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Abstract: Wearing masks in indoor and outdoor public places has been mandatory in a number of
countries during the COVID-19 pandemic. Correctly wearing a face mask can reduce the transmission
of the virus through respiratory droplets. In this paper, a novel two-step deep learning (DL) method
based on our extended ResNet-50 is presented. It can detect and classify whether face masks are
missing, are worn correctly or incorrectly, or the face is covered by other means (e.g., a hand or hair).
Our DL method utilizes transfer learning with pretrained ResNet-50 weights to reduce training time
and increase detection accuracy. Training and validation are achieved using the MaskedFace-Net,
MAsked FAces (MAFA), and CelebA datasets. The trained model has been incorporated onto a
socially assistive robot for robust and autonomous detection by a robot using lower-resolution images
from the onboard camera. The results show a classification accuracy of 84.13% for the classification of
no mask, correctly masked, and incorrectly masked faces in various real-world poses and occlusion
scenarios using the robot.

Keywords: socially assistive robots; autonomous face mask detection; human–robot interactions;
COVID-19 pandemic; extended ResNet-50

1. Introduction

The coronavirus disease (COVID-19) has resulted in over 6.9 million deaths and
772 million infections worldwide as of November 2023 [1]. Recent studies during the
pandemic have shown a positive trend towards the incorporation of embodied social robots
for workplaces [2,3], public buildings [4,5], and healthcare settings [6,7]. Furthermore, a
virtual robot has also been used to persuade people to wear masks, wash their hands, social
distance, and promote COVID-19 vaccinations [8].

To prevent the spread of the virus, the World Health Organization (WHO) has sug-
gested that people wear masks in public places [9]. Research has shown that wearing face
masks can decrease the transmission and spread of infection [10,11]. Wearing masks in
public indoor and outdoor spaces has been regulated as mandatory in most countries,
and to date, with the easing of regulations, a number of healthcare, transit, education,
and government facilities still require or strongly encourage masks. The commonly used
masks people wear to reduce the spread of respiratory droplets from infected people
while providing breathability include surgical masks, medical masks, and KN95 or N95
masks [12].

To enforce the mandatory wearing of face masks while reducing the time-consuming
and costly task for humans to check people as they enter buildings, outdoor venues, etc.,
automated monitoring systems have been integrated into security cameras [13], tablets [14],
and robots [15–20]. Recent detection systems have also used deep learning to classify
whether people are wearing or not wearing masks (binary classification) in 2D images and
videos [21–30]. Only a handful of face mask detection systems can detect not only if a
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person is wearing a mask, but if they are wearing the mask properly [23,31]. Namely, these
detection systems are able to detect that the mask fully covers the nose, mouth, and chin
according to mask-use rules [32]. However, these systems have not yet been integrated for
real-time mask detection on a robot to ensure that masks are properly worn. Therefore, a
real-time autonomous deep learning-based mask detection system that can robustly detect
and classify whether a mask is worn properly or if it only covers part of the face is needed
in order to be implemented in robots.

In this paper, we present an autonomous, real-time, two-step deep learning (DL)
method based on an extended ResNet-50 that can detect and classify face masks. Our
method can identify the following classes: (1) if a mask is worn correctly and the nose,
mouth, and chin are fully covered by the mask; (2) there is no mask on the face; and (3) a
mask is worn incorrectly (partially worn) or the face is covered by other means (e.g., hand
or hair). This novel mask detection method is incorporated and evaluated in real time
on a physical socially assistive robot for a variety of different mask wearing and lighting
conditions using lower-resolution 2D images from the robot’s onboard camera.

2. Related Works

In this section, we discuss the mask detection methods using either machine learning
or deep learning methods for the classification of faces with masks or without masks.
Furthermore, we present a handful of robots that have incorporated mask detection systems
for autonomous classification.

2.1. Machine Learning Methods for Mask Detection

Machine learning techniques have been used in mask detection to determine whether
people are wearing masks in healthcare situations prior to COVID-19. For example, in [33],
a system using 2D images that detected whether mandatory medical masks were worn in
operating rooms was presented. This system used the LogitBoost method, developed using
the AdaBoost learning algorithm and an additive logistic regression model [34]. It triggered
an alarm when the system detected that a person was not wearing a surgical mask. The
system consisted of a face detector and a mask detector. The color filter in each detector
found the position, size, and threshold of the image features. The Labeled Faces in the
Wild (LFW) dataset [35] was used in the detector’s training phase, while the detector’s test
phase used the CMU Frontal Face Test Set [28,36] and the BAO dataset [37]. This face mask
detection system was evaluated on the BAO dataset and a dataset the authors collected,
and the system achieved a true positive rate (sensitivity) of approximately 95%.

