writing requires prior allocation. An allocation that is not written to
is therefore purely virtual—we do not have to go to the trouble of actually searching and assigning a
free memory cell to it. Depending on the user’s data structure, this approach can, however, impose
additional efforts to remember the addresses of the individual memory cells since address calculation
schemes valid for contiguous memory are not applicable.

Apart from reservations, picking up cells, and returning them, ref. [50] notably
provides the special command ReturnFreeCellRingByAddress(c), which returns an arbitrary
amount of memory to the manager in O(1) as long as c contains the cell count in its data
section and all cells—including c—are part of a singly linked ring.

Remark 3. Even though such a ring structure is probably rarely used for all memory structures (as
in the real-time database prototype for which we designed the memory manager), we consider it a
justifiable extension where hard real-time is required and linked lists are already used.

3. System Model
3.1. Notation

Our data structures are built of linked nodes. We distinguish two node types:

Control Nodes N are used to manage the data structure.
Data Nodes N contain user data in their data field.

In hierarchical structures, a node can be a control node and a data node at the same
time. Denoted as DX AY , DX is the name of the node viewed as data node, while AY is
the same node’s name viewed as control node. Accessing a node’s content is denoted as
nodename. f ieldname: A .next is the next pointer of control node A and B .data is the data
field of data node B. Pointers hold the address of a node and can either be contained in the
next field or the data field . NULL-pointers are marked with .

3.2. Memory Organization
3.2.1. Memory Hardware

In our RTDB prototype, dynamic random access memory (DRAM) and static random
access memory (SRAM) have been used as storage. While DRAM is probably the only
reasonable choice in practical applications due to speed, size, and cost considerations, any
type of memory with bounded response time can be used theoretically.

3.2.2. Memory Management

For memory management, we use the management approach presented in Hard Real-
Time Memory-Management in a Single Clock Cycle (on FPGAs) by Lohmann and Tutsch [50]. It
organizes the memory space into identical entities called memory cells, each containing a
next field (to link several cells together) and a data field (for the payload). The manager

Computers 2024, 13, 8 7 of 32

keeps a list of unused cells, which is stored in the cells it contains, as well as two counters
tracking the amounts of currently reserved but not used (crbnu) and free (c f ree) cells.

It offers the operations RequestReservation and ReturnReservationByAmount for han-
dling reservations, PickUpFreeCell (directly requesting a memory cell, may fail if memory
is low), PickUpReservedCell (identical, but guaranteed to succeed due to previous reserva-
tion), ReturnFreeCellByAddress (returns a currently used memory cell), and most notably
ReturnFreeCellRingByAddress, which deallocates arbitrary amounts of memory in O(1).

While most operations just transfer single memory cells in or out of the list of unused
cells and update counter values, ReturnFreeCellRingByAddress operates on multiple cells at
once. This is possible in O(1) because the memory returned is required to be organized in
a particular ring structure shown in Figure 1a: As L contains the amount of nodes as well
as a pointer to the next node, a single read on it retrieves all information needed without
iterating over the cells: the ring is split after L , and the resulting list is appended to the list
of unused cells, which boils down to attaching its first node and leaving the rest untouched,
apart from L , which is marked as the new end of the list of unused cells. The count stored
in L .data is used to update the counters accordingly.

L D0 ... DN−1

(a) Original.

L D0 ... DN−1 G

(b) Modified (with gap node).

Figure 1. Ring passed to ReturnFreeCellRingByAddress. L holds the number of nodes in the ring.

Remark 4. Although the user is theoretically able to divert those fields from their intended use as
long as the cell is allocated, adopting the memory manager practically implies usage of a linked node
structure as the manager does not offer contiguous memory allocations over multiple cells.

3.2.3. Modifications to the Memory Manager

We require the data field to be large enough to hold a data pointer, which will be
utilized by most of our control nodes. We also introduce the gap node G , which contains
NULL in its next pointer but always links to another node via its data pointer. Its purpose
is to serve as a marker in our data structure, similar to a NULL pointer at the end of a
singly linked list. We extend the memory manager by allowing gap nodes to be contained
in the ring passed to ReturnFreeCellRingByAddress (Figure 1b) and in its list of unused cells
(Figure 2): if the manager processes a gap node, it will follow its data pointer instead of
next. Memory cells originally marked as the last element in the manager’s list of unused cells
with next = NULL will instead be marked by next = data = NULL. This can always be
distinguished from gap nodes as those have data ̸= NULL.

(a) Original.

G G

(b) Modified (with gap node).

Figure 2. The manager’s list of unused cells.

3.3. Hard Real-Time Databases vs. Unknown Amounts of Data
3.3.1. Database Content

• Insert inserts a new row of data into an existing table.
• In a hard RTDB, a transaction’s execution must not exceed its deadline.

As we have to insert a previously unknown amount of row data into our table, an
unsolvable problem seems to arise: processing unlimited amounts of data in limited time
is impossible. Luckily, we actually do not have to: the bandwith between user and RTDB
combined with the deadline set by the user imposes fixed limits on the amounts of data that
could possibly be transferred. Our processing system therefore qualifies as hard real-time
if it can keep up with a continuous stream of data, i.e., the processing of each individual

Computers 2024, 13, 8 8 of 32

chunk in the stream is O(1) in the worst case. So, while processing of insert is still O(n),
properly restricting n is up to the user, not the RTDB.

Remark 5. The width of the stream bus (chunk size) is recommended to be an integer multiple of
the memory cells data field. Refer to Section 7.2.1 on the tradeoff for different data field sizes.

3.3.2. Database Schema

Similar considerations apply to the schema of the database: while the amount of tables,
columns, and rows is not restricted by the RTDB itself, the user implicitly introduces limits
on those by setting deadlines on related queries or adding new queries, which propagate
down to memory limits on certain DB elements, which in turn limit the amount of time
required to iterate over them.

Remark 6. For our purposes, parts of the schema currently involved in real-time queries are
expected to be static during the query’s execution.

3.4. Limitations

The system presented in the following has some limitations: while the higher layers of
the hierarchy can be traversed in any direction, movement in the lowest layer is restricted
to either hierarchic ascent or forward traversal of the data nodes.

Remark 7. Omitting reverse-traversal in the lowest layer is intentional and cuts down the memory
footprint (see Section 7.2.1). As a read operation on a table cell normally reproduces the inserted
data in their original order; the authors do not consider reverse reading of the lowest layer (chunks
making up the data of a single table cell) particularly useful.

While we can identify the root element from arbitrarily large structures, there is no
analogous way to detect a leaf element without knowledge of the hierarchy depth. If O(1)
is required, deletion of a hierarchy requires (user-defined) limited length of all contained
elements above the lowest hierarchy level; i.e., in a table, row and column count are
bounded, but data length in the cells is not. As with linked lists (which our structure is
based upon), finding the n-th entry in an element or searching for a specific value boils
down to a linear search. This paper does not address the problem of performing such search
operations in O(1). We do, however, provide O(1) primary key access to every known
element. For this, we assume that the primary key’s value can be generated by the system
instead of being chosen by the database user. Our operations do not support composite
keys or true set behavior (where all columns are included in the composite primary key).
Our solution does not address the topic of storing the data persistently; we consider this a
separate problem that is well-covered in the database field.

4. The Doubly Linked Tree of Singly Linked Rings
4.1. The “Element”
4.1.1. Requirements

The structure of the basic building block—the element—is deliberately designed for
usage with the hard real-time memory management approach previously mentioned. We
choose our nodes to be of equal size as one memory cell.

For hard real-time deletion, we expect the base elements of our data structure to be
connectable in a doubly linked fashion. Otherwise, we would have to run search operations
to find the predecessor of the element being deleted as its next-pointer must be modified
for deletion. Expecting only delete the element after x operations (which would be easy on
singly linked lists) is not a practical alternative as it passes the search on to the user.

Computers 2024, 13, 8 9 of 32

The element’s data section is permitted to be constructed of singly linked nodes: we
do not consider delete operations on arbitrary data chunks inside an element’s data section
a particularly useful application (unless other elements are contained; see Section 4.1.3).

Regular databases often allow defining arbitrary primary keys, a feature we deem
useful for human interaction but not necessary for the database operation itself. Especially
in hard real-time environments, where human interaction is pretty much nonexistent
(apart from emergency brakes and the like, which are not expected to involve databases),
numeric primary keys are dominant. While the probably most used type of primary key
is an automatically incremented integer, ascending integer ordering is not required for
functionality but chosen as a simple way to generate unique primary keys. The actual
requirement is just some kind of unique identifier. For our primary keys, we will take
a different approach: by requiring the address of elements to stay constant during the
element’s lifetime, we can use the element’s address as its primary key, entirely skipping
the task of key lookup.

4.1.2. Storage

To store the actual content of a doubly linked tree of singly linked rings element e, the
following nodes are linked via their next pointers in order of appearance (Figure 3):

A The anchor provides a stable address, while the element’s content might change over
time. The address of the element will be used synonymous to the anchor’s address.

H The hierarchical node allows hierarchy ascent and reverse reading. Its data pointer
creates a link to the previous anchor and is also called hierarchical pointer of the element.

L The cyclic length node, containing the number of nodes in the cyclic part of the element,
which can be derived either as Lcyclic = N + 3 (the data nodes plus the three control
nodes in the loop) or Lcyclic = length(e)− 1 (count all nodes, subtract the anchor, which
is not part of the loop). It allows usage of the hard real-time memory management
from [50], which is also where counting only the cyclic part originates from.

D As many data nodes N as required for storage of the element’s content in their datafield.
This part shall be omitted for an explicitly empty element where N = 0 (Figure 3b).

G The gap node, marking the end of the data section of the element and closing the loop
back to the hierarchical node via its data-pointer. Its next-pointer is always NULL.
Therefore, the module reading an element does not have to count nodes and perma-
nently compare this to N − 3 while iterating just to detect the end of the data section.

The nodes of an element e are denoted by e L .

A−1

A

A+1

L D0H D1 D2 D3 ... DN−1 G

Data Section

(a) Element containing data.

A−1

A

A+1

LH G

(b) Null element.

Figure 3. Storage of an element (A−1 and A+1 hint at possible links from/to other elements).

