
Citation: Arshed, M.A.; Mumtaz, S.;

Ibrahim, M.; Dewi, C.; Tanveer, M.;

Ahmed, S. Multiclass AI-Generated

Deepfake Face Detection Using

Patch-Wise Deep Learning Model.

Computers 2024, 13, 31. https://

doi.org/10.3390/computers13010031

Academic Editor: Lucia Maddalena

Received: 29 November 2023

Revised: 17 January 2024

Accepted: 18 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Multiclass AI-Generated Deepfake Face Detection Using
Patch-Wise Deep Learning Model
Muhammad Asad Arshed 1,*, Shahzad Mumtaz 2 , Muhammad Ibrahim 2 , Christine Dewi 3,* ,
Muhammad Tanveer 1 and Saeed Ahmed 1,4

1 School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan;
muhammad_tanveer@umt.edu.pk (M.T.); saeed.ahmed@med.lu.se (S.A.)

2 Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
shahzad.mumtaz@iub.edu.pk (S.M.); muhammad.ibrahim@iub.edu.pk (M.I.)

3 Department of Information Technology, Satya Wacana Christian University, Salatiga 50715, Indonesia
4 Department of Experimental Medical Science, Biomedical Center (BMC), Lund University,

22184 Lund, Sweden
* Correspondence: muahmmadasadarshed@gmail.com (M.A.A.); christine.dewi@uksw.edu (C.D.)

Abstract: In response to the rapid advancements in facial manipulation technologies, particularly
facilitated by Generative Adversarial Networks (GANs) and Stable Diffusion-based methods, this
paper explores the critical issue of deepfake content creation. The increasing accessibility of these tools
necessitates robust detection methods to curb potential misuse. In this context, this paper investigates
the potential of Vision Transformers (ViTs) for effective deepfake image detection, leveraging their
capacity to extract global features. Objective: The primary goal of this study is to assess the viability of
ViTs in detecting multiclass deepfake images compared to traditional Convolutional Neural Network
(CNN)-based models. By framing the deepfake problem as a multiclass task, this research introduces a
novel approach, considering the challenges posed by Stable Diffusion and StyleGAN2. The objective
is to enhance understanding and efficacy in detecting manipulated content within a multiclass
context. Novelty: This research distinguishes itself by approaching the deepfake detection problem
as a multiclass task, introducing new challenges associated with Stable Diffusion and StyleGAN2. The
study pioneers the exploration of ViTs in this domain, emphasizing their potential to extract global
features for enhanced detection accuracy. The novelty lies in addressing the evolving landscape of
deepfake creation and manipulation. Results and Conclusion: Through extensive experiments, the
proposed method exhibits high effectiveness, achieving impressive detection accuracy, precision,
and recall, and an F1 rate of 99.90% on a multiclass-prepared dataset. The results underscore the
significant potential of ViTs in contributing to a more secure digital landscape by robustly addressing
the challenges posed by deepfake content, particularly in the presence of Stable Diffusion and
StyleGAN2. The proposed model outperformed when compared with state-of-the-art CNN-based
models, i.e., ResNet-50 and VGG-16.

Keywords: deep learning; image processing; CNN; deepfake identification; artificial intelligence;
stable diffusion; StyleGAN2; vision transformer; global feature extraction; patches

1. Introduction

Over the past decade, social media content, including photos and videos, has seen a
remarkable surge driven by the widespread availability of affordable devices like smart-
phones, cameras, and computers. The proliferation of social media platforms has facilitated
the swift sharing of such content, resulting in exponential growth of online material and
easy accessibility for users [1].

Simultaneously, there have been significant advancements in machine learning (ML)
and deep learning (DL) algorithms, which are highly efficient in manipulating audiovisual
content [1]. Unfortunately, this technological progress has also created and disseminated

Computers 2024, 13, 31. https://doi.org/10.3390/computers13010031 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13010031
https://doi.org/10.3390/computers13010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-2606-2405
https://orcid.org/0000-0001-5088-9571
https://orcid.org/0000-0002-1284-234X
https://orcid.org/0000-0001-6910-7613
https://doi.org/10.3390/computers13010031
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13010031?type=check_update&version=1


Computers 2024, 13, 31 2 of 18

deepfakes, i.e., synthetic audio and video content generated using AI algorithms [2,3]. The
rapid development of deepfake technology poses a serious threat [4] as it can be utilized to
spread disinformation globally and potentially sway public opinion. In instances such as
election manipulation or character defamation, the ease of spreading false information can
be exploited.

As deepfake creation becomes more sophisticated, the authentication and verification
of video evidence in legal disputes and criminal court cases could become increasingly
challenging [5]. Ensuring the integrity and reliability of video submissions as evidence will
demand significant scrutiny, particularly in the face of advanced deepfake techniques [6].
Moreover, the exponential growth of social media content and the evolution of deepfake
technology raises concerns about the potential misuse and manipulation of information,
demanding further attention from researchers, policymakers, and the technology commu-
nity [7]. The production of high-resolution deepfake images relies on intricate algorithms
commonly based on DL models like GANs. These complex DL techniques are crucial in
creating realistic and convincing synthetic images [8].