In [38], the Viola–Jones detection method using the AdaBoost learning algorithm [34]
was combined with the principal component analysis (PCA) algorithm to detect faces
with masks or without masks. The PCA algorithm was used for feature extraction during
the training process. This method used a combination of the ORL face database [39] and
the authors’ own captured images for training and testing. The average accuracies for
masked face recognition and non-masked face recognition were determined to be 72% and
95%, respectively.

The machine leaning approaches discussed above only use binary classification
(mask/no mask). Furthermore, they have only been tested on a priori collected 2D images
datasets and have not yet been extended to real-time detection.

2.2. Deep Learning Methods for Mask Detection

In [40], a locally linear embedding convolutional neural network (LLE-CNN) was used
to detect masked faces through the recovery of missing facial cues and the suppression of
non-facial cues in the feature subspace. A new dataset named MAFA containing faces with
various orientations and occlusions was created and used for both training and testing.
The method combined two pre-trained CNNs for facial region extraction, an embedding
module for facial cue recovery and a verification module to identify facial regions and
refine their positions. Experiments were conducted on the proposed LLE-CNNs using the
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MAFA dataset, and the results show an average precision of up to 76.4% in the detection of
masked faces with facial regions occluded.

In [31], the RetinaFaceMask framework was proposed. The framework consisted of
a feature pyramid network (FPN) which fused low- and high-level information through
up-sampling and a context attention module (CAM) that combined high-level semantic
information and detected the face mask state. Moreover, a cross-class object removal
algorithm was developed to reject low-confidence and high-union-intersection predictions.
The datasets used for both training and testing were the AIZOO Face Mask Dataset [34]
and MaskedFAces for Face Mask Detection (MAFA-FMD) [22,33]. RetinaFaceMask had
a mean average precision (mAP) of 68.3% for detecting faces with correctly worn masks,
incorrectly worn masks, and no masks among the MAFA-FMD dataset.

In [21], a face mask detector that could detect multi-view faces was incorporated onto
the Jetson Nano embedded system-on-module (SoM). The detector had two main modules:
a fast face detector based on the Fast Face-CPU (FFCPU) deep learning architecture [41]
for multi-view face detection and a slim CNN architecture with an attention module for
mask/no-mask classification. The WIDER FACE dataset [42], the Simulated Masked Face
Dataset (SMFD) [43], and the LFW Dataset [35] were used for training, while the testing
was conducted on the Face Detection Data and Benchmark (FDDB) datasets [44]. The
multi-view face mask detector achieved 96.6% accuracy for the FFCPU face detector and
99.72% for the face mask classification.

Off-the-shelf object detection methods using pre-trained networks have also been used
for mask detection [22–29]. For example, in [22], the YOLOv3 object detection method
with a backbone of Darknet-53 was used to classify people wearing masks or not wearing
masks. The detection layers in YOLOv3 were adjusted for the detection of smaller faces,
and the SoftMax loss function was chosen to maximize the inter-class feature differences
and improve the computational speed by reducing the feature dimensions on detection
layers. The training was conducted on two benchmark databases: the WIDER FACE [42]
and the Celeb Faces Attributes (CelebA) [45] datasets. Tests were performed on the FDDB
dataset [44,46]. The results showed that the method performed well on small faces and that
the highest test accuracy achieved was 93.9%.

In [23], a face-mask-wearing identification method was developed that combined
image super-resolution and classification networks (SRCNets). This method had three
main steps: (1) facial detection and cropping, where all image facial areas were de-
tected through a multitask cascaded CNN [47] and then cropped; (2) an image super-
resolution (SR) network that outputted enhanced facial area images with pixel resolution of
224 × 224 pixels; and (3) a face-mask-wearing identification network which used MobileNet-
v2 for classification. The dataset used during training and evaluation was the Medical
Masks Dataset [48]. Three categories for face-mask-wearing status were identified: no face-
mask-wearing, correct face-mask-wearing, and incorrect face-mask-wearing. An accuracy
of 98.7% was achieved on the same dataset used during training.

In [24], a deep learning model based on YOLO-v2 with ResNet-50 was proposed to
detect and annotate medical face masks in 2D images. The proposed model had two stages:
feature extraction based on the ResNet-50 transfer learning model and medical face mask
detection using YOLOv2. The datasets used to train the model were the Medical Masks
Dataset [48] and the Face Mask Dataset (FMD) [49]. By introducing the mean Intersection
over Union (IoU) for the estimation of the best anchor box number, the Adam optimizer
achieved an average precision of 81% in finding and localizing medical-masked faces in
2D images.

In [25], a mask detection system was proposed that used (1) a color 2D principal
component analysis–convolutional neural network (C2D CNN) for face detection; (2) a
special convolutional architecture for mask recognition; and 3) the AlexNet architecture for
classification. The datasets used for training and testing were the Real-World Masked Face
Dataset (RMFD) [43] and Celeb Faces Attributes (CelebA) [45]. With the proposed mask
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detection system, people with masks and without masks in the datasets were successfully
classified (no accuracy results were reported).