Remark 8. The gap node G could actually be omitted if the element’s data will exclusively be read
starting from the anchor, additional hardware usage for counting and comparing is not of concern,
and arbitrary entry cyclic access (see Section 4.5.1) is not used. The loop is then closed by the last
data node (or the cyclic length node for null elements) pointing to the hierarchic node.

Definition 1. The length of an element e is the number of nodes it is built of. Length is non-
recursive: it does not consider the additional nodes of other elements possibly contained in its
data section.

Computers 2024, 13, 8 10 of 32

Definition 2. The content of an element refers to the pure payload (stored in the D nodes),
excluding any metadata (e.g., pointers) that might be used to properly store the element in memory.

Definition 3. An empty element is an element with empty data section (N = 0).

Definition 4. The null element e∅ marks a reference explicitly linking to nothing where an element
could be. If a pointer points to a null element, its value is NULL.

Definition 5. The first data node D0 in an element is the node in the element’s data section,
found by following L .next. If there are additional nodes in the data section, they are numbered in
ascending order starting from the first node to the last data node DN−1 .

4.1.3. Hierarchical Linking

A parent element ep (denoted e+c from the child’s perspective) may contain child
elements ec in its data section. In this case, the hierarchic link ec, H comes into play: it stores
a link to the previous element in ep’s data section (wrapping around the ring; itself if it is
the only element). This allows reverse reading of the data section of ep. It also introduces
the possibility of hierarchic ascent from a child ec to its parent e+c = ep via ep’s predecessor.

If e has no parent, it is called root. Elements without children are called leaf elements.
In a hierarchy, the root element can be identified by its anchor’s next-pointer, referring
to the anchor itself. This is a unique property since every other next-pointer will either
point to a different node or to NULL. Identifying leaf elements is only possible with a
priori knowledge of the hierarchydepth (If required, such hierarchy information (and other
metadata) could be included either at the root node or as additional node per element, for
example, linked from a control node M placed directly after L) as we cannot detect if the
data nodes in an element contain anchors of an additional hierarchy layer or are simply
filled with user data.

Remark 9. For our application—the storage of tabular data in a relational database—the hierarchy
depth is fixed by design: #{Database, Table, Row, Cell}.

4.2. Practical Example: Building a Table

Remark 10. The described element can be used for way more intricate cross-linking: elements can
contain links to themselves, multiple elements can point to the same data for deduplication, cross-
linking enables mutual communication between otherwise disconnected objects, elements can form
two-dimensional grids with their two external pointers (A ’s next-pointer and H ’s data-pointer)
instead of doubly linked rings. This would also be applicable in our database context, for example,
for creating a table index or view as a second version of the higher hierarchy level where the same
contained data elements are linked in a different order. However, we want to keep things simple here,
and table data is a widely used application.

4.2.1. Hierarchy

The basic hierarchy of a stored table is shown in Figure 4a: all table content is stored in
an element etable, which contains an element erow for each row. Every row contains a table
cell element ecell for each column in the table. Each cell in turn contains the table cell’s data
in as many echunk nodes as required for storage. NULL-Entries in a table’s cell (containing
no data) are represented by empty elements.

Exemplary of the data structure, the table is shown as root element. In practical
implementations, additional hierarchy layers for the sets of tables and databases are to be
expected above, with the list of databases being root.

Computers 2024, 13, 8 11 of 32

chunk

ecell

chunk chunk chunk

ecell

chunk chunk chunk

ecell

chunk

erow

chunk

ecell

chunk chunk chunk

ecell

chunk

ecell

chunk

erow

chunk

ecell

chunk chunk chunk

ecell

chunk chunk chunk

ecell

chunk chunk

erow

etable

(a) Hierarchic relationship of the different Elements e and the contained chunks.

etable

erow ecell

chunk

chunk

chunk

ecell

chunk

chunk

chunk

ecell

chunk

chunk

erow ecell

chunk

chunk

chunk

ecell

chunk

ecell

chunk

chunk

erow ecell

chunk

chunk

chunk

ecell

chunk

chunk

chunk

ecell

chunk

chunk

chunk

(b) Available travel directions (logical).

AT

HT

LT

DT AR HR LR DR AC

HC

LC

DC

DC

DC

GC

DR AC

HC

LC

DC

DC

DC

GC

DR AC

HC

LC

DC

DC

GC

GR

DT AR HR LR DR AC

HC

LC

DC

DC

DC

GC

DR AC

HC

LC

DC

GC

DR AC

HC

LC

DC

DC

GC

GR

DT AR HR LR DR AC

HC

LC

DC

DC

DC

GC

DR AC

HC

LC

DC

DC

DC

GC

DR AC

HC

LC

DC

DC

DC

GC

GR

GT

(c) Storage at node level.

Figure 4. Example: storing a 3 × 3 table with varying chunks per cell (table as root).

Computers 2024, 13, 8 12 of 32

4.2.2. Linking Elements

If we now apply the hierarchical approach from Section 4.1.3, we obtain the structure
shown in Figure 4b. As we can see, all the anchor nodes are now logically accessible in a
doubly linked manner, while the data nodes at the lowest hierarchy level are singly linked.

Figure 4c is the same table drawn at node level. As we can see, the doubly linked
characteristic of the top levels is not as direct as shown in Figure 4b for the link to the
previous element. It requires traveling from one anchor A to its hierarchical node H and
from there to the previous anchor. This means traveling backward takes twice the time as
traveling forward. As this is a constant factor, it does, however, not impact the real-time
capabilities of the system.

4.3. Base Operations

We distinguish between base operations, which stand on their own, and derived opera-
tions (see Section 4.4), which can be constructed from already discussed operations. This
improves readability of the proofs of their respective hard real-time capabilities.

Definition 6. Empty(e) evaluates to true if the data section of the element e is empty (N = 0) and
to false if not.

As N is not stored directly in the element, this translates to checking if e L .data = 3.

Definition 7. Successor(e) returns the next element, which is accessible from e A via its next-
pointer. This includes the special case of following e+

G
to e+

H
to e+

L
’s next-pointer to wrap around

from the last child of e+ to the first.

Definition 8. Predecessor(e) returns the element, which can be found by following e’s hierarchical
pointer e H .data.

The predecessor of any element can be found through its associated hierarchic link
node H . To accomplish this, we follow the associated anchor’s data-pointer to H . Its
data-pointer is the address of the predecessor of our original element. Unlike the Successor
operation, special wrap around handling at the end of the parent’s data section is not
required for Predecessor as the hierarchical link is always directly connected to an element.

Remark 11. If b is the successor of a, then a is the predecessor of b.

Remark 12. Predecessor(e) = e = Successor(e) when e is the the only child of its parent e+.

Definition 9. FirstChild(ep) returns the null element e∅ if the parent ep is empty and the first
child element of ep if it is not.

This is done by following the parents anchor A to its H and from there to L . If L ’s
data field is zero, we have detected an empty parent and return the null element e∅. If it is
not, L ’s next-pointer is returned.

Definition 10. InsertAfter(ep, ere f , enew) inserts enew into ep directly after ere f .

Algorithm 1 shows an implementation of Definition 10.

Computers 2024, 13, 8 13 of 32

Algorithm 1: InsertAfter(ep, ere f , enew)

ptrNext← ere f , A .next;
ptrPrev← ere f ;
enew, A .next← ptrNext;
enew, H .data← ptrPrev;
ere f , A .next← enew

ep, L .data← ep, L .data + 1;

4.4. Derived Operations

Definition 11. LastChild(ep) returns e∅ if ep is empty and the last child element if not.

Algorithm 2 shows an implementation of Definition 11.

Algorithm 2: LastChild(ep)

if Empty(ep) then
return e∅;

else
return Predecessor(FirstChild(ep));

end

Definition 12. InsertAsFirst(ep, enew) inserts enew into parent ep at the first position.

Algorithm 3 shows an implementation of Definition 12.

Algorithm 3: InsertAsFirst(ep, enew))

ptrNext← ep, L .next;
if Empty(ep) then

ptrPrev← enew;
else

ptrPrev← LastChild(ep);
end
enew, A .next← ptrNext;
enew, H .data← ptrPrev;
ep, L .next← enew;
ep, L .data← ep, L .data + 1;

Definition 13. InsertAsLast(ep, enew) inserts enew into ep at the last position.

Algorithm 4 shows an implementation of Definition 13.

Algorithm 4: InsertAsLast(ep, enew)

if Empty(ep) then
InsertAsFirst(ep, enew);

else
InsertA f ter(ep, LastChild(ep), enew)

end

Definition 14. InsertBefore(ep, ere f , enew) inserts enew into ep directly before ere f .

Algorithm 5 shows an implementation of Definition 14.

Computers 2024, 13, 8 14 of 32

Algorithm 5: InsertBefore(ep, ere f , enew)

if ere f is FirstChild(ep) then
InsertAsFirst(ep, enew);

else
InsertA f ter(ep, Predecessor(ere f), enew);

end

Definition 15. FreeElement(e) frees the memory of e.

This requires two calls to the memory manager: one call returns the cyclic part of
e, and the other one returns A (not contained in the cyclic part). Algorithm 6 shows an
implementation of Definition 15.

Algorithm 6: FreeElement(e)

ReturnCellByAddress(e A); /* returns A */

ReturnCellRingByAddress(e L); /* returns the other nodes */

Definition 16. DeleteChild(ep, ec) removes ec from ep’s data section and frees the memory previ-
ously used to store ec.

This function definition has a hidden recursion as elements can contain other elements.
To comply with hard real-time requirements, we have to limit the number of hierarchy
levels h and the length of all elements that contain other elements. Note that the length
of the leaf elements (not containing other elements but pure user data) is not limited.
Algorithm 7 shows an implementation of Definition 16.