The proliferation of deepfake technology gives rise to numerous concerns and potential
dangers across various industries [9]. One significant area impacted is cybersecurity [10],
where the ability to manipulate facial photos convincingly raises alarms about identity theft,
deception, and unauthorized access to sensitive information. Moreover, the widespread
use of deepfakes poses a substantial risk to public trust, as malicious individuals can
exploit this technology to create deceitful visual cues, propagate misinformation, or tarnish
the reputations of others [11]. Due to these issues, researchers and academics have been
focusing on devising methods to detect and mitigate the adverse effects of deepfakes. By
developing advanced approaches, they aim to safeguard individuals and organizations
from the potential harms posed by this evolving technology [12]. This involves harnessing
the progress made in computer vision, machine learning, and forensic analysis to detect
crucial indicators of image manipulation and effectively differentiate between authentic
and manipulated facial images [13].

Various approaches have been put forward to detect deepfakes, and a significant
portion relies on deep learning techniques [14]. The United States Defense Advanced
Research Projects Agency (DARPA) has initiated a media forensic research project to
develop effective methods for detecting fake media [15]. This endeavor reflects the growing
importance of addressing the challenges posed by deepfake technology in safeguarding
the authenticity and credibility of digital media content [15]. Additionally, Facebook, in
collaboration with Microsoft, has introduced an AI-based deepfake identification challenge.
This joint effort signifies the industry’s commitment to combatting the risks associated with
deepfake technology by fostering the development of advanced AI solutions for detecting
and countering deceptive media content [16].

Recently, numerous prominent techniques have been put forward for identifying fake
images. However, these models often exhibit limited generalization capability, leading
to a drop in performance when faced with the latest deepfake or manipulation methods.
Akhtar et al. [17] considered Convolutional Neural Network (CNN)-based SqueezeNet [18],
VGG16 [19], ResNet [20], DenseNet [21], and GoogleNet [22] in their study for the identifi-
cation of face manipulation. The models demonstrated impressive accuracy when tested
on the same manipulation type they were trained on. However, their performance declined
when confronted with novel manipulations not part of their training dataset. To address the
issues mentioned above, this study adopts the Vision Transformer (ViT) model. The input
image is divided into blocks during the general training process, treating each block as a
separate entity. The ViT employs self-attention modules to understand the relationships
between these embedded patches. The ViT has demonstrated exceptional performance in
standard classification tasks by emphasizing important features while reducing the impact
of noisy ones through its self-attention mechanism. Inspired by this perspective, this study
proposes a deepfake image identification network based on the ViT. The experimental
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results indicate that the proposed network achieves satisfactory outcomes in deepfake
image detection. This research contributes to the field in the following ways:

• Our primary contribution lies in being the first to address this problem as a multi-
classification task. No prior work has tackled this specific aspect, and our study
represents a pioneering effort in this area. By approaching deepfake detection through
the lens of multi-classification, we aim to enhance the accuracy and efficacy of identi-
fying and categorizing deepfake content, thereby advancing the field’s understanding
and capabilities in combating this evolving challenge.

• We have compiled and curated our dataset specifically for multiclass deepfake identi-
fication. This dataset is carefully designed to facilitate the training and evaluation of
our deepfake detection model, allowing us to explore the complexities of multiclass
classification and improve the accuracy of deepfake identification.

• The proposed fine-tuned ViT model exhibits superior performance to state-of-the-art
deepfake identification models.

• Following an extensive analysis, our research firmly establishes the remarkable robust-
ness and generalizability of the proposed method, surpassing numerous state-of-the-
art techniques. The findings validate the effectiveness and reliability of our approach
in the field of deepfake detection.

The remainder of this paper is divided as follows. Section 2 provides the survey’s
existing methods, emphasizing the role of the ViT. Section 3 outlines the methodology
of the ViT’s application, while the experimental results showcase its effectiveness. The
discussion interprets findings and outlines future implications for multimedia forensics in
Section 4, and Section 5 provides the conclusion of this study.

2. Related Works

The proliferation of deepfake technology has ushered in a new era of challenges in the
realm of multimedia forensics and information veracity. Prior research has underscored the
need for innovative methods to detect and combat the manipulation of digital content [23].
Early efforts in deepfake detection centered around traditional signal processing and image
analysis techniques. Researchers leveraged facial landmarks, inconsistencies in lighting,
and unnatural facial movements as indicators of potential manipulation. However, the
rapid advancement of GANs led to the creation of more convincing and challenging-
to-detect deepfakes, necessitating a shift towards more sophisticated detection methods.
Akhtar and Dasgupta [24] investigated the feasibility of utilizing local feature descriptors to
recognize manipulated faces. Their study presented a comparative experimental analysis of
ten local feature descriptors, employing the ‘DeepfakeTIMIT’ database as a testing ground.