In [26], the MobileNetV2 architecture was proposed for real-time face mask detection.
The MobileNetV2 classified human faces with and without masks. It used four public
datasets for both training and testing: Face Mask Lite Dataset [43], RMFD [43], MaskedFace-
Net [50], and Face Mask Detection [51]. The experiments compared MobileNetV2 to other
deep learning models such as ResNet-50, DenseNet, and VGG16, and the results showed
that MobileNetV2 achieved the highest accuracy of 99% in both training and testing on the
same datasets.

In [29], a deep learning model was presented that combined single-stage and two-
stage classifiers to detect whether a person was wearing a face mask or not. The backbone
of the network used a pretrained ResNet-50 classification model to extract information
from 2D images and convert them into a feature map. A training pipeline was used for
fine-tuning, and a deployment pipeline was used for real-time face detection and extraction.
An identity predictor was used to retrieve the personal identification of people without
masks. MAFA [40] and an unbiased dataset that the authors created were used for both
training and testing. The experiments compared the detection performances of ResNet-50,
AlexNet, and MobileNet. The results showed that the proposed ResNet-50 model achieved
a 98.2% accuracy for binary mask detection on the datasets.

A Face Mask and Social Distancing Detection vision system was proposed in [27].
The system used pre-trained models of DenseNet, InceptionV3, MobileNet, MobileNetV2,
ResNet-50, VGG-16, and VGG-19 for comparison purposes. The models with the highest
accuracy rates (ResNet-50, VGG-16, and VGG-19) were then applied in an embedded vision
system for testing. The dataset used for both training and validation was collected by the
authors and included 2D images of faces with or without masks. Real-time testing results
demonstrated that all the models could detect human faces and classify them successfully.
It was reported that the system performed with an accuracy of 100% and a sensitivity
of 99%.

An integrated method using stacked ResNet-50 and YOLOv5 for social distance
monitoring and face mask detection was presented in [28]. A dual shot face detector (DSFD)
was used to extract faces, and Stacked ResNet-50 was used to determine whether people
were wearing masks or not. YOLOv5 was used to detect social distancing by detecting
their positions and calculating distances using the density-based spatial clustering of
applications with the noise (DBSCAN) clustering method. A dataset for both training
and testing was collected from various sources, such as Google Images and RMFD [43].
Comparison experiments were performed with other DL methods such as Mobile Net V3,
Inception V3, and ResNet-50. The proposed method outperformed these other methods
with a testing accuracy of 84.13% using binary cross-entropy.

In [30], the automated detection of face masks and classification of mask types was
presented using thermal images. Two deep learning models were adapted for the detection
task: (1) the compact YOLOv5 “nano” model and (2) RetinaNet. A semi-supervised CNN
with a Convolutional Autoencoder was used for mask classification. The models were
trained on an extensive dataset comprising thermal images from different types of thermal
cameras, showcasing people wearing three different kinds of masks. The YOLOv5 model
had a mean average precision (mAP) higher than 97% and a precision rate of approximately
95% for the detection of face masks.

In [52], a two-stage mask detection method was proposed to monitor face mask rule
violations in images captured by indoor web cameras. In the first stage, human tracking
was conducted using DeepSORT [53] integrated with YOLOv3 [54] for real-time tracking.
A multi-task cascaded convolutional neural network (MTCNN) was used to localize facial
landmarks, focusing on the lower facial region and covering the noise, lips, and jawline
in bounding boxes. The second stage involved k-means clustering of the nose area to
classify faces as masked or unmasked. If the three largest clusters to be found fell within
the “skin” RGB range, the face was classified as unmasked. The dataset included a combi-
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nation of public face mask datasets and synthesized datasets. The method was tested on
5504 images, yielding an average accuracy of 97.13% in differentiating between masked and
unmasked faces.

In [55], a two-stage face mask detection method based on the Faster R-CNN framework
with MobileNet V2 was presented to classify face images into three categories: “with mask”,
“without mask”, or “worn incorrectly”. The method utilized ResNet-50 as a region proposal
network (RPN) to generate anchor proposals. The dataset comprised 853 images of 3 classes
(e.g., with mask, without mask, and mask worn incorrectly) from a Kaggle dataset [49].
These images underwent preprocessing, including resizing and conversion into tensors,
followed by image augmentation to enhance training accuracy. The method achieved an
overall mAP of 45% over 30 epochs in the testing phase; however, prediction results were
not reported for the three different classes.

2.3. Autonomous Mask Detection by Robots

Only a handful of mask detection methods have been developed for use by robots and
their onboard cameras [15–20].