Algorithm 7: DeleteChild(ep, ec)—Without Hierarchy Limit

ePrev← Predecessor(ec);
eNext← Successor(ec);
ePrev A .next← eNext;
eNext H .data← ePrev;
foreach child esubchild of ec do

DeleteChild(ec, esubchild);
end
FreeElement(ec);
ep, L .data← ep, L .data− 1;

Remark 13. In our table example, we have utilized three hierarchy levels (for a full database concept,
we would add layers for a list of databases and a list of tables): etable, erow, and ecell . Deletion of a
row is O(#columns) in the general case. If we consider the database schema to be fixed during hard
real-time operation, the number of columns is a constant, resulting in the complexity dropping to
O(1). This also applies to all upper layers with one notable exception: varying row counts are very
common in practical applications. This means we have to impose an artificial restriction for the row
count of every table. Since the actual value does not matter (it just moves the achievable deadline
of the individual queries back or forth but does not change the real-time capability of the database
system itself), we can leave this choice to the designer of the schema.

Remark 14. While all upper layers have to be limited for O(1) deletion, the content in the table
cells (the lowest hierarchy layer) may be of any size.

Computers 2024, 13, 8 15 of 32

For practical FPGA implementation, we introduce an overloaded version with an
additional parameter hc, which is the number of hierarchy levels of ec:

Definition 17. DeleteChild(ep, ec, hc) is an overloaded version of DeleteChild(ep,ec), which limits
recursion depth according to the amount of hierarchy levels hc.

The modified execution including hc is shown in Algorithm 8. A short discussion on
how an FPGA implementation of this limited depth recursion might look like is provided
in Appendix B.

Algorithm 8: DeleteChild(ep, ec, hc)—Hierarchy Limited

if hc > 1 then
foreach child esubchild of ec do

DeleteChild(ec, esubchild, hc − 1);
end

end
FreeElement(ec);
ep, L .data← ep, L .data− 1; /* decrement parent length */

Definition 18. Update(etarget, edata) deletes the data section of etarget and replaces it with a reference
to edata, preserving the address of etarget A .

As Algorithm 9 shows, this is done by swapping the A .data pointers of the two
elements and copying the hierarchic link of etarget to edata. The hierarchic links do not have
to be swapped since the old data will be deleted and FreeElement() is independent of the
hierarchic link.

Algorithm 9: Update(etarget, edata)

targetPrev← etarget, H .data
originalTargetH ← etarget, H

originalDataH ← edata, H

originalDataH.data← targetPrev
etarget, A .data← originalDataH
edata, A .data← originalTargetH
FreeElement(edata)

Remark 15. The anchor node edata, A of the new element is not strictly required for this operation
and could be omitted in practical implementation if an accordingly modified version of FreeElement()
is provided. It is still included in the algorithm to preserve this paper’s convention of only passing
complete elements as parameters.

4.5. Other Properties (Not Necessarily Real-Time)
4.5.1. Arbitrary Entry Cyclic Access

As the content of every element is stored in a cyclic list, it is possible to read the
whole content of an element starting at any data node. This might be particularly useful
in hierarchic applications as we can perform operations like read all elements in the same
hierarchy level as e without knowledge of e’s parent, essentially providing us with a get
all siblings operation, which does not depend on hierarchic ascent/descent or having to
rewind to the first sibling. Therefore, our database system can support queries like select all
rows that are in the same table as row r without the need to first look up which table holds r.

Computers 2024, 13, 8 16 of 32

4.5.2. Hierarchic Ascent

This leads us to the next property: the cyclic nature of the data section with the
ring including the hierarchic link allows to ascend in the data structure. This can answer
questions like find the table that contains a specific row without iterating through all the tables;
it is not a top-down search but a bottom-up search; therefore, the non-involved branches of
the hierarchy will not be traversed.

5. Real-Time Operation (Proof)
5.1. Prerequisites
5.1.1. Basic Access

Assumption 1. Read/Write access to a fixed size memory cell/node (given its address) is assumed
to be O(1). This also means following a pointer, e.g., in data or next of a memory cell, has constant
access time. We also assume that comparisons between values stored in both fields of a memory cell
and increment/decrement operations on these are O(1).

5.1.2. Memory Management

Lemma 1. Our modification (see Section 3.2.3) of the real-time memory manager from [50] does
not change the memory managers’ real-time behavior.

Proof. Our modification allows rings given to ReturnFreeCellRingByAddress to contain gap
nodes (next = NULL, with the link to next node instead stored in data). This changes the
detection of the end of the list of unused cells when giving out unused cells to the user:
originally, the end was marked by a memory cell with next = NULL — the data field was
completely ignored for memory cells in the list of unused cells. With our modification, the
end of list condition is now data = next = NULL, which can still be checked in O(1).

Following a gap node in the list of unused cells means that, instead of simply following
next, we now have to previously check if next is NULL and in that case follow data instead.
While this is an additional step, it is still O(1).

5.1.3. Storing a Data Stream in an Element

As mentioned in Section 3.3, we assume the arrival of the input as a data stream. The
time sacrificed for streaming the data is not introduced by our system but the stream itself,
and will therefore not be counted towards the worst-case execution time of our system. To
store a chunk of the data stream in the data section of our element, we first need to allocate
a limited amount of memory cells/nodes. This is a direct call to the memory managers
PickUpFreeCell operation, which is O(1).

Lemma 2. The worst-case time complexity of storing a chunk of finite size to an element is O(1).

Proof. To store the content of the chunk, we have to allocate (O(1) according to Lemma 1)
and write a finite amount memoryCellsPerChunk = ⌈sizeo f (chunk)/sizeo f (memoryCell.data)⌉
of data nodes D . For the element’s overhead, we have to allocate and write additional
memory for the cells A , H , L and G . This is a finite amount of allocations (each O(1)
when using PickUpFreeCell() from [50]) and a finite amount of writes.

Corollary 1. The worst-case per chunk overhead when storing n chunks in an element, compared
to the time it takes to store just the chunks, is O(1).

Proof. Storing n chunks as raw data isO(n). With the complexity of storing a single chunk
being O(1) as of Lemma 2, the complexity of storing n chunks in a single element cannot
exceed O(n). This is because, for appending a new chunk to an element, we only have to
add the data nodes Dn for the new chunk. Appending a node is, however, just an insert
after x operation on a singly linked list, which is O(1). ⇒ For every individual chunk, the
overhead is limited. This limit is independent of the number of chunks n.

Computers 2024, 13, 8 17 of 32

5.1.4. Primary Key Access & Reading Data from an Element

Theorem 1. Retrieving the address of an element from its primary key is O(1).

Proof. The primary key of an element is the elements address.

Lemma 3. The overhead of reading an element’s data and sending it as a stream, compared to just
sending the data as a stream, is O(1).

Proof. Iterating through the element involves following the path to the elements G node.
As there are limited control nodes on this path, the overhead is O(1).

5.1.5. Accessibility of the Control Nodes

Lemma 4. For an element e, the nodes e A , e H , and e L are accessible in O(1).

Proof. The start node of e is e A . From there, we can travel along e A e H e L .

5.2. Base Operations

Theorem 2. All base operations are O(1).

Proof. The base operations consist of a limited number of reads and writes to the control
nodes A , H , and L as well as incrementing values and following a limited number of
pointers. As of Section 5.1.1 and Lemma 4 all of those steps are O(1).

5.3. Derived Operations

Theorem 3. DeleteChild(ep, ec, hc) has a worst-case complexity of O(1) if the number of hierarchy
levels hc and the length of every non-leaf element is limited.

Proof. One iteration of the implementation Algorithm 7 of DeleteChild(ep, ec, hc) contains
only accesses to nodes accessible inO(1) (Lemma 4). As the length of the non-leaf-elements
is limited, the foreach loop has a limited number of iterations. Since the hierarchy levels hc
of e are limited, the recursion depth is also limited.

Theorem 4. All other derived operations except for DeleteChild(ep, ec) are O(1) as well.

Proof. All of them are built of already O(1)-proven operations, node accesses, and follow-
ing pointers while featuring neither loops nor recursions.

5.4. Storing a Hierarchy

Theorem 5. The worst-case per chunk overhead when storing n chunks in a limited depth hierarchy
of elements, compared to the time it takes to store just the chunks, is O(1).

Proof. This follows from Corollary 1 and InsertAsLast being O(1) (Theorem 4).

6. Experimental Results
6.1. Example: The TableWriter

For practical evaluation of our solution, we use the TableWriter, an entity from our
hard-real-time database prototype utilizing the doubly linked tree of singly linked rings.
The TableWriter receives a data stream annotated with hierarchy information and builds a
table from it. The tables anchor address is set via the configuration stream. In our prototype,
we introduced an additional ’meta node’ M between L and the first data node D0 (or gap
node G for empty elements) intended for storing metadata about the individual elements.
For our tests, this node was included, but no additional time was spent to write actual
metadata to it; as it is contained in the cyclic part of the element, it can simply be viewed as
an additional data node.

Computers 2024, 13, 8 18 of 32

Figure 5 shows the architecture of the TableWriter:

aClk

aResetn

tabledata

tablevalid

tableready

con f igdata

con f igvalid

con f igready

eventtableStarted

eventtableFinished

eventrowStarted

eventrowFinished

eventcellStarted

eventcellFinished

Table Stream
Receive Buffer

Config Stream
Receive Buffer

TableWriter State Machine

Cell Provider Cell Writer

Command
Send Buffer

Response
Receive Buffer

Outstanding
Transaction

FIFO

Element State Context Array

Memory Management Bus
▲ ▼

Response Demuxselect

synchronized

Figure 5. TableWriter architecture.