Bekci et al. [25] presented a deepfake detection system that leverages metric learning
and steganalysis-rich models to enhance performance against unseen data and manipula-
tions. To evaluate the effectiveness of their approach, an empirical analysis was conducted
using openly accessible datasets, including FaceForensics++, DeepFakeTIMIT, and CelebDF.
The suggested framework demonstrated significant accuracy improvements ranging from
5% to 15% when faced with concealed modifications. Li et al. [26] investigated the differ-
ences in eye-blinking patterns between deepfake videos and those displayed by genuine
human subjects. Based on their observations, they developed a novel eye-blinking detection
technique tailored to identify deepfake videos specifically.

In their study, Nguyen et al. [27] used the eyebrow region as a set of features to identify
deepfake videos. They applied four deep learning methods—LightCNN, Resnet, DenseNet,
and SqueezeNet—for this purpose. The UADFV and Celeb-DF datasets produced the
highest AUC (Area Under Curve) values of 0.984 and 0.712, respectively.

Patel et al. [28] introduced Trans-DF, a deepfake detection method relying on random
forests. The Trans-DF model demonstrated impressive detection accuracy, achieving a
high score of 0.902, highlighting its effectiveness in identifying deepfake videos. Another
approach was presented by Yang and colleagues, utilizing SVM classifiers to differentiate
between deepfake images and videos. Their method capitalized on variations in head poses
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as essential features for discrimination. Through the implementation of this technique,
they created a system with a noteworthy AUROC score of 0.890, effectively detecting and
distinguishing deepfake content.

Ciftci et al. [29] presented a pioneering technique to trace the origins of deepfake
content by scrutinizing biological cues within residuals. This groundbreaking study marked
the inaugural application of biological indicators in the detection of deepfake sources.
The researchers performed experimental assessments on the Face Forensics++ dataset,
incorporating numerous ablation tests to affirm the validity of their method. Notably, they
attained a remarkable accuracy rate of 93.39% in source identification across four distinct
deepfake generators. These results emphasize the efficacy of their proposed approach and
its promising ability to accurately trace the roots of deepfake content.

In 2022, Yang et al. [30] introduced a deepfake detection model named MSTA_Net,
leveraging machine learning techniques. This model specifically examined the texture
properties of an image to discern abnormalities indicative of deepfake alterations. Unlike
other approaches that focused solely on facial regions, the MSTA_Net model considered
the entire image. By establishing connections between manipulated and unmanipulated
areas within the image, the model identified irregularities in texture and signaling vari-
ations as potentially fake. Conversely, when no irregularities were detected, the image
received a non-fake label, suggesting a higher likelihood of authenticity. Their proposed
model facilitated the identification of genuine and manipulated images based on their
overall texture characteristics. In recent studies, the prominence of multi-attentional and
transformer models has grown significantly in the area of deepfake detection [31]. Overall,
the multi-modal, multi-scale transformer model presented by Wang et al. [32] offers a
promising approach to deepfake detection. By enabling the analysis of image patches
at different spatial levels and utilizing multiple modalities, the model aims to improve
accuracy and robustness in identifying deepfake content.

CNNs have demonstrated remarkable efficacy in detecting deepfake content, under-
scoring their importance in this field. Despite their proficiency in extracting features from
small objects, CNNs may encounter challenges in precisely identifying key regions within
an image. Leveraging a ViT model for deepfake identification presents an intriguing and
promising alternative. ViTs were originally introduced for image classification tasks and
have demonstrated strong performance on various computer vision benchmarks [33]. There
are many reasons to choose ViTs for this study, of which the main ones are listed below.

• Attention Mechanism: ViT models utilize self-attention mechanisms, which allow
them to capture long-range dependencies within an image. This is crucial for detecting
subtle inconsistencies and artifacts that might be present in deepfake images. Deepfake
generation often involves stitching or blending different parts of images, and attention
mechanisms can help identify these anomalies.

• Global Context: Classic CNNs are great at pulling out details from specific areas,
whereas ViT models take in the complete image as a sequence of patches, allowing
them to grasp the global context. This difference can be beneficial for deepfake
detection, as it lets the model scrutinize the overall structure and consistency of
an image.

• Robustness to Manipulations: ViT models might exhibit increased robustness to
common manipulation techniques used in deepfake generation. Their attention mech-
anisms can potentially make them more resistant to simple modifications like noise
addition or small alterations in pixel values.

• Interpretable Attention Maps: ViT models generate attention maps that indicate
which parts of an image are considered the most important for making predictions.
These maps could provide insights into how the model distinguishes between real
and deepfake images, aiding in understanding and improving the model’s decision-
making process.
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3. Proposed Methodology

This section outlines and presents the methodologies utilized and proposed to identify
fake images accurately. These methods are carefully designed to enhance the precision and
effectiveness of detecting and distinguishing fake content from genuine ones.