The mobile rover Thor had a 2D camera that provided videos for mask detection [15].
It used an image generator (IG) that collected videos from various spaces, a human subject
detector (HSD) that detected the presence of human subjects, a face detector and extractor
(FD), and a mask detector (MD) that classified the detected face as masked or unmasked. A
mask detection approach was used, consisting of (1) a deep learning model that integrated
ResNet-50 with FPN for person detection, (2) multi-task convolutional neural networks
(MT-CNN) for face detection and extraction, and (3) a CNN for masked and unmasked
classification. The datasets used for training included the Microsoft Common Objects in
Context (COCO) [56], CelebA [45], WIDER FACE [42], and Custom Mask Community
Dataset [57] datasets. The mask detection system was implemented on the robot, and
videos were collected by the robot from public spaces. Evaluation took place using these
videos. The reported accuracy for classifying faces with/without masks was 81.31%.

In [16], a mask detection system that used a deep learning method with an improved
YOLOv3 algorithm was developed for the small humanoid robot NAO. In the proposed
method, an improved Darknet-53 with an EfficientNet attention mechanism (to increase
image resolution) was used as the backbone. Distance-IoU (DioU) [58] was used to evaluate
the normalized distance between the predicted bounding box and the true box. The training
and validation dataset consisted of images from the internet and the authors’ own dataset
of masked and unmasked faces. The NAO robot captured images of people front-facing its
2D camera and then provided these images to the trained model to obtain the classification
prediction (face without or with mask). The results showed that the mAP was 86.92%
accurate on the validation set.

In [17], the NAO robot was used to promote face mask usage in public spaces during
the pandemic. The robot used an external webcam and a single shot detector (SSD) with a
ResNet-10 architecture as its backbone for mask detection. An experiment was conducted
with the robot providing verbal and visual feedback based on mask detection results. Green
LEDs and positive messages indicated correct usage, while red LEDs and warnings were
used for incorrect or no mask usage. The results from the study showed that the detection
had a 95% accuracy rate and that 87.5% of participants responded positively to the robot’s
interactions, highlighting the effectiveness of social robots in encouraging health and
safety measures.

In [18], a mask detection feature was added to the Pepper robot. Pepper could
simultaneously scan five faces as a group to determine whether people were wearing
masks or not. The mask detection method was based on an SSD structure for face detection
and the four deep learning frameworks of PyTorch, TensorFlow, Keras, and Caffe for mask
and non-mask classification [59]. The datasets used for training were WIDER FACE and
MAFA. No results were reported.
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In [19], a deep learning mask detection method that identified people without masks
and warned them of the probability of receiving a fine was incorporated into an outdoor
security robot. The security robot had six cameras that provided a 360-degree view which
could detect people without masks at distances of 4–24 feet. The robot took 2D images of
people without masks and sent them to a cloud server for personal identification.

In [20], a custom autonomous medical assistant robot was developed to assist health-
care facilities in managing COVID-19 preventive measures. The robot used a 2D camera
with a ConvNet model for face mask detection. The ConvNet model was trained on two
image datasets containing people with and without masks. An experiment was conducted
with the robot autonomously navigating healthcare facilities, monitoring mask usage, and
promoting social distancing. While the robot’s operational efficacy in detecting masks and
encouraging social distancing was affirmed, the study did not provide quantitative results.

2.4. Summary of Limitations

From the aforementioned literature review, a number of existing mask detection meth-
ods have been developed, which have only provided binary classification (mask/no mask)
using either 2D RGB images [12–16,18,19,52,55], thermal images [30], video streams [15],
or real-time data from webcams [13,16,19,28]. However, there is limited research deter-
mining if people are properly covering their noses, mouths, and chins with well-fitted
masks [23,31], 55]. Furthermore, [55] did not report separate results for such a class [31].
Moreover, there are only a few methods that deal with real-time autonomous image captur-
ing, pre-processing, and detection with robots [15,16,18,19] and the use of low-resolution
images [15,16,18,19]. Namely, the majority of DL methods have only been tested on
datasets that include images that have already been cropped and are of front-facing people
(i.e., directly facing the camera). These datasets do not reflect real-world scenes, which
can have different/changing lighting conditions, varying face poses, and face occlusions
during capturing.

Many mask detection methods use high-resolution images while training and test-
ing their models; however, robots have cameras that provide lower-resolution images
(e.g., Pepper’s onboard camera has a 640 × 480 pixel image resolution with a maximum
signal-to-noise ratio of 6 dB [60]), which may cause detection and classification errors.
To date, to the authors’ knowledge, there are only three mask detection systems inte-
grated into real robots; however, they only provide binary mask classification in real-world
settings [15,17,20].

In this paper, we propose a novel autonomous mask detection and classification system
for a socially assistive robot that uses lower-resolution images to detect in real time whether
people are wearing masks properly. The robot is able to detect and classify non-binary
mask classification categories. Our system consists of two deep learning classifiers. The
first is used to classify people with/without face masks, and the second is used to classify
correctly/incorrectly worn face masks. Both classifiers use our new extended ResNet-50
structure that includes additional layers to improve its accuracy in real-world conditions
(varying lighting, occlusion scenarios, and face poses) and to minimize overfitting to the
training data. The extended ResNet-50 structure takes advantage of transfer learning by
using pre-trained ResNet-50 weights for training and classification.