Table Writer State Machine The Table Writer State machine is the central control unit. It
reads the received table data—annotated with hierarchy information in the form this
transfer is the last of the current cell/row/table—from the Table Stream Receive Buffer, which
can store a single chunk of data. Its interaction with the central memory management
bus (also providing memory read/write) is controlled via the Cell Provider and Cell
Writer units. The state machine itself is implemented as a context switching state
machine (as described in Appendix B). The TableWriter uses three contexts—one for
each of the hierarchy levels Table, Row, Cell. Every context in represents the current
operation on an element at this level. It stores the state of the single level state
machine (shown in Figure 6), as well as the addresses of the element’s anchor nodes,
the current cyclic node count, the addresses of a few ‘virtual’ nodes (the last node before
G , the first data node, the current data node, the previously processed node, and the first

child’s H node) and finally a boolean determining if the element has been completed.
Cell Provider & Cell Writer To simplify interaction with the memory management bus,

the TableWriter utilizes two dedicated units to allocate new memory (Cell Provider)
and write data to memory (Cell Writer). The Memory Provider simply requests a new
memory cell by sending the memory managers PickUpFreeCell command and storing
the address of the allocated cell returned by the response. When the Table Writer State
Machine requires a new memory cell, it takes the one previously allocated by the
Cell Provider, marking the Cell Provider as empty—which triggers the Cell Provider to
request a new memory cell. In contrast, the Memory Writer only acts on demand: The
Statemachine provides a new write task by passing the target address, the data to write
and a strobe signal to the Memory Writer which decides whether the whole memory
cell, only the data field or only the next field shall be written (This was not mentioned

Computers 2024, 13, 8 19 of 32

in Section 3.2.3 since it is not necessary for the doubly linked tree of singly linked
rings itself. We still use it in the practical evaluation as our prototype already utilizes
this updated version of the memory manager (a paper on the updated manager is in
preparation). This does not change the systems ability of hard real-time operation
since the strobe signal is simply translated to the AXI byte strobe of a single transfer.
It does, however, slightly improve the latency, since a partial write would otherwise
require knowledge of the non-written content, which can sometimes only be acquired
by performing an additional read before writing the cell.).

Buffers The send/receive buffers shown in Figure 5 use a slightly relaxed (We ignore
the fact that AXI expects the data field to have a multiple of eight bits as its width.)
version of the AXI-Stream protocol by ARM [51]. A buffer x accepts new data if it
is empty and the data on xdata is marked as valid via xvalid = 1. Clearing the buffer
automatically signals to the outside that new data can be received via xready = 1. This
means that transfers happen when xready = xvalid = 1.

Outstanding Transaction FIFO & Response Demux Since the memory management bus
is used both by the Cell Provider and the Cell Writer, responses have to be directed to-
wards the authors of their corresponding commands. Every time a command is sent to
the Command Send Buffer, the command’s author (CELL_WRITER or CELL_PROVIDER)
is inserted into the Outstanding Transaction Fifo. When a response arrives on the Re-
sponse Receive Buffer, the Outstanding Transaction Fifos output is used to decide where
to route the response via the Response Demux demultiplexer.

Create Anchor Node

Create Hierarchic Node

Create Length Node

Create Meta Node

Create Data Node

Create Gap Node

Close Loop

Rewrite Hierarchic
Link of First Child

Write Length

Element Completed

End

else

else
Data for current Cell Available

else
currentContext ∈ {Row, Cell}
∧ parent context = Create Gap
Node

currentContext ∈ {Row, Cell}
∧ parent context ̸= Create Gap
Node

currentContext ∈ {Table, Row}

cu
rr

en
tC

on
te

xt
=

C
el

l
∨

pr
ev

io
us

D
at

aN
od

e=
N

U
LL

Start

currentContext = Table
Context Switch Towards Leaf

Context Switch Towards Root

Regular State Transition

Figure 6. Control state machine of the TableWriter.

Computers 2024, 13, 8 20 of 32

The actual state machine can be seen in Figure 6. The function of the individual states
is described in the following.

Remark 16. For improved performance, the actual implementation pipelines node creation and
linking into two steps: Every node is prepared (memory allocation, determining its content) in ‘its’
state, but written in the following state.

Start Since the TableWriter receives the anchor node via its Config Stream input, the state
machine skips the anchor creation state on the table layer and directly starts with
creating and connecting the hierarchic node H to it in Create Hierarchic Node.

Create Anchor Node Creates A

Create Hierarchic Node Creates H and links A .next to H .
Create Length Node & Create Meta Node Next, Create Length Node creates the length

node. At Create Meta Node (or Create Length Node if you were to implement our
original algorithm), the first decision has to be made: if the current context level is not
at the leaf layer (Cell), we will perform a context switch towards the leaf layer (either
Table ▶▶ Row or Row ▶▶ Cell). In the new context, the state machine is initialized
(resetting the whole context) to start with a fresh element at Create Anchor Node. If in-
stead we are at leaf level, we can start with filling in the streamed data corresponding
to the current element by going to Create Data Node.

Create Data Node This state creates and appends new data nodes as long as new data are
received on the Table Stream Receive Buffer. As soon as the received data are marked
to be the last chunk in the current hierarchy level (e.g., the last transfer of a Row),
the state machine proceeds to Create Gap Node. If the data are also marked with ‘end’
markers for higher hierarchy levels (e.g., end of cell + end of row), all affected contexts
move to the Create Gap Node state as well.

Create Gap Node Here, G is created and attached.
Close Loop This step closes the loop/cyclic part of the element. If the current element has

at least one child, we have to update the child’s hierarchic link in Rewrite Hierarchic
Link of First Child. Otherwise (either we are a Cell level and/or there was not child
element), we can directly proceed with Write Length.

Rewrite Hierarchic Link of First Child Update the H node of the first child. This is only
possible after all following childs have been processed since its data-pointer links to
the last child’s A .

Write Length Updates the L node to the actual cyclic node count.
Element Completed As soon as an element is completed, the state machine has to decide

whether the whole table writing task has been completed (current context is Table) or
further processing is required. If the context if one of the lower layers Row or Cell, we
have two possibilities:

The parent context expects further data In this case (parent context ̸= Create Gap
Node), the parent context has not received a corresponding ’your hierarchic
level ends here’ marker from the Create Data Node stage. Therefore, it can directly
proceed at the current level by creating the anchor node for the next child of
its parent.

The parent context is about to be finished Here, the parent context is already at Cre-
ate Gap Node as the received data marked the current element as the last child
of the parent. We therefore continue by switching the context level back up
towards the root level (Cell ▷▷ Row or Row ▷▷ Table) and proceeding with the
parents gap node creation.

End The whole table has been fully written.

Computers 2024, 13, 8 21 of 32

6.2. Simulation
6.2.1. Test: Moving Larger Cell in a Square Table

Condition In this test, we write equally sized variations of a 4 × 4 table to memory. In
each run, all cells except a single focused cell are of size one, while the focused cell
consists of eight memory cells. The testbench performs 16 runs which represent the
16 possible positions of the focused cell.

Hypothesis Since all tables consist of an equal count of elements with constant total size,
we expect to see identical execution times as well as identical memory usage for all
runs. The memory usage is expected to be

memtable = (1 + 4 + 16) · #{ A , H , L , M , G }+ 8 + (16− 1) = 128 memory cells,

which can be derived as follows: We need one element containing the rows, one for
each of the four rows containing the cells and one per cell. The size of each element
(ignoring the payload) is #{ A , H , L , M , G } Since the payload of the leaf elements is
always handled equally independent of which element it is contained in, it is possible
to simply sum up the individual payloads of the focused 1× 8 and the non-focused
16− 1× 1 cells. The payload of the non-leaf elements consists exclusively of anchor
nodes, which have already been counted in their respective elements.

Result Our simulation showed equal execution times of 1333 clock cycles for all runs. The
memory consumption after writing the table was always at 128 memory cells.

Figure 7 shows the the current context level of the context switching state machine,
the outstanding transactions, and the event outputs of the TableWriter. Although up to
14 outstanding transactions were allowed in the test, the TableWriter only used eight of
them at max.

Figure 7. Simulation: TableWriter writing a table with four rows and four columns (outstanding
transaction FIFO count marked in blue; the values at the left are measured at the red line).

6.2.2. Test: Moving Larger Cell in Non-Square Table

Condition Since the first test had an identical number of rows and columns, it might not
show problems if the TableWriter would have a preference for square table structures.
The following test will evaluate this by applying the same concept to a 7 × 5 table.

Hypothesis If the TableWriter works correctly it should again show identical executions
times and memory usages. Memory usage should be (1 + 7 + 7× 5)× 5 + 7× 5−
1 + 8 = 257 memory cells.

Result All test runs show identical execution times of 2698 clock cycles. The memory usage
has the expected value of 257 memory cells. The maximum outstanding transaction
count was again at eight transactions.

6.2.3. Test: Table with Varying Payload and Table Size

Condition This time we repeated the first test (4 × 4 table with focused cell), but varied
the size of the focused cell. We also completed a second iteration with a 3 × 4 table to

Computers 2024, 13, 8 22 of 32

test if the table schema has any influence on the execution time required for storing
additional payload.

Hypothesis Since the execution time for creating the table schema (the higher hierarchy
levels) is expected to be independent of the execution time for storing the payload in
leaf nodes, we expect linearly rising execution times for the payload with a constant
offset for the tables schema. The execution time per additional chunk should be the
same for the two different table schemas.

Result The simulation results (Figure 8 represents one of the runs) show that the processing
time for every additional chunk of payload is exactly 10 clock cycles, independent
of the table schema. Memory usage grows exactly by the additional memory cell
required to store each new chunk. The 4 × 4 table schema’s base execution time with
one chunk per cell is 1263 clock cycles in our test (Table 1); the 3 × 4’s is 766 clock
cycles (Table 2).

Figure 8. Simulation: TableWriter writing a table with seven rows and five columns (outstanding
transaction FIFO count marked in blue; the values at the left are measured at the red line).

Table 1. Simulation results for a 4 × 4 table.

Focused Cell Size Execution Time Memory
[Memory Cells] [Clock Cycles] [Memory Cells]

1 1263 121
2 1273 122
3 1283 123
4 1293 124
5 1303 125
6 1313 126
7 1323 127
8 1333 128

Table 2. Simulation results for a 3 × 4 table.

Focused Cell Size Execution Time Memory
[Memory Cells] [Clock Cycles] [Memory Cells]

1 766 74
2 776 75
3 786 76
4 796 77
5 806 78
6 816 79
7 826 80
8 836 81

6.3. Synthesis Results

We were asked to include some synthesis results. Please keep in mind those only provide a
rough idea of achievable results as developers might have different preferences regarding pipelining
and buffer sizes or use other synthesis and implementation tools or settings.