3.1. Dataset

For our experiment, we utilized a dataset sourced from Kaggle [34], an online source [35],
Stable Diffusion [36], and the StyleGAN2 encoding of Stable Diffusion [37]. We used the
free version of TPU (Tensor Processing Unit) that is provided by Google Colab to prepare
the dataset as well as for research experiments.

1. Real Images: We considered Kaggle [34] for real images; due to the limitation of
computation power, we considered 10K images from this source.

2. Online Source: We obtained GAN-based fake images from an online source [35]. This
source consistently provides new fake images with each visit, enabling us to access a
diverse and up-to-date dataset for our analysis and experimentation.

3. Stable Diffusion: In this study, we curated a dataset focused on Stable Diffusion,
specifically in the context of text-to-image conversion. Stable Diffusion text-to-image
conversion involves a method for consistently generating high-quality images from
textual descriptions. The primary objective is to create realistic and cohesive images
that faithfully represent the provided textual descriptions. This approach utilizes
advanced machine learning models and deep learning techniques to achieve this
goal. The process of Stable Diffusion text-to-image conversion typically encompasses
several key steps, including text encoding, image synthesis, and refinement. Dur-
ing text encoding, the textual descriptions transform into a format compatible with
processing by the image synthesis model. Techniques such as word embeddings
or attention mechanisms may be employed to capture the semantic meaning of the
text. Following this, the image synthesis model utilizes the encoded text to produce a
corresponding image, as illustrated in Figure 1. The image synthesis process is geared
towards capturing the visual details and context outlined in the text description. To
ensure stability and consistency in the image generation process, regularization tech-
niques and control mechanisms may be incorporated. Stable Diffusion text-to-image
conversion has various applications, including creative content generation, virtual
world creation, and multimedia production. As this technology continues to advance,
the generation of fake content and the potential for misuse of such tools are steadily
increasing. This trend poses significant challenges and concerns in various domains,
such as disinformation campaigns, image manipulation, and privacy breaches. Stable
Diffusion based on the conditional Latent Diffusion Model (LDM) and the equation of
LDM concerning conditional image pairs can be seen in Equation (1) [36]. In Equation
1, models can be understood as a series of equally weighted denoising autoencoders,
denoted as εϑ(xt, t) for t = 1...T. These autoencoders are trained to predict a denoised
version of their input, where xt represents a noisy version of the input x.

4. StyleGAN2 encoding of Stable Diffusion: This dataset is available on Kaggle [37]
with the name Synthetic Faces High Quality (SFHQ). This dataset comprises high-quality
1024× 1024 curated face images. It was created through a multi-step process. Firstly, a
significant number of “text to image” generations were generated, primarily using Sta-
ble Diffusion v2.1, along with some from Stable Diffusion v1.4 models. Subsequently,
a set of photo-realistic candidate images was generated by encoding these images
into the latent space of StyleGAN2 and applying a small manipulation to enhance
each image into a high-quality, photo-realistic candidate. This process ensured that
the dataset contained diverse and visually appealing face images, enabling us to
conduct comprehensive and accurate analyses in our research. The styleGAN2 is
mathematically based on a generator network (G), mapping vector (F), noise vector
(z), conditional vector (y), and style vector (s) to produce the synthesized image; see
Equation (2) that is used to synthesize the image x.
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LDM = Ex,ε∼N(0,1),t

[
||ε− εϑ(xt, t)||22

]
(1)
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x = G(z, y, s) (2)

The style vector (s) is computed with mapping network (F) with Equation (3).

s = F(z) (3)

In the context of StyleGAN2, the generator G and the mapping network F are trained
to generate high-quality images by considering the style information (s) along with noise
(z) and conditioning (y) inputs.

In our research, we have ultimately focused on four distinct classes and taken the
initiative to address the deepfake detection problem using a multiclass approach. By
considering multiple classes (Real: 10,000, GAN_Fake: 10,000, Diffusion_Fake: 10,000, and
Stable&Gan_Fake: 10,000), we aim to enhance the precision and reliability of our deepfake
detection model, accommodating a broader range of deepfake variations and increasing its
potential for real-world applications.

To overcome the challenge of class imbalance and potential model bias, we metic-
ulously prepared the dataset in a balanced format. By ensuring each class has a similar
representation, we aim to create a more equitable training environment for our deepfake
detection model. This approach helps mitigate the impact of overrepresented or underrep-
resented classes, leading to a fairer and more robust model capable of accurately identifying
deepfake content across all classes. Sample images from the prepared dataset can be found
in Table 1.
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Table 1. Prepared dataset images.