3. Autonomous Mask Detection and Classification Methodology

The overall structure of the proposed Robust Face Mask Detection and Classification
system using our novel extended ResNet-50 structure is presented in Figure 1. It contains
three main modules: (1) image pre-processing, (2) face detection, and (3) classification
(consisting of Classifier 1 and Classifier 2). Raw images are pre-processed into square
image inputs, where human faces are located at the center of the images and sent to the
Face Detection module. Facial features are identified and provided to the classification
module. The output of the classification module is the class of the image of interest, either:
(1) face with no mask, (2) face with correctly worn mask, and (3) face with incorrectly worn
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mask/face covered by other means. The main modules of our architecture are discussed in
detail below.

Computers 2024, 13, x FOR PEER REVIEW 7 of 20 
 

image inputs, where human faces are located at the center of the images and sent to the 
Face Detection module. Facial features are identified and provided to the classification 
module. The output of the classification module is the class of the image of interest, either: 
(1) face with no mask, (2) face with correctly worn mask, and (3) face with incorrectly 
worn mask/face covered by other means. The main modules of our architecture are dis-
cussed in detail below. 

 
Figure 1. Proposed mask detection and classification system. 

3.1. Pre-Processing Module 
The purpose of the image pre-processing module is to resize the obtained w × h input 

rectangular images. When w is greater than h, the image is resized into a square h × h 
image, where w is the width and h is the height of the image. Raw images are segmented 
to ensure that the person is located in the center of an image using contour detection of 
the head and shoulders. Specifically, an OpenCV-based contour detection method utiliz-
ing the Haar Cascade classifier was used for head and shoulder detection [61]. Once the 
head and shoulder contours are detected, the image is cropped and adjusted to center these 
contours. 

3.2. Face Detection Module 
The multitask cascaded convolutional neural network for joint face detection and 

alignment is used to obtain facial areas under various conditions [47]. Several potential 
candidate windows of the positions of five facial landmarks, i.e., two eyes, nose, and the 
two corners of the mouth, are generated, and the highly overlapped candidates are then 
merged using non-maximum suppression (NMS). The output is a bounding box of the face 
and the positions of the five facial landmarks. The images are then cropped in size to 224 × 224 
pixels. 

3.3. Classification Module 
We developed an extended ResNet-50 structure for both of our classification models 

(Classifier 1 and Classifier 2) in order to detect accurate facial features for extraction. As 
there are subtle differences between the facial features when people are correctly wearing 
masks versus incorrectly wearing masks, or when covering the mouth and nose by other 
means (e.g., a hand or hair), the feature extraction network’s depth is important [62]. Each 
classifier consists of an extended ResNet-50 two-stage CNN. We use two-stage CNNs 
herein as they have been shown to achieve higher detection and classification accuracy 

Figure 1. Proposed mask detection and classification system.

3.1. Pre-Processing Module

The purpose of the image pre-processing module is to resize the obtained w × h input
rectangular images. When w is greater than h, the image is resized into a square h × h
image, where w is the width and h is the height of the image. Raw images are segmented to
ensure that the person is located in the center of an image using contour detection of the
head and shoulders. Specifically, an OpenCV-based contour detection method utilizing the
Haar Cascade classifier was used for head and shoulder detection [61]. Once the head and
shoulder contours are detected, the image is cropped and adjusted to center these contours.

3.2. Face Detection Module

The multitask cascaded convolutional neural network for joint face detection and
alignment is used to obtain facial areas under various conditions [47]. Several potential
candidate windows of the positions of five facial landmarks, i.e., two eyes, nose, and the
two corners of the mouth, are generated, and the highly overlapped candidates are then
merged using non-maximum suppression (NMS). The output is a bounding box of the
face and the positions of the five facial landmarks. The images are then cropped in size to
224 × 224 pixels.

3.3. Classification Module

We developed an extended ResNet-50 structure for both of our classification models
(Classifier 1 and Classifier 2) in order to detect accurate facial features for extraction. As
there are subtle differences between the facial features when people are correctly wearing
masks versus incorrectly wearing masks, or when covering the mouth and nose by other
means (e.g., a hand or hair), the feature extraction network’s depth is important [62]. Each
classifier consists of an extended ResNet-50 two-stage CNN. We use two-stage CNNs herein
as they have been shown to achieve higher detection and classification accuracy compared
to single-stage CNNs [63], as well as being able to incorporate robust feature extraction
when subtle variations exist [64].