Computers 2024, 13, 8 23 of 32

The test case analyzed accepts a data stream marked with hierarchy information as
mentioned in Appendix A. From this, it creates a new table structure resembling the one
shown in Figure 4. In this example, the anchor of the table is expected to already exist; its
address is received on a second data stream. We use the context switching state machine
approach from Appendix B. Our implementation includes some pipelining and a buffer
towards the memory manager side to allow for multiple outstanding transactions. The
.next field of the memory cell has 32 bits. The .data field is of identical size, resulting in a
memory cell size of 64 bits. The data in Table 3 show synthesis/implementation results
achieved on a Xilinx XC7Z045FFG900-2 MPSoC with Xilinx Vivado 2022.2.

Remark 17. The FPGA choice was mainly determined by finding a device close enough to the actual
FPGA we use in our project (so the Zynq-Series was set) and the device having enough IO-Blocks
(IOBs) so we could actually synthesize the whole TableWriter into it at the top level. Normally,
the IOB count should not matter as out-of-context synthesis exists. However, Vivado 2022.2 does
not allow out-of-context synthesis for VHDL entities instantiating other entities (heavily used in
our design), which is a known limitation. The alternative of synthesizing the TableWriter together
with the memory manager, test data creation, database control, etc. (reducing external pin count)
was dropped since the synthesis results would be under heavy influence of the connected entities.
The required number of LUTs and flip-flops is low enough to fit into any of the FPGAs available
in Vivado 2022.2: The smallest devices start at 14,400 look up tables (LUT) and 28,800 flip-flops
(FF). The smallest devices with enough I/O capability (our test utilizes 219 IOBs) start with the
XC7Z030 family. We decided to choose the smallest viable device that is also available as part of
an evaluation board in the hope of increasing the chance of comparability with other works in the
future. This led to the Zynq 7000 ZC706 evaluation board with its XC7Z045FFG900-2 MPSoC.

Table 3. Synthesis results.

Outstanding
Transactions

Allowed

Synthesis &
Implementation

Strategy

Achieved
Frequency [MHz]

Worst Negative
Slack [ns] LUT FF

2 Performance 166.7 0.037 3603 1487
2 Area 178.6 0.000 2722 1389

7 Performance 161.3 0.012 3783 1501
7 Area 169.5 0.005 2738 1407

15 Performance 153.8 0.044 3720 1520
15 Area 152.7 0.025 2801 1426

We completed multiple synthesis runs with increasing clock frequency until we
reached negative values for the worst negative slack. Surprisingly, with smaller buffers
for outstanding transactions, the vivado run strategies optimized for lower area usage
achieved higher frequencies than the run strategy recommended by vivado for higher
performance. The large difference in LUT usage between performance and area strategies
and the declining frequency with increasing outstanding transaction buffers suggest that
our implementation still has potential for optimizations. The unit using the largest amount
of FFs is the Element State Context Array. FF utilization could likely be reduced as we
currently keep track of the addresses of all important nodes in an element (for development
purposes), while only part of this information is strictly required to build a new table. Most
of the steps in the Control State Machine only require information about neighboring nodes,
so FF usage could be further reduced by reusing the same FFs for different node addresses.

7. Comparison
7.1. Our Approach vs. Common Data Structures

As we require hard real-time, hash tables (O(1) access on average) are not applicable to
our use-case. Arrays can be used as lists with O(1) deletion (by somehow marking empty

Computers 2024, 13, 8 24 of 32

entries) but do not provide O(1) insertion at arbitrary positions. Insertion at any but the
last position will also inevitably change the address of all following entries. The remaining
data structures are, in contrast, able to keep the address of an entry constant over its lifetime
as they all follow a node-based approach.

The next structure we can rule out is the random access list: while [52] showed that
insertion and deletion can be done in hard real time at the front and back of a list, it does
not include the necessary operation of deleting an arbitrary entry in O(1).

Singly linked lists provide O(1) insertion and deletion of a node after a specific entry.
Deletion of an entry itself is, however, O(n) as a linear search has to be performed to
find its predecessor (which will be re-linked to the successor of the entry removed). The
same goes for insertion before a specific entry. Doubly linked lists improve in that regard as
the additional pointer to the previous node enables O(1) access to a node’s predecessor.
Extending the linked list to a ring allows deletion of a whole list at once with the hard
real-time memory manager discussed before.

Trees are a perfect fit to represent hierarchy. However, an implementation with all
nodes being of the same structure (one of our targets) implies setting the leaf node’s
child pointers to NULL, wasting memory. On the other hand, such an implementation
allows deciding if a node is a child by just looking at the node. Supporting operations
like Successor and Predecessor would either require storage of additional pointers to parents
(like our approach) and siblings in every node or searching from the root node. Also, the
standard algorithms only provide O log(n) access times. While it would be possible to link
individual nodes to a specific position inO(1) if there is space for another child, the limited
number of k direct children also restricts not only the number of rows and cells but also
the chunks of a table. Furthermore, the same limit of direct child nodes would apply at all
individual hierarchy levels, which does not represent the practical use case. A typical table
in a database will probably have millions of rows but significantly fewer columns.

Our approach combines the advantages of singly and doubly linked lists/rings with
the hierarchic approach of trees: while the base elements can be connected in a doubly
linked fashion for O(1) deletion, the leaf elements containing the payload are only singly
linked, saving memory. Primary key lookup is completely skipped. At the same time, it
manages to keep all hierarchy levels the same, which simplifies the algorithms, leading to
less hardware usage and higher performance in hardware implementations on FPGAs.

Closing the ring after the data section allows to use the memory manager from [50],
which is especially important as it enables deallocation of arbitrarily sized leaf elements
in O(1). This means that, for a table with a limited amount of rows and columns but
unlimited data chunks contained in the cells, a complete table can still be deleted in O(1).

As we split all data into identically sized linked nodes, our system’s memory footprint
and read/write speed can, however, not compete with systems allowing dynamic data-
matched node sizes. It is a solution for hard real-time, not for maximum efficiency.

7.2. Memory Consumption
7.2.1. Singly vs. Doubly Linked Rings

Are the efforts for enforcing single linking actually worth it? How does the memory
footprint of our approach of single linking the rings compare to a more obvious version
where every node is doubly linked? After all, this would additionally allow reverse
travel also in the leaf layer, remove the need for H (slightly reducing execution times),
and provide a simple way to insert/delete individual D nodes in the leaf elements (an
operation we did not require for our application, but probably useful in other scenarios.).

Computers 2024, 13, 8 25 of 32

The memory consumption of a single element storing payload bytes in memory cells
with pointer size p and data field size d (in bytes) is calculated by the following formulas:

memSLR(payload, p, d) = (p + d) ·
(⌈

payload
d

⌉
+ #{ A , H , L , G }

)
(1)

memDLR(payload, p, d) = (2p + d) ·
(⌈

payload
d

⌉
+ #

{
A , L , G

})
(2)

Figure 9a compares the memory footprint of our approach (SLR) to such an alternate
version with doubly linked nodes (DLR), analyzing a single element storing increasing
payloads across memory cells with various data field sizes and a fixed pointer size of 8 bytes.
Since the memory cells data field has to be at least as large as the pointer, we start with a
data field size equal to the pointer and work our way up in powers of two.

24 26 28 210

Payload [Bytes]

26

27

28

29

210

211

212

M
em

or
y

F
o

ot
pr

in
t

[B
yt

es
]

25%
50%

100%
200%

Overhead

data [Bytes]
DLR
SLR
64
32
16
8

213 214

214

215

(a) Memory footprint

20 23 26 29 212

Payload [Bytes]

23

24

25

26

27

28

D
at

a
F

ie
ld

[B
yt

es
]

DLR<SLR

SLR<DLR
1

N
o

d
e

SLR=DLRSLR=DLR

2
N

o
d

es

SLR=DLRSLR=DLR

4

SLR=DLRSLR=DLR

8

SLR=DLRSLR=DLR

16

SLR=DLRSLR=DLR

(b) Tradeoff SLR vs. DLR.

Figure 9. Single element comparison: singly vs. doubly linked nodes (p = 8).

With a small memory cell data field, the SLR 8 model uses significantly less memory
than its DLR counterpart (over all payloads). At larger data field sizes, the additional
pointer in the DLR is less significant to the total memory consumption than the increasingly
underutilized data fields of the control nodes, resulting in less memory usage for relatively
small payloads (SLR 32, SLR 64). With increasing payloads, the SLR takes the leading
position again as the contribution of the control nodes to the total memory consumption di-
minishes compared to the payload itself. For increasing payloads, the overhead approaches
that of a single memory cell (p/d vs. 2p/d). The SLR is strictly better for

(p + d) ·
(⌈

payload
d

⌉
+ 4

)
< (2p + d) ·

(⌈
payload

d

⌉
+ 3

)
⇔ d

p
− 2 <

⌈
payload

d

⌉
(3)

The corresponding areas are shown in Figure 9b. The stepped borders are confined to
the area between the quadratic equations dl ⩽ d < dr with

dl,r = ap +
√
(ap)2 + p · payload + b, a =

{
1/2 l
3/2 r

, b =

{
1 SLR ⩽ DLR
0 SLR < DLR

(4)

Computers 2024, 13, 8 26 of 32

7.2.2. Storing a Table

To store a table with n rows, m columns, and a total payload of x memory cells, the
doubly linked tree of singly linked rings requires

memDLToSLR(n, m, x) = x + (1 + n + nm) · #{ A , H , L , G }memory cells

memory cells. Using singly linked lists or rings instead of our elements would reduce the
memory consumption to

memLinkedList = x + 1 + n + nm memory cells

since the control nodes A , H , L , G are being replaced by a single node, which essentially
represents the same thing as A —a data node in the parent list that stores a link to a lower-
hierarchy-level list. The node size for a singly linked list is the same as in our approach.
This reduction in memory does of course come at the price of losing some capabilities, e.g.,
the known node count from L or the detection of the end/start point provided by G in
case a ring structure is used.

For a tree, the node size is the sum of the payload and the number of pointers required,
e.g., A k-ary tree has a node size of k · p + d. If the hierarchy in the tree is supposed to
represent the actual hierarchy of the table (each parent links to all its childs), the node size
has to accommodate for the largest possible tree node. For our table, we obtain

k = max(n, m) (5)

nodesizetree = max(n, m) · p + d (6)

As already mentioned in Section 7.1, database tables normally have a fairly limited
number of columns but may have millions of rows. That already indicates that this
approach will have a massive overhead: The many nodes storing the links to the relatively
few individual column cells in a row have the same size as the relatively few but large
nodes storing the links to all the rows. For the actual payload, one would likely utilize a
dynamically sized tree or list structure since holding the whole payload in a single node
would worsen this problem even more where large variations in data sizes occur.