Real GAN_Fake Diffusion Fake Stable&GAN Fake
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3.2. ViT Architecture

In this section, we introduce the ViT framework, delving into its core principles,
structure, self-attention mechanism, multi-headed self-attention, and the mathematical
foundations that shape its design. The ViT emerged in 2020 [38] as a groundbreaking
paradigm in computer vision, revealing its potential to redefine our approach to image
analysis and comprehension. Initially rooted in the Transformer architecture crafted for
natural language processing, the ViT introduces a novel concept by treating images as
sequences of tokens, commonly represented by image patches. With the transformer
design, ViT adeptly processes these token sequences, enabling effective image analysis and
understanding in a sequence-based manner.

A key strength of ViT lies in its adaptability and versatility. The foundational trans-
former architecture has demonstrated remarkable success across diverse tasks, including
picture restoration and object detection. This underscores the broad applicability and
effectiveness of the ViT framework, positioning it as a potent tool in the field of computer
vision with the potential to revolutionize our approach to image-related tasks [39].

Tokenization and embedding stand as crucial steps within the ViT architecture. When
handling the input image, it undergoes initial division into a grid of non-overlapping
patches. Subsequently, these patches are flattened and transformed into a higher-dimensional
space through a linear operation, followed by normalization. This method endows the ViT
model with the capability to capture both global and local information from the image,
promoting comprehensive learning. It enables the model to effectively grasp the intricate
features and context of the image. The synergy between tokenization and embedding plays
a pivotal role in empowering ViT to excel in a variety of computer vision tasks.

The ViT architecture can be mathematically represented by assuming X is a set of
image patches extracted from the input image. Each patch is a vector representing a portion
of the image. The set of patches (X) is represented in Equation (4), where N is the number
of patches.

X = {x1, x2, x3, . . . ., xN} (4)

The ViT model consists of several components that are enlisted below (also see Figure 2).

• Patch Embedding: The image patches (x1, x2 . . . xN) are linearly projected to an em-
bedding space by a linear transformation Wpatch (see Equation (5)).

E =
{

Wpatchx1, Wpatchx2, . . . , WpatchxN

}
(5)

• Positional Embedding: Each patch embedding (e1, e2, . . . .eN) is augmented with po-
sitional information ( p1, p2 . . . ..pn) to capture spatial relationships. These positional
embeddings are added to the patch embeddings (see Equation (6)).

EPOS = {e1 + p1, e2 + p2 . . . . . . eN ++pN} (6)

• Transformer Encoder: The transformer encoder processes the positional embed-
dings Epos. This encoder comprises several layers, each incorporating self-attention



Computers 2024, 13, 31 8 of 18

mechanisms and feedforward neural networks. The result of this encoding is a col-
lection of contextualized embeddings, as depicted in Equation (6). Equation (7),
(z1, z2, . . . . . . , zN), represents the output representations or embeddings produced by
the Transformer encoder for each position in the input sequence.

Trans f ormerEncoder(EPOS) = {z1, z2, . . . . . . , zN} (7)

• Classification Head: The final contextualized embeddings Z are used for downstream
tasks. In classification tasks, a classification head takes the average or a specific token’s
embedding (e.g., classification token) from Z and passes it through one or more fully
connected layers to make predictions.
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The ViT design centers around the Multi-head Self-Attention (MSA) mechanism,
which plays a pivotal role in the model’s capabilities. MSA empowers the ViT to attend
to multiple parts of the image simultaneously. It consists of distinct “heads”, with each
head independently computing attention. By focusing on different regions of the image,
these attention heads produce various representations, which are then concatenated to
generate the final image representation. This approach enables the ViT to capture intricate
interactions between input elements by attending to multiple sections simultaneously.
However, this enhancement comes at the cost of increased complexity and computational
requirements. The utilization of multiple attention heads and the subsequent aggregation of
their outputs necessitate more computational resources. The mathematical representation
of MSA can be seen in Equation (8).

MSA(Q, K, V) = Concat (H1, H2, . . . , Hn) (8)

In Equation (7), Q, K, and V stand for the query, key, and value matrices, respectively.
The H1, H2,. . . Hn represents the output of multiple attention heads. In the context of
neural networks, particularly in transformers, a multi-head attention mechanism involves



Computers 2024, 13, 31 9 of 18

using multiple sets of attention weights (attention heads) to capture different aspects of
relationships in the input data. Each Hi is the output of the i-th attention head. The
self-attention mechanism plays a pivotal role in transformers, serving as the foundational
component for explicitly modeling interactions and relationships across all sequences in
prediction tasks. Unlike CNNs, which depend on local receptive fields, the self-attention
layer gathers insights and features from the entire input sequence, allowing it to capture
both local and global information. This unique characteristic distinguishes self-attention
from CNNs, as it promotes a more comprehensive interpretation and representation of
information, leading to improved performance in various sequence-based tasks.