ResNet-50 is a 50-layer convolutional neural network with a 7 × 7 input layer followed
by a 3 × 3 MaxPool layer, 4 stages of various convolutional layers, and a 1 Average Pool
layer [65]. In general, ResNet-50 has been shown to have the highest accuracy among the
deep CNN models, including InceptionV3, MobileNetV3, VGG-16, and VGG-19, which
have all been trained on the ImageNet database [66]. The ResNet50 ImageNet pre-trained



Computers 2024, 13, 7 8 of 20

weights are used for our deep CNN models. Our proposed extended ResNet-50 architecture
is shown in Figure 2. The corresponding convolutional layers with their kernel sizes and
output sizes are also presented. We added a flattening layer to transition from the ResNet
model to a fully connected layer. This flattening layer converts all the multi-dimensional
input tensors into a single, long, continuous, linear vector. Then, a fully connected dense
layer with a rectified linear unit (ReLU) [67] activation function is used to classify the
extracted features from the connected neurons. The dense layer performs matrix vector
multiplication, while the ReLU activation, f (x) = argmax(0, x), is a piecewise, non-linear
activation function that outputs x if positive or zero otherwise [67]. ReLU is used since the
neurons will only be deactivated if the output of the linear transformation is less than 0,
which helps to prevent exponential growth in computation. ReLU also has fewer vanishing
gradient problems in the hidden layers of the structure, which are between the input and
output layer in the figure. A dropout layer is incorporated after the fully connected dense
layer to reduce overfitting [68]. Another dense layer with SoftMax classifier [69] is used
for classification. The softmax function takes the input vector and normalizes it into a
probability distribution; thus, it outputs the probabilities of the mask classes.
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Figure 2. The proposed architecture of extended ResNet-50 Model.

We set all the layers in the ResNet-50 as non-trainable layers to take advantage of the
pre-trained weights. Table 1 presents the number of parameters used for classification in
our architecture. Namely, the total number of parameters is 24,637,826, while the number
of trainable parameters in the extended layers is 1,050,114. The numbers of parameters for
Classifier 1 and Classifier 2 are the same, as both classifiers use the same number of training
images. If the output probability of the softmax function in Classifier 1 has classified an
image as a face with no mask, the model will (1) output the classification result as “No
Mask”, and the classification process stops. If it has classified the image as “face with a
mask,” Classifier 2 is initiated to determine whether the mask is: (1) correctly worn (Correct)
or (2) incorrectly worn/occluded by other means (Incorrect).

Table 1. Classification module parameter summary for both Classifier 1 and Classifier 2.

Layers Output Shape Parameter Count

ResNet-50 (None, 2048) 23,587,712
Flatten_1 (None, 2048) 0
Dense_2 (None, 512) 1,049,088

Dropout_1 (None, 512) 0
Dense_3 (None, 2) 1026

Total parameters: 24,637,826
Trainable parameters:1,050,114
Trainable parameters:1,050,114
Non-trainable parameters: 23,587,712
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4. Training

The extended ResNET models for Classifier 1 and Classifier 2 were trained through
Google Colab using GPUtil-1.4.0. Both Classifier 1 and Classifier 2 were developed in
Python 3.9.

4.1. Training Dataset

Several public datasets were combined for the training of our proposed mask detection
and classification system. These included: (1) MaskedFace-Net [50], (2) MAsked FAces
(MAFA) dataset [40], and (3) Celeb Faces Attributes (CelebA) [45]. Example images are
shown in Figure 3.
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from CelebA [45]. Images are from the public domain or permissions have been obtained.

MaskedFace-Net [50]: The MaskedFace-Net dataset [50] has 133,783 human face
images, including 67,049 images of correctly masked faces (CMFD) and 66,734 images
with incorrectly masked faces (IMFD). The images in this dataset have resolutions of
1024 × 1024 pixels and the majority of them are front-facing. We used 3000 images
from CMFD and 3000 images from IMFD for the Classifier 1 training dataset. Another
6000 images from CMFD, as well as 4000 images of which 2000 were of masks covering
only the mouth and chin and 2000 were of masks covering only the nose and chin, were
selected from IMFD for the Classifier 2 training dataset.

MAsked FAces (MAFA) dataset [40]: The MAFA dataset [40] consists of 30,811 images
of occluded faces, including occlusion by arms, hair, sunglasses, etc. This dataset has
images with various resolutions, ranging from 188 × 188 pixels to 3500 × 2329 pixels. The
majority of people are front-facing or slightly turned to the side. Two thousand images of
people under various occlusions were selected for the incorrectly worn mask/face covered
by other means class for the Classifier 2 training dataset.

CelebA dataset [45]: The CelebA dataset [45] has 202,599 facial images of celebrities
under various situations, including unmasked faces that are mostly front-facing or slightly
turned to the side. Six thousand images were selected as the no-mask class for the Clas-
sifier 1 training dataset from CelebA, with various resolutions from 178 × 218 pixels to
2560 × 1440 pixels.
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We used a total of 24,000 images for training. There were 6000 images for faces with
masks and 6000 images for faces with no masks in the training dataset for Classifier 1.
For Classifier 2, there were 6000 correctly masked facial images, 2000 images occluded by
other means, 2000 incorrectly masked faces with masks covering only the mouth and chin,
and 2000 incorrectly masked faces with masks covering only the nose and chin to prevent
dataset imbalance. A 70% and 30% training and validation split was used.