The memory required to store the structure of our table is

memTreeStructure(n, m) = (1 + n + nm) · nodesizetree (7)

= (1 + n + nm) · (max(n, m) · p + d) (8)

For the storage of the payload in the optimal scenario where the data stored in the
data field of the nodes spreads perfectly over the existing nodes, we can assume

memTreePayload(k) =
⌈

k
nodesizetree

⌉
· nodesizetree (9)

=

⌈
k

max(n, m) · p + d

⌉
· (max(n, m) · p + d) (10)

For practical applications, this value is expected to be significantly larger, especially
for table cells with a few bytes of data, where the overhead of k · p pointers leads to most of
the node storage being overhead.

The total amount of memory required for the tree approach but keeping the original
hierarchy is (in the optimal case of evenly spread data)

memTree = memTreeStructure + memTreePayload (11)

=

(
(1 + n + nm) +

⌈
k

max(n, m) · p + d

⌉)
· (max(n, m) · p + d) (12)

Computers 2024, 13, 8 27 of 32

While the fraction approximately cancels out with the node size to k for the payload (keep
in mind this is only for the optimal case), memTreeStructure introduces the multiplicative
term (max(n, m))2, which means that the node size is growing quadratically with the larger
one of the table dimensions, additionally to the term max(n, m) ·min(n, m), which was
expected from the fact that this is a n×m table.

8. Conclusions

Of the discussed list-like data structures, our approach features the largest feature set
while keeping almost every operation hard real-time. The only exceptions are n-th element
access and recursively deleting a whole hierarchy of elements. The latter is, however,
possible in O(1) if hierarchy depth and the length of every but the lowest layer is restricted.
For our target application—a hard real-time database—this means deleting a table with a
limited amount of rows and columns, but unlimited data is possible in O(1)—including
deallocation time.

More generally speaking, our approach provides a way to build hierarchical data
structures with doubly linked behavior in every but the lowest layer, which we consider a
good compromise between freely navigating in the structure and keeping a low memory
overhead. At the same time, it still keeps the structure of every building block (=element)
the same, which simplifies implementation in hardware designs on FPGAs as sequential
decisions for each step are minimized. As a result of this, most of our algorithms can be
parallelized to a high degree.

This comes at the cost of the whole memory being organized in identical memory
cells/nodes, increasing the memory overhead compared to contiguous storage. Insert
and update operations can keep up with arbitrarily large incoming data streams, limiting
the overhead to O(1). Using the anchor node’s address as primary key of the element
allows direct data access without key lookup. As a side note, our approach also provides
non-real-time operations like hierarchic ascent and cyclic access, both available from any
starting node.

Further Ideas

For larger memory cell datafields, the information of most control nodes could be di-
rectly stored in A —and/or multiple anchors could be packed into a single one—reducing
the overhead of the elements further. While a hardware design adopting this based on
generics/parameters could certainly be created, we expect it to be quite a challenge. Special-
ized HWDS units could potentially accelerate access times, e.g., storing just control nodes
of a specific section for fast rearrangement of elements, or to transparently ensure atomic
execution of the operations, which is required for concurrent access. Some preparations for
this have been undertaken during the design, e.g., linking elements via A and H , which
allows replacing arbitrary elements with only two write operations. The complete solution
for concurrent operation is, however, still a work in progress.

Author Contributions: Conceptualization, S.L. and D.T.; Data curation, S.L.; Formal analysis, S.L.;
Funding acquisition, D.T.; Investigation, S.L.; Methodology, S.L.; Project administration, D.T.; Re-
sources, D.T.; Software, S.L.; Supervision, D.T.; Validation, S.L.; Visualization, S.L.; Writing—original
draft, S.L.; Writing—review and editing, S.L. and D.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in this article (see
Sections 6.2 and 6.3).

Conflicts of Interest: The authors declare no conflicts of interest.

Computers 2024, 13, 8 28 of 32

Abbreviations

The following abbreviations are used in this manuscript:

BLOB Binary Large Object
CPU Central Processing Unit
CRUD Create, Read, Update, Delete
DB Database
DLR Doubly-Linked Ring
DRAM Dynamic Random Access Memory
FF Flip-Flop
FPGA Field Programmable Gate Array
FSM Finite State Machine
HWDS Hardware Data Structure
IOB Input Output Block
LUT Look-up table
RTDB Real-Time Database
SLR Singly-Linked Ring
SRAM Static Random Access Memory
WCET Worst-Case Execution Time

Appendix A. Example Interface

The presented solution is intended to be customized according to the requirements of
the developer (e.g., different hierarchy depth, more complex node-linking; see Remark 10)
by building on the set of operators presented. For example, in our hard real-time database
prototype, we use a set of data processing units utilizing different subsets of the presented
operations: some modules only read data, some write or update, while others may only
change links in the existing hierarchical structure. The interface shown in Figure A1 may
be used as a starting point for customizations.

Operation Controller

Element
Builder

Element
Reader

opcode

ei,A

ei,B

ei,C

ready

valid

eresult

ready

valid

data

ready

valid

last

hierarchy

data

valid

ready

last

hierarchy

edata

last
hierarchy

ready

valid

eread

last
hierarchy

ready

valid

Memory Management Bus

Figure A1. Interface logic.

We split the functionality into three submodules: The Element Builder accepts a data
stream intended for Insert/Update operations and stores it to a new element. The Element
Reader reads the data of an element and sends it as data stream. The Operation Controller
exclusively operates on already stored elements. It performs all the interlinking between
elements. This includes unlinking elements before the element deallocator frees their memory.

Computers 2024, 13, 8 29 of 32

The operation to be executed is passed to the Operation Controller via the opcode input.
The parameters to the operation (always of type element) are provided on the corresponding
ei ports, with ei,A corresponding to the first, ei,B to the second, and ei,B to the third parameter.
If an operation uses less than three parameters, the values of the unused ei are ignored. The
Operation Controller returns its results (e.g., the predecessor of a node for the Predecessor(ei,A)
operation) on eresult.

For the Insert/Update operations, the user may choose between either linking in an
existing element (passed via ei) or creating a new element from a data stream, which is then
used instead. For this, the user has to (in any order)

• Send e∅ for the ei to be replaced
• Send the data to the Element Builder

The Element Builder will now create an element from the data stream and send it to the
operation controller, which will use it for the ’missing’ parameter. For example, to execute
Update(etarget, edata) but with edata replaced by the data stream, the user has to

• Send the opcode for Update
• Send the data stream to the Element Builder via its data, last and hierarchy inputs
• Set the input ei,B corresponding to edata to e∅
The Element Builder will now build edata from the stream, which is then used in the Update
operation. The Element Reader is used whenever a data stream has to be output by an
operation. In this case, the Operation Controller simply sends the element to be read to the
Element Reader, which will then output the element’s content as a data stream on its outputs
data, last, and hierarchy.

For I/O transfer synchronization, we adapt the valid/ready handshake of the AXI-
Stream protocol [51]. On the Operation Controller, the signals opcode, eA, eB, and eC are
combined into a single bus. Since each operation takes a limited number of parameters and
returns a single element; using valid/ready is sufficient as only single-transfer transactions
are required. For the input/output data streams, however, an additional marker to indicate
where a cell, row, or table ends is required. This is handled by the last (something ends
here) and hierarchy (is it a table, row, or cell?) signals. Since the hierarchy information is
also required between Operation Controller and Element Builder/Reader to properly handle
hierarchies, those signals are copied from the data stream to the element stream and
vice versa. All submodules are connected to the memory manager via a central bus
handling both memory management and read/write operations (a paper on the manager’s
architecture and the corresponding memory bus is currently in preparation).

To execute, e.g., a typical relational databases INSERT operation, the user would send
the matching command to the Operation Controller and simultaneously send the data stream
to the Element Builder. The Operation Controller prepares a new row element erow, while
the Element Builder creates the corresponding child elements from the individual cell data
stream. Cell and row ends are marked in the data stream via tLast and hierarchyLevel. As
soon as all content is fully available, the Operation Controller will link erow into the target
table (if concurrent access is not of concern, this may also be completed directly).

Appendix B. Synthesizable Implementation of Limited Depth Recursion

While most of our operations are fairly straightforward to implement in an FPGA
for the experienced FPGA developer, one is less obvious: iterating the data structure, e.g.,
as in Algorithm 8, involves (limited depth) recursion. How can this be implemented in
synthesizable logic? We suggest to use something we would call a context switching state
machine, a finite state machine performing its tasks based on a single context but able to
switch to different contexts if it hits certain states. States in the current context may modify
the state of the other contexts to prepare for upcoming context switches.

Computers 2024, 13, 8 30 of 32

Remark A1. While this could be represented as a regular FSM, the context-switching description
of it is much more concise and more closely resembles its recursive nature. It is also closer to how the
suggested FPGA design actually works.

Our implementation features one context per hierarchy level, each storing information
on a single element like the addresses of all the already visited control nodes, positional
information like the current and the previous node or the current length of the ring, and
the task to perform on that level. Transitioning between elements is done by performing a
context switch, or, in hardware terms, multiplexing the FSMs state and the corresponding
context information. Since element transitions always happen via the A and H nodes,
context switching is limited to neighboring hierarchy levels in our application. This also
implies that write access to the other contexts is fairly limited, keeping the logic complexity
relatively low. Since the doubly linked tree of singly linked rings treats all hierarchy layers
the same, the single-context state machine is identical for every mid-layer context. Some
special case handling is required for the contexts representing the root/leaf layer as those
are not able to switch to higher/lower layers.

Context A
Context B
Context C
Context D
Context E

C
on

te
xt

M
ul

tip
le

xe
r

Current Context

State
Machine
(Single

Context)

Select
Read/Write

Write
Write
Write
Write
Write

Read

Figure A2. Context switching state machine.