The attention mechanism involves computing the dot product between the query and
key vectors, followed by normalization using SoftMax. Subsequently, it modulates the
value vectors to generate an enhanced output representation, a task carried out in the CLS
block. Figure 2 is the base abstract architectural diagram of the ViT model [38].

3.3. ViT Hyper-Parameters

In this study, the initial images undergo preprocessing and are divided into patches
measuring 16× 16 pixels, subsequently scaled to 224× 224 pixels. This reduction technique
involves breaking down the image into smaller fixed-size patches, each with dimensions of
16 pixels in width and 16 pixels in height.

The model employed in this study underwent training on a substantial dataset known
as ImageNet-21k. This dataset encompasses around 14 million photos, categorized into
21,841 distinct classes, making it specifically tailored for extensive image classification
tasks. The model’s architecture comprises 12 transformer layers, each housing 768 hidden
components. Its overall capacity is reflected in its 85.8 million trainable parameters, which
play a significant role in the learning process. For a comprehensive understanding, the
values and configurations of the parameters used in the ViT model are detailed in Table 2.

Table 2. Parameter configurations.

Parameters Values

Transformer Encoder Hidden Layers 12
Hidden Layer Activation Gelu

Channels 3
Patches 16 × 16

Balanced True
Learning Rate 2 × 10−5

Epochs 5

Figure 3 showcases the abstract-level diagram illustrating the proposed methodology.
This diagram provides an overview of the key components and steps involved (dataset
preparation, preprocessing, splitting, model tuning, training, and evaluation) in our ap-
proach, offering a visual representation of how our method operates and achieves its
objectives.
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3.4. CNN Architecture-Based Pretrained Models

The primary objective of this study was to uncover and identify the most recently
manipulated deepfake images, specifically those generated using Stable Diffusion and
StyleGAN2. This research stands out as a pioneering effort not only in recognizing these
cutting-edge manipulated fake images but also in addressing the challenge in a multiclass
context.

To demonstrate the effectiveness of patch technology over traditional CNN and CNN-
based pretrained models such as VGG16 and ResNet50, this study employed a fine-tuning
approach. The models were preloaded with weights from the ImageNet dataset using a
weight transfer technique. In this process, the network layers were frozen, and the last fully
connected layers were omitted from the architectures.

To adapt these models for our purposes, a flattened layer was introduced to eliminate
the fully connected layers, and dense layers with four neurons were added. The activation
function was set to SoftMax to tackle the multiclass nature of the problem. This nuanced
approach aims to showcase that, in the realm of manipulated deepfake image detection,
patch technology can outperform the more conventional CNN and pretrained models. The
local feature extraction is the main reason for selecting CNN-based models.

4. Experiment Results and Discussion

In this section, we present a comprehensive discussion of the evaluation measures,
experimental details, and the results obtained through the proposed methodology. We
delve into the assessment criteria used to gauge the performance of our approach, provide
insights into the experimental setup and configurations, and present the outcomes achieved
during our evaluation process.

4.1. Evaluation Metrics

In the realm of machine learning and deep learning, evaluation metrics play a vital
role in gauging model performance. These measures are fundamental in statistical research
and are essential in assessing the effectiveness of our proposed model. In this study, we
emphasized the following key assessment measures [40] to evaluate the efficacy of our
approach. In Equations (9)–(12), TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

• Accuracy: Accuracy is a metric that assesses the overall correctness of the model’s
predictions. It calculates the proportion of correctly classified samples out of the total
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samples. While accuracy is a crucial evaluation measure, it may not be sufficient
in certain scenarios, such as imbalanced datasets or cases where different types of
errors have varying consequences. In such situations, additional evaluation metrics
may be necessary to provide a more comprehensive understanding of the model’s
performance and capabilities.

Accuracy = TP + TN/TP + FP + TN + FN (9)

• Precision: Precision (P) is a metric that evaluates a model’s capability to correctly
identify positive samples among the predicted positive samples. It calculates the
proportion of true positive predictions to the total number of positive predictions
(which includes both true positives and false positives). Precision provides valuable
insights into how accurately the model detects and classifies positive instances, making
it an essential measure in many classification tasks.

P = TP/TP + FP (10)

• Recall: Recall (R), alternatively termed sensitivity or the true positive rate, gauges
the model’s ability to accurately recognize positive samples within the total pool
of actual positive samples. It is computed as the ratio of true positives to the sum
of true positives and false negatives. Recall signifies the model’s effectiveness in
comprehensively capturing positive instances, rendering it a crucial assessment metric
in classification tasks.

R = TP/TP + FN (11)

• F1 Score: The F1 score is computed as the harmonic mean of precision (P) and recall
(R), providing a single statistic that balances the two metrics. This makes it particularly
useful when dealing with imbalanced class distributions or scenarios where equal
emphasis is placed on both types of errors. The F1 score ranges from 0 to 1, with
1 representing the best possible performance of the model. By incorporating both
precision and recall, the F1 score offers a comprehensive evaluation of the model’s
overall effectiveness in classification tasks.