4.2. Training Procedure

Classifier 1 was trained to distinguish between images of faces with masks and faces
without masks. For this, the binary cross-entropy loss function [70] was utilized to differen-
tiate the predicted probabilities for these two categories against their true values. Training
involved a batch size of 32 and a learning rate of 0.0001 over 250 epochs. An early stopping
criterion was implemented to halt training if the validation loss remained constant for
25 epochs. Training for Classifier 1 took approximately 64.96 h. Classifier 2 was then trained
to further categorize images identified as ‘face with a mask’ by Classifier 1. This classifier
predicted whether the mask was worn correctly or incorrectly/obscured. The same training
parameters and loss function used for Classifier 1 were applied to Classifier 2, ensuring
consistency in the learning approach. Classifier 2 underwent training for approximately
16.24 h.

Both classifiers shared the same number of parameters, as they were trained on
identical sets of images. The training process was conducted on a computer with an x64-
based processor, 11th Gen Intel Core (TM) i7-1185G7, 16 GB RAM, and a certified OpenGL
graphics card operating on Ubuntu 16.04 (Linux) and Python 2.7 with the Python SDK
(Naoqi package 2.5.7.1) [71,72].

4.3. Classifier 1: Training and Validation Results

The loss and accuracy for Classifier 1 during both the training and validation phases
are presented in Figure 4a,b. Classifier 1 showed convergence in its loss function, with the
final training loss at 0.1 and the validation loss at 0.05 after 200 epochs. Classifier 1 also
achieved a training accuracy of 97.80% and a validation accuracy of 97.3%.
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4.4. Classifier 2: Training and Validation Results

Figure 5a,b present the loss and accuracy for Classifier 2. Classifier 2 achieved a final
training loss of 0.01 and a validation loss of 0.15 after 50 epochs. Furthermore, Classifier 2
achieved a training accuracy of 99.62% and a validation accuracy of 95.93%.
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5. Comparison Study

We conducted a feasibility comparison study between our extended ResNet-50 classi-
fiers and the standard ResNet-50 classifier [66] for mask classification. Both methods were
trained using the procedure presented in Section 4. Testing was conducted on a new unseen
dataset consisting of a total of 128 images (4032 × 3024 pixel resolution) collected from
members in our lab under different mask-wearing scenarios, which included faces with
no masks, faces with correctly worn masks, and faces with incorrectly worn masks/faces
covered by other means. Example images are shown in Figure 6.
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chin only).

Table 2 presents the test accuracies of both classifiers for our extended ResNet-50 and
the ResNet-50 methods. As can be seen in the table, the testing accuracies of 97.66% and
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95.79% for Classifier 1 and Classifier 2 were higher for our extended ResNet-50 method
than the standard ResNet-50 method. In particular, our Classifier 2 showed a classification
improvement of 12.3% over ResNet-50 in classifying mask wearing.

Table 2. Testing accuracy comparison for ResNet-50 and our Extended ResNet-50.

Method Classifier 1 Classifier 2

ResNet-50 95.31% 85.26%
Extended ResNet-50 97.66% 95.79%

6. Robot Experiments

We conducted mask detection experiments on the Pepper robot from Softbank Robotics
to investigate the performance of our overall proposed autonomous detection and classifi-
cation system under real-world conditions.

6.1. Robot Setup

Pepper has an onboard 2D camera located on its forehead with a resolution of
640 × 480 pixels. The camera was used to capture the images used by our mask de-
tection and classification system via the getImageRemote function [73] and the Image
module [74]. The images were sent (through a Wi-Fi channel used for the communication
between the computer and the robot) to the same computer used for training to perform
the entire classification process in real time.

6.2. Experiment Procedure

In order to investigate the robustness of our mask detection and classification system,
the Pepper robot was situated for a day in front of our lab during the COVID pandemic.
Twenty people (university students and staff) at various times approached and stood
in front of Pepper, as shown in Figure 7. Various conditions were tested, including the
following scenarios:

1. Mask covering parts of the nose, mouth, and chin;
2. Long hair partially covering the face or mask;
3. Hand covering the face or mask;
4. Different head rotations with respect to the robot (looking down, up, or to the sides);
5. Different mask colors and shapes;
6. Mask covering the forehead;
7. No mask worn;
8. Different lighting conditions (dim to bright lighting).