References
1. Kao, B.; Garcia-Molina, H. An overview of real-time database systems. In Real Time Computing; Springer: Berlin/Heidelberg,

Germany, 1994; pp. 261–282. [CrossRef]
2. Ramamritham, K.; Sivasankaran, R.; Stankovic, J.; Towsley, D.; Xiong, M.; Haritsa, J.; Seshadri, S.; Kuo, T.W.; Mok, A.; Ulusoy, O.;

et al. Advances in Real-Time Database Systems Research Special Section on RTDBS of ACM SIGMOD Record 25(1), March 1996; Boston
University: Boston, MA, USA, 1996.

3. Ramamritham, K.; Son, S.H.; DiPippo, L.C. Real-time databases and data services. Real-Time Syst. 2004, 28, 179–215. [CrossRef]
4. Shanker, U.; Misra, M.; Sarje, A.K. Distributed real time database systems: Background and literature review. Distrib. Parallel

Databases 2008, 23, 127–149. [CrossRef]
5. Sha, L.; Rajkumar, R.; Lehooczky, J.P. Concurrency control for distributed real-time databases. ACM SIGMOD Rec. 1988, 17,

82–98. [CrossRef]
6. Xiong, M.; Sivasankaran, R.; Stankovic, J.A.; Ramamritham, K.; Towsley, D. Scheduling Access to Temporal Data in Real-Time

Databases. In Real-Time Database Systems; Springer: Boston, MA, USA, 1997. [CrossRef]
7. Haritsa, J.R.; Livny, M.; Carey, M.J. Earliest Deadline Scheduling for Real-Time Database Systems. In Proceedings of the Real-Time

Systems Symposium—1991, San Antonio, TX, USA, 4–6 December 1991; IEEE Computer Society: Washington, DC, USA, 1991;
pp. 232–242. [CrossRef]

8. Hong, D.; Johnson, T.; Chakravarthy, S. Real-time transaction scheduling: A cost conscious approach. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data (SIGMOD ’93), Washington, DC, USA, 25–28 May 1993;
pp. 197–206. [CrossRef]

9. Lam, K.W.; Lee, V.C.S.; Hung, S.l. Transaction Scheduling in Distributed Real-Time Systems. Real-Time Syst. 2000, 19, 169.
[CrossRef]

10. Kuo, T.; Lam, K. Real-Time Database Systems: An Overview of System Characteristics and Issues. In Real-Time Database Systems;
Springer: Boston, MA, USA, 2001; pp. 3–8. [CrossRef]

http://doi.org/10.1007/978-3-642-88049-0_13
http://dx.doi.org/10.1023/B:TIME.0000045317.37980.a5
http://dx.doi.org/10.1007/s10619-008-7024-5
http://dx.doi.org/10.1145/44203.44210
http://dx.doi.org/10.1007/978-1-4615-6161-3_11
http://dx.doi.org/10.1109/REAL.1991.160378
http://dx.doi.org/10.1145/170035.170071
http://dx.doi.org/10.1023/A:1008145516902
http://dx.doi.org/10.1007/0-306-46988-X_1

Computers 2024, 13, 8 31 of 32

11. Agrawal, D.; Abbadi, A.E.; Jeffers, R. Using delayed commitment in locking protocols for real-time databases. In Proceedings of
the 1992 ACM SIGMOD International Conference on Management of Data (SIGMOD ’92), San Diego, CA, USA, 2–5 June 1992;
pp. 104–113. [CrossRef]

12. Son, S.H.; David, R.; Thuraisingham, B.M. Improving Timeliness in Real-Time Secure Database Systems. SIGMOD Rec. 1996,
25, 29–33. [CrossRef]

13. Lam, K.Y.; Hung, S.L.; Son, S.H. On Using Real-Time Static Locking Protocols for Distributed Real-Time Databases. Real-Time
Syst. 1997, 13, 141–166. [CrossRef]

14. Park, C.; Park, S.; Son, S.H. Multiversion Locking Protocol with Freezing for Secure Real-Time Database Systems. IEEE Trans.
Knowl. Data Eng. 2002, 14, 1141–1154. [CrossRef]

15. Kim, J.; Kim, Y.; You, H.; Kim, J.; Ok, S. Design and Implementation of a Real-Time Static Locking Protocol for Main-Memory
Database Systems. In Advances in Information Systems, Proceedings of the Third International Conference, ADVIS 2004, Izmir, Turkey,
20–22 October 2004; Yakhno, T.M., Ed.; Lecture Notes in Computer Science; Proceedings; Springer: Berlin/Heidelberg, Germany,
2004; Volume 3261, pp. 353–362. [CrossRef]

16. Mittal, A.; Dandamudi, S.P. Dynamic versus Static Locking in Real-Time Parallel Database Systems. In Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), CD-ROM/Abstracts Proceedings, Santa Fe, NM,
USA, 26–30 April 2004; IEEE Computer Society: Washington, DC, USA, 2004. [CrossRef]

17. Wong, J.S.K.; Mitra, S. A nonblocking timed atomic commit protocol for distributed real-time database systems. J. Syst. Softw.
1996, 34, 161–170. [CrossRef]

18. Lortz, V.B.; Shin, K.G.; Kim, J. MDARTS: A Multiprocessor Database Architecture for Hard Real-Time Systems. IEEE Trans.
Knowl. Data Eng. 2000, 12, 621–644. [CrossRef]

19. Nyström, D.; Tesanovic, A.; Norström, C.; Hansson, J. Database Pointers: A Predictable Way of Manipulating Hot Data in Hard
Real-Time Systems. In Real-Time and Embedded Computing Systems and Applications, Proceedings of the 9th International Conference,
RTCSA 2003, Tainan, Taiwan, 18–20 February 2003; Chen, J., Hong, S., Eds.; Lecture Notes in Computer Science; Revised Papers;
Springer: Berlin/Heidelberg, Germany, 2003; Volume 2968, pp. 454–465. [CrossRef]

20. Nogiec, J.M.; Desavouret, E. RTDB: A Memory Resident Real-Time Object Database; Fermi National Accelerator Lab. (FNAL):
Batavia, IL, USA, 2003.

21. Goebl, M.; Farber, G. A Real-Time-capable Hard-and Software Architecture for Joint Image and Knowledge Processing in
Cognitive Automobiles. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007;
pp. 734–740. [CrossRef]

22. Goebl, M. KogMo-RTDB: Einfuehrung in die Realzeitdatenbasis fuer Kognitive Automobile (C3) [KogMo-RTDB: Introduction to the Real-
Time Data Base for Cognitive Automobiles]; Lehrstuhl für Realzeit-Computersysteme; Technische Universität München: München,
Germany, 2007; Version 529+. Available online: https://www.kogmo-rtdb.de/download/docs/KogMo-RTDB_Einfuehrung.pdf
(accessed on 21 July 2023).

23. McObject. McObject Reaches out with a True Real-Time Deterministic Database for embOS RTOS Applications. Press Release,
2021. Available online: https://www.mcobject.com/press/deterministic-database-for-embos-rtos-applications/ (accessed on
31 January 2022).

24. McObject. McObject Collaborates with Wind River to Deliver First-Ever Deterministic Database System for VxWorks-based
Real-Time Embedded Systems. Press Release. 2021. Available online: https://www.mcobject.com/press/database-system-for-
vxworks-rtos/ (accessed on 31 Ianuary 2022).

25. Mueller, R.; Teubner, J. FPGA: What’s in It for a Database? In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’09), Providence, RI, USA, 29 June–2 July 2009; pp. 999–1004. [CrossRef]

26. Becher, A.; G., L.B.; Broneske, D.; Drewes, T.; Gurumurthy, B.; Meyer-Wegener, K.; Pionteck, T.; Saake, G.; Teich, J.; Wildermann, S.
Integration of FPGAs in Database Management Systems: Challenges and Opportunities. Datenbank-Spektrum 2018, 18, 145–156.
[CrossRef]

27. Becher, A.; Ziener, D.; Meyer-Wegener, K.; Teich, J. A co-design approach for accelerated SQL query processing via FPGA-based
data filtering. In Proceedings of the 2015 International Conference on Field Programmable Technology, FPT 2015, Queenstown,
New Zealand, 7–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 192–195. [CrossRef]

28. Ziener, D.; Bauer, F.; Becher, A.; Dennl, C.; Meyer-Wegener, K.; Schürfeld, U.; Teich, J.; Vogt, J.S.; Weber, H. FPGA-Based
Dynamically Reconfigurable SQL Query Processing. ACM Trans. Reconfig. Technol. Syst. 2016, 9, 25:1–25:24. [CrossRef]

29. Sidler, D.; István, Z.; Owaida, M.; Alonso, G. Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In
Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD ’17), Chicago, IL, USA, 14–19 May
2017; pp. 403–415. [CrossRef]

30. Lekshmi, B.G.; Becher, A.; Meyer-Wegener, K.; Wildermann, S.; Teich, J. SQL Query Processing Using an Integrated FPGA-based
Near-Data Accelerator in ReProVide. In Proceedings of the 23rd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, 30 March–2 April 2020; Bonifati, A., Zhou, Y., Salles, M.A.V., Böhm, A., Olteanu, D., Fletcher,
G.H.L., Khan, A., Yang, B., Eds.; OpenProceedings: Konstanz, Germany, 2020; pp. 639–642. [CrossRef]

31. Müller, R.; Teubner, J.; Alonso, G. Streams on Wires—A Query Compiler for FPGAs. Proc. VLDB Endow. 2009, 2, 229–240.
[CrossRef]

http://dx.doi.org/10.1145/130283.130304
http://dx.doi.org/10.1145/381854.381879
http://dx.doi.org/10.1023/A:1007981523223
http://dx.doi.org/10.1109/TKDE.2002.1033780
http://dx.doi.org/10.1007/978-3-540-30198-1_36
http://dx.doi.org/10.1109/IPDPS.2004.1302946
http://dx.doi.org/10.1016/0164-1212(95)00068-2
http://dx.doi.org/10.1109/69.868911
http://dx.doi.org/10.1007/978-3-540-24686-2_28
http://dx.doi.org/10.1109/IVS.2007.4290204
https://www.kogmo-rtdb.de/download/docs/KogMo-RTDB_Einfuehrung.pdf
https://www.mcobject.com/press/deterministic-database-for-embos-rtos-applications/
https://www.mcobject.com/press/database-system-for-vxworks-rtos/
https://www.mcobject.com/press/database-system-for-vxworks-rtos/
http://dx.doi.org/10.1145/1559845.1559965
http://dx.doi.org/10.1007/s13222-018-0294-9
http://dx.doi.org/10.1109/FPT.2015.7393148
http://dx.doi.org/10.1145/2845087
http://dx.doi.org/10.1145/3035918.3035954
http://dx.doi.org/10.5441/002/edbt.2020.83
http://dx.doi.org/10.14778/1687627.1687654