F1 = (2× P× R)/(P + R) (12)

4.2. Results and Discussion

The ViT model was trained using various aspects of the prepared dataset. In the
following sections, we present the classification report and learning graphs showcasing
the model’s performance and capabilities in addressing various challenges. The ViT model
required a huge amount of data for training purposes and a 40K image-based dataset was
effective for this study. Further, we considered 20% of the data for evaluation purposes.
The dataset split ratio in terms of class balancing can be seen in Table 3.

Table 3. Train, validation, and test dataset splitting.

Dataset Diffusion_Fake GAN_Fake Real Stable&GAN_Fake Total

Train 7203 7192 7203 7204 28,802
Validation 1800 1798 1800 1800 7198

Test 997 1010 997 996 4000

During the training process, the model’s training loss initially started at 0.0457 and
gradually decreased to 0.0020. Similarly, the validation loss began at 0.0235 and eventually
reached 0.0079. The loss graphs, depicting the variations in loss to epochs, are illustrated in
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Figure 4. These graphs provide valuable insights into the model’s learning progress and
ability to optimize the training process, ultimately improving performance and accuracy.
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In our evaluation of the proposed model, we also employed class-wise precision, recall,
and F1 score to assess its performance, as presented in Table 4. The support column indicates
the number of samples available for each class in the testing dataset. For example, the Real
class consists of 997 samples, and the Diffusion Fake class also comprises 997 samples for
testing purposes. The total sum of the support column equals 4000, representing the total
number of samples tested in our evaluation. By analyzing these class-wise metrics, we can
understand the model’s effectiveness in correctly classifying different classes and its overall
performance across the entire dataset.

Table 4. ViT performance class-wise for multiclass deepfake identification.

Class Name Precision Recall F1 Support

Diffusion_Fake 1.0000 1.0000 1.0000 997
GAN_Fake 1.0000 0.9960 0.9980 1010

Real 1.0000 1.0000 1.0000 997
Stable&GAN_Fake 0.9960 1.0000 0.9980 996

Table 5 showcases the actual and predicted labels with the ViT model. The table
contains three columns: “Images”, “Predicted”, and “Actual”. Each row corresponds to a
different image. The “Predicted” column displays the labels that the ViT model assigned
to the images after analyzing them, while the “Actual” column shows the true labels.
Table 5 also demonstrates that the ViT model accurately predicted the labels for all the
tested images, with its predictions matching the actual labels except for the last image.
The excessive use of filters and a side pose could be the reasons for misclassification. This
suggests that the ViT model is effective in classifying different image types based on the
provided data. Furthermore, to test any image in the future, please follow the steps outlined
in the https://github.com/Muhammad-Asad-Arshed/MultiClass_DeepFake.git (accessed
on 25 November 2023) repository.

https://github.com/Muhammad-Asad-Arshed/MultiClass_DeepFake.git
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4.2.1. Comparison with CNN-Based Pretrained Architectures

To demonstrate its robustness and highlight the effectiveness of global feature ex-
traction in deepfake identification over local feature extraction, our proposed model was
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meticulously evaluated against established CNN-based models. This comparison serves to
underscore the model’s capability in capturing comprehensive patterns across the entire
dataset, emphasizing its potential superiority in discerning deepfake content.

We achieved a training accuracy of 0.77, a train accuracy of 0.78, and a test accuracy of
0.77 with a fine-tuned ResNet-50 model [20]. The graphical representation of the learning
graph can be seen in Figure 5.

Computers 2024, 13, x FOR PEER REVIEW 14 of 19 
 

We achieved a training accuracy of 0.77, a train accuracy of 0.78, and a test accuracy 
of 0.77 with a fine-tuned ResNet-50 model [20]. The graphical representation of the learn-
ing graph can be seen in Figure 5. 

 

Figure 5. Training and validation graph of fine-tuned ResNet-50 model. 

The fine-tuned VGG-16 model [19] has demonstrated noteworthy performance, 
achieving a training accuracy of 0.95 and a validation accuracy of 0.93 compared to the 
ResNet-50 model. The model’s effectiveness extends to the test dataset, where it maintains 
a robust accuracy of 0.94. For a comprehensive visual representation of these results, see 
Table 6 and Figure 6, which illustrate the efficacy and reliability of the VGG-16 model. 

 

Figure 6. Training and validation graph of fine-tuned VGG-16 model. 

Table 6. Proposed model comparison with local feature extraction-based pretrained models (based 
on two decimal place evaluation scores). 

Model 
Train 

Accuracy Validation Accuracy Accuracy Precision Recall F1 

ResNet-50 0.77 0.78 0.77 0.80 0.77 0.78 
VGG-16 0.95 0.93 0.94 0.94 0.94 0.94 

Proposed 0.99 0.99 0.99 0.99 0.99 0.99 

Figure 5. Training and validation graph of fine-tuned ResNet-50 model.