A finite-state machine was used to determine the behaviors of the robot. When the
person stood in front of the robot, the robot would greet them, ask them to sanitize their
hands, and then let them know it was checking for a face mask and prompt them to look
at its camera. Then, it would state the result of its classification and either say good-bye
(in the case of a mask worn correctly) or provide further instructions such as (1) to visit
the front desk (in the case of no mask) or (2) to put on their mask properly (in the case
of a mask worm incorrectly/face covered by other means). A video of our experimental
procedure highlighting examples for the three mask-wearing classes is presented on our
YouTube channel (https://www.youtube.com/watch?v=zcIb9sM_O10 (accessed on 29
September 2022)).

https://www.youtube.com/watch?v=zcIb9sM_O10
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6.3. Results

One hundred and twenty-six images were taken by Pepper and classified by our mask
detection and classification system. The classification accuracy, precision, recall, and F1
scores for both classifiers are presented in Table 3. Example images and their classification
labels are also shown in Figure 8. The average processing time for mask classification by
the robot was 0.11 s.

Table 3. Mask classification results for robot experiment.

Classifier 1 Classifier 2

Accuracy 91.27% 86.27%
Precision 95.05% 75.47%

Recall 94.12% 97.56%
F1 score 94.58% 85.11%

In general, the results show high accuracy, precision, recall, and F1 scores for both
classifiers in terms of varying head poses and lighting conditions in low-resolution images
taken by the robot. In Figure 8, it can be seen that our classifiers were able to identify the
three mask classes for these conditions. For Classifier 1, when the mask covered only the
chin, the classifier was able to identify the correctly worn mask class to be sent to Classifier
2, except when the lighting was too dim, at which point it was classified as no mask. This
difference can be seen in the two images presented in Figure 8h, column 3, where for
the second image, the lighting is visibly lower. In general, Classifier 2 was able to detect
incorrectly worn masks as shown in Figure 8a,d–f. There were some conditions when the
face was covered by other means and Classifier 2 was not able to detect the correct class.
For example, in Figure 8b, column 2, where long hair was used to cover the nose, mouth,
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and chin region of the face; the dark hair fully covered these features similarly to how a
mask would. However, as can be seen in the rest of Figure 8b, the classifier was able to
detect when there was a mask partially occluded by hair (column 1); when just hair was
covering the mouth and chin, but not the nose (column 3); or when hair was covering
the face at a descending angle, differently than a mask with symmetric ear loops would
(column 4).
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We achieved a classification accuracy of 91.27% for Classifier 1 and 86.27% for Clas-
sifier 2, respectively. The overall accuracy for the three mask classes was 84.13%. Our
experimental results are higher than the evaluation accuracy of 81.31% achieved for the
only reported robot-based binary mask classification system [15].

6.4. Comparison of Single-Step and Two-Step Methods

We further compared our two-step, extended mask detection and classification ResNet-
50 method (Classifiers 1 and 2) with other classifiers to highlight its performance during real-
time robot deployment. Namely, we compared our method with (1) a method consisting of
only a single extended ResNet-50 classifier and (2) the Super Resolution and Classification
Network (SRCNet) method in [23], which is based on MobileNet-v2. For both these
methods, a single classifier was used to determine the aforementioned three classes. These
methods were trained using the datasets and training procedure in Section 4. Testing was
performed using the same 126 images obtained by the Pepper robot. Accuracy, precision,
recall, and F1 scores for all three methods are presented in Table 4. Figure 9 shows the
confusion matrix for these methods.
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Table 4. Accuracy, precision, recall, and F1 scores for: a single extended ResNet-50 classifier, our
two-step extended ResNet-50 method, and SRCNet.

Single Extended
ResNet50 Classifier

Our Two-Step Extended
ResNet50 Method
(Classifier 1 and 2)

SRCNet

Accuracy 77.78% 84.13% 65.87%
Precision 76.32% 82.23% 65.95%

Recall 74.58% 83.96% 64.44%
F1 score 75.27% 82.75% 64.15%
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Our two-step extended ResNet-50 method outperformed both methods on all four
metrics for the classification of the three mask classes. The main difference in classification
between all three methods was for the incorrectly-worn-mask class, where the single
extended ResNet-50 classifier and SRCNet both had higher instances of wrongly predicting
this class as the no-mask class or correctly-worn-mask class. Our method was more robust
for this type of mask class.

7. Conclusions

In this paper, we present a novel, two-step, deep learning mask detection and clas-
sification system for socially assistive robots. The deep learning structure is based on
our unique extended ResNet-50 structure for real-time classification of three classes: face
with no mask, face with correctly worn mask, and face with incorrectly worn mask/face
covered by other means. We obtained an overall training and validation accuracy of 97.8%
and 97.3%, and a testing accuracy of 97.66%, on an unseen dataset under varying face
and lighting conditions. The trained deep CNN models were integrated using the Pepper
robot for real-world experiments with people under varying conditions, including different
lighting situations, head poses, and face occlusions. Experimental results using the robot’s
onboard low-resolution camera showed a classification accuracy of 84.13%, outperforming
single-classifier methods. The presented results are promising, as our system outperformed
existing approaches. Our future work will consist of further testing and analysis, such
as performing multiple training repetitions and optimization over a range of epochs. We
will deploy the robot in larger public places for autonomous mask detection of crowds of
people. This includes entrances at our university, local hospitals, and healthcare centers.
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