Computers 2024, 13, 8 32 of 32

32. Müller, R.; Teubner, J.; Alonso, G. Glacier: A query-to-hardware compiler. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis, IN, USA, 6–10 June 2010; Elmagarmid, A.K., Agrawal, D., Eds.;
ACM: New York, NY, USA, 2010; pp. 1159–1162. [CrossRef]

33. Sukhwani, B.; Min, H.; Thoennes, M.; Dube, P.; Brezzo, B.; Asaad, S.; Dillenberger, D.E. Database Analytics: A Reconfigurable-
Computing Approach. IEEE Micro 2014, 34, 19–29. [CrossRef]

34. Sukhwani, B.; Thoennes, M.; Min, H.; Dube, P.; Brezzo, B.; Asaad, S.; Dillenberger, D. A Hardware/Software Approach for
Database Query Acceleration with FPGAs. Int. J. Parallel Program. 2015, 43, 1129. [CrossRef]

35. Dennl, C.; Ziener, D.; Teich, J. On-the-fly Composition of FPGA-Based SQL Query Accelerators Using a Partially Reconfigurable
Module Library. In Proceedings of the 2012 IEEE 20th Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM 2012, Toronto, ON, Canada, 29 April–1 May 2012; IEEE Computer Society: Washington, DC, USA,
2012; pp. 45–52. [CrossRef]

36. Bayer, R.; McCreight, E.M. Organization and Maintenance of Large Ordered Indices. Acta Inform. 1972, 1, 173–189. [CrossRef]
37. Fotakis, D.; Pagh, R.; Sanders, P.; Spirakis, P.G. Space Efficient Hash Tables with Worst Case Constant Access Time. In STACS

2003, Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, 27 February –1 March
2003; Alt, H., Habib, M., Eds.; Lecture Notes in Computer Science; Proceedings; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 2607, pp. 271–282. [CrossRef]

38. Bloom, G.; Parmer, G.; Narahari, B.; Simha, R. Shared hardware data structures for hard real-time systems. In Proceedings of the
12th International Conference on Embedded Software, EMSOFT 2012, Part of the Eighth Embedded Systems Week, ESWeek 2012,
Tampere, Finland, 7–12 October 2012; Jerraya, A., Carloni, L.P., Maraninchi, F., Regehr, J., Eds.; ACM: New York, NY, USA, 2012;
pp. 133–142. [CrossRef]

39. Moon, S.; Shin, K.G.; Rexford, J. Scalable Hardware Priority Queue Architectures for High-Speed Packet Switches. In Proceedings
of the 3rd IEEE Real-Time Technology and Applications Symposium, RTAS’97, Montreal, QC, Canada, 9–11 June 1997; IEEE
Computer Society: Washington, DC, USA, 1997; pp. 203–212. [CrossRef]

40. Kohutka, L.; Stopjakova, V. Rocket Queue: New data sorting architecture for real-time systems. In Proceedings of the 2017
IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Dresden, Germany,
19–21 April 2017. [CrossRef]

41. Kohutka, L.; Stopjakova, V. A new efficient sorting architecture for real-time systems. In Proceedings of the 2017 6th Mediterranean
Conference on Embedded Computing (MECO), Bar, Montenegro, 11–15 June 2017. [CrossRef]

42. Burleson, W.P.; Ko, J.; Niehaus, D.; Ramamritham, K.; Stankovic, J.A.; Wallace, G.; Weems, C.C. The spring scheduling coprocessor:
A scheduling accelerator. IEEE Trans. Very Large Scale Integr. Syst. 1999, 7, 38–47. [CrossRef]

43. Cameron, R.D.; Lin, D. Architectural support for SWAR text processing with parallel bit streams: The inductive doubling
principle. In Proceedings of the 14th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2009, Washington, DC, USA, 7–11 March 2009; Soffa, M.L., Irwin, M.J., Eds.; ACM: New York, NY,
USA, 2009; pp. 337–348. [CrossRef]

44. ARM. AMBA AXI and ACE Protocol Specification; Standard; ARM: Cambridge, UK, 2013.
45. Du, Z.; Zhang, Q.; Lin, M.; Li, S.; Li, X.; Ju, L. A Comprehensive Memory Management Framework for CPU-FPGA Heterogenous

SoCs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2023, 42, 1058–1071. [CrossRef]
46. Dessouky, G.; Klaiber, M.J.; Bailey, D.G.; Simon, S. Adaptive Dynamic On-chip Memory Management for FPGA-based reconfig-

urable architectures. In Proceedings of the 24th International Conference on Field Programmable Logic and Applications, FPL
2014, Munich, Germany, 2–4 September, 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–8. [CrossRef]

47. Trzepinski, M.; Skowron, K.; Korona, M.; Rawski, M. FPGA Implementation of Memory Management for Multigigabit Traffic
Monitoring. In Man-Machine Interactions 5, Proceedings of the 5th International Conference on Man-Machine Interactions, ICMMI
2017, Kraków, Poland, 3–6 October 2017; Advances in Intelligent Systems and Computing; Gruca, A., Czachórski, T., Harezlak, K.,
Kozielski, S., Piotrowska, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 659, pp. 555–565. [CrossRef]

48. Koh útka, L.; Nagy, L.; Stopjaková, V. Low Latency Hardware-Accelerated Dynamic Memory Manager for Hard Real-Time and
Mixed-Criticality Systems. In Proceedings of the 22nd IEEE International Symposium on Design and Diagnostics of Electronic
Circuits & Systems, DDECS 2019, Cluj-Napoca, Romania, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [CrossRef]

49. Kohútka, L.; Nagy, L.; Stopjaková, V. Hardware Dynamic Memory Manager for Hard Real-Time Systems. Ann. Emerg. Technol.
Comput. (AETiC) 2019, 3, 48–70. [CrossRef]

50. Lohmann, S.; Tutsch, D. Hard Real-Time Memory-Management in a Single Clock Cycle (on FPGAs). In ECHTZEIT 2020,
Proceedings of the Conference on Real-Time, Virtual Conference, 20 November 2020; Informatik Aktuell; Unger, H., Ed.; Springer:
Wiesbaden, Germany, 2021; pp. 31–40. [CrossRef]

51. ARM. AMBA 4 AXI4-Stream Protocol; Version 1.0; ARM IHI 0051A; ARM: Cambridge, UK, 2010.
52. Okasaki, C. Purely Functional Random-Access Lists. In Proceedings of the Conference on Functional Programming Languages

and Computer Architecture, La Jolla, CA, USA, 26–28 June 1995; ACM Press: New York, NY, USA, 1995; pp. 86–95. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1807167.1807307
http://dx.doi.org/10.1109/MM.2013.107
http://dx.doi.org/10.1007/s10766-014-0327-4
http://dx.doi.org/10.1109/FCCM.2012.18
http://dx.doi.org/10.1007/BF00288683
http://dx.doi.org/10.1007/3-540-36494-3_25
http://dx.doi.org/10.1145/2380356.2380382
http://dx.doi.org/10.1109/RTTAS.1997.601359
http://dx.doi.org/10.1109/ddecs.2017.7934573
http://dx.doi.org/10.1109/meco.2017.7977221
http://dx.doi.org/10.1109/92.748199
http://dx.doi.org/10.1145/1508244.1508283
http://dx.doi.org/10.1109/TCAD.2022.3179323
http://dx.doi.org/10.1109/FPL.2014.6927471
http://dx.doi.org/10.1007/978-3-319-67792-7_54
http://dx.doi.org/10.1109/DDECS.2019.8724659
http://dx.doi.org/10.33166/AETiC.2019.04.005
http://dx.doi.org/10.1007/978-3-658-32818-4_4
http://dx.doi.org/10.1145/224164.224187

	Introduction
	Motivation
	Hard Real-Time Databases
	Operations on Tables

	Issues to Address
	DB-Operations vs. Hard Real-Time
	Dynamic Data Width
	Memory Allocation and Deallocation
	Performance on FPGAs

	Contribution
	Content

	Related Work
	Real-Time Databases
	FPGAs and Databases
	Hard Real-Time and Hardware Data Structures
	Dynamic Memory Management in FPGAs

	System Model
	Notation
	Memory Organization
	Memory Hardware
	Memory Management
	Modifications to the Memory Manager

	Hard Real-Time Databases vs. Unknown Amounts of Data
	Database Content
	Database Schema

	Limitations

	The Doubly Linked Tree of Singly Linked Rings
	The ``Element''
	Requirements
	Storage
	Hierarchical Linking

	Practical Example: Building a Table
	Hierarchy
	Linking Elements

	Base Operations
	Derived Operations
	Other Properties (Not Necessarily Real-Time)
	Arbitrary Entry Cyclic Access
	Hierarchic Ascent

	Real-Time Operation (Proof)
	Prerequisites
	Basic Access
	Memory Management
	Storing a Data Stream in an Element
	Primary Key Access & Reading Data from an Element
	Accessibility of the Control Nodes

	Base Operations
	Derived Operations
	Storing a Hierarchy

	Experimental Results
	Example: The TableWriter
	Simulation
	Test: Moving Larger Cell in a Square Table
	Test: Moving Larger Cell in Non-Square Table
	Test: Table with Varying Payload and Table Size

	Synthesis Results

	Comparison
	Our Approach vs. Common Data Structures
	Memory Consumption
	Singly vs. Doubly Linked Rings
	Storing a Table

	Conclusions
	Appendix A
	Appendix B
	References