The fine-tuned VGG-16 model [19] has demonstrated noteworthy performance, achiev-
ing a training accuracy of 0.95 and a validation accuracy of 0.93 compared to the ResNet-50
model. The model’s effectiveness extends to the test dataset, where it maintains a robust
accuracy of 0.94. For a comprehensive visual representation of these results, see Table 6
and Figure 6, which illustrate the efficacy and reliability of the VGG-16 model.
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4.2.2. Comparison with the Literature Contributions

It is important to acknowledge that a direct comparison with existing studies in
the field of deepfake identification may not be feasible due to the unique nature of our
research. Our study is foundational work specifically focusing on predicting deepfakes as
a multiclass problem. In contrast, most existing studies are based on binary classification
([41–47]) distinguishing between real and fake images (see Table 7). As our approach tackles
the complex task of multiclass deepfake identification, it introduces novel challenges and
considerations that differentiate it from previous research. Therefore, caution should be
exercised when drawing direct comparisons with binary-based studies, as these approaches’
contexts and objectives differ significantly. Our research seeks to contribute to the field by
exploring the capabilities and limitations of multiclass deepfake detection, paving the way
for further advancements in this emerging study area.

Table 7. Analysis of the proposed study in contrast to existing state-of-the-art studies.

Authors Methodology Dataset Classes Accuracy (%)

(Gandhi et al., 2020) [41] Pretrained ResNet Model 10,000 Images 2 94.75%

(Hu et al., 2021) [42] Highlights of Corneal
Specular 1000 Images 2 90.48%

(Yousaf et al., 2022)
[43] CNN Based on Two Stream 11,982 Images 2 90.65%

(Haung et al., 2022)
[45]

Implicit Identity-Driven
Framework employing

Explicit Identity Contrast
(EIC) and Implicit Identity

Exploration (IIE) losses

10,000 videos
DeepFakesofFF++(C23)

and FaceShifter
2 67.99–88.21%

(Raza et al., 2022) [46] Hybrid (VGG16 and CNN) 2041 Images 2 94%
(Arshed et al., 2023) [47] Transformer 100,000 Images 2 99.5–100%
Proposed (Experiment 1) ResNet-50 40,000 Images 4 77%
Proposed (Experiment 2) VGG-16 40,000 Images 4 94%
Proposed (Experiment 3) ViT 40,000 Images 4 99.90%

Additionally, this study holds significant importance by pioneering a multi-classification
approach to deepfake detection, a previously unexplored aspect, thereby advancing the
field’s understanding and effectiveness in countering evolving deepfake challenges. The
creation of a dedicated dataset for multiclass deepfake identification facilitates enhanced
model training and accuracy. Introducing a fine-tuned ViT model that surpasses state-of-
the-art techniques underscores the research’s advancements. Moreover, this study estab-
lishes the proposed method’s robustness and generalizability through extensive analysis,
reinforcing its reliability for combating diverse deepfake scenarios and content types.

4.2.3. Implications

This study introduces a novel theoretical perspective by framing deepfake detection
as a multiclass task, acknowledging the diversity in manipulation techniques like Stable
Diffusion and StyleGAN2. The application of ViT for global feature extraction represents a
theoretical advancement, expanding beyond traditional CNNs. Recognizing and address-
ing challenges posed by advanced techniques contributes to a nuanced understanding of
deepfake intricacies. On a practical level, the proposed ViT-based method demonstrates
exceptional accuracy (99.90%) on a multiclass-prepared dataset, highlighting its robustness
in countering deepfake threats. The comparison with state-of-the-art CNN models provides
a practical benchmark, emphasizing the ViT’s superiority and contributing significantly to
a more secure digital landscape.

5. Conclusions

Deepfakes have emerged as a prominent technique for disseminating misinformation
and manipulating visual content. While not all deepfake creations are inherently malicious,
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it is essential to identify and address such content, as some instances can pose significant
threats to society. In this study, we focused on the critical task of multiclass deepfake
identification and evaluated the effectiveness of the ViT in detecting deepfake images. The
inherent global feature mapping and self-attention mechanisms of the ViT proved to be
highly effective in discerning deepfake content. Through rigorous evaluation across various
image manipulation and generation techniques, our approach achieved an exceptional
accuracy of 99.90%. These results highlight the ViT’s potential to combat deepfake content
and promote trust and integrity in digital media. Our research endeavors will focus on
expanding the scope of our current work by incorporating additional datasets specifically
curated and released for deepfake research. This expansion is essential to enhance the
diversity, accuracy, and overall robustness of our methods and findings and to address
the ever-evolving challenges posed by deepfake technology. Our ongoing efforts strive to
contribute to the advancement of deepfake detection and contribute to building a more
secure and trustworthy digital landscape.
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