
Citation: Aladics, T.; Hegedűs, P.;

Ferenc, R. A Comparative Study of

Commit Representations for JIT

Vulnerability Prediction. Computers

2024, 13, 22. https://doi.org/

10.3390/computers13010022

Academic Editors: Osvaldo Gervasi

and Damiano Perri

Received: 15 November 2023

Revised: 20 December 2023

Accepted: 3 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A Comparative Study of Commit Representations for JIT
Vulnerability Prediction
Tamás Aladics 1,2,* , Péter Hegedűs 1,* and Rudolf Ferenc 1

1 Department of Sofware Engineering, University of Szeged, 6720 Szeged, Hungary; ferenc@inf.u-szeged.hu
2 FrontEndART Ltd., 6720 Szeged, Hungary
* Correspondence: aladics@inf.u-szeged.hu (T.A.); hpeter@inf.u-szeged.hu (P.H.)

Abstract: With the evolution of software systems, their size and complexity are rising rapidly.
Identifying vulnerabilities as early as possible is crucial for ensuring high software quality and
security. Just-in-time (JIT) vulnerability prediction, which aims to find vulnerabilities at the time of
commit, has increasingly become a focus of attention. In our work, we present a comparative study
to provide insights into the current state of JIT vulnerability prediction by examining three candidate
models: CC2Vec, DeepJIT, and Code Change Tree. These unique approaches aptly represent the
various techniques used in the field, allowing us to offer a thorough description of the current
limitations and strengths of JIT vulnerability prediction. Our focus was on the predictive power of
the models, their usability in terms of false positive (FP) rates, and the granularity of the source code
analysis they are capable of handling. For training and evaluation, we used two recently published
datasets containing vulnerability-inducing commits: ProjectKB and Defectors. Our results highlight
the trade-offs between predictive accuracy and operational flexibility and also provide guidance
on the use of ML-based automation for developers, especially considering false positive rates in
commit-based vulnerability prediction. These findings can serve as crucial insights for future research
and practical applications in software security.

Keywords: commit representation; vulnerability prediction; just-in-time

1. Introduction

Software systems are becoming increasingly complex and interdependent, with thou-
sands of lines of code being added and modified daily. As a result, software vulnerabilities
are becoming more prevalent and pose a significant threat to the security and reliability
of software systems. This is clearly apparent from cybersecurity firm Tenable’s report of
2021 [1]. According to them, from 2016 to 2021, the number of reported CVEs increased at
an average annual growth rate of 28.3%, accumulating to a 241% increase. Many of these
are zero-day vulnerabilities that were disclosed in 2021 across a variety of popular software
applications, leaving software vendors a short time to prevent exploitation.

In order to mitigate these vulnerabilities, it is crucial to identify and address them as
early as possible during the software development process. A fitting time for identification
is during code addition to the codebase in the version control system, i.e., at commit time.
This process is usually referred to as just-in-time (JIT) vulnerability prediction [2]. Commits
contain data on bug fixes, feature additions, code refactoring, and additional metadata in
the form of commit messages and author information. By analyzing commits based on the
contained data, software engineers can identify patterns that may indicate the presence of
vulnerabilities [3].

Identifying and analyzing these vulnerable commits manually is a daunting task,
especially in large software projects with thousands of commits. It is not feasible for
human analysts to examine each commit, and the task may be error-prone due to the sheer
volume of changes [4]. Manual efforts are also found to be lacking in terms of adaptiveness,

Computers 2024, 13, 22. https://doi.org/10.3390/computers13010022 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13010022
https://doi.org/10.3390/computers13010022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-4689-8878
https://orcid.org/0000-0003-4592-6504
https://orcid.org/0000-0001-8897-7403
https://doi.org/10.3390/computers13010022
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13010022?type=check_update&version=1

Computers 2024, 13, 22 2 of 14

as vulnerabilities appear very rapidly in different forms and human resources are expensive.
To address this challenge, researchers have developed machine-learning-based approaches
to automatically identify and predict vulnerable commits [5].

One critical component of these approaches is the representation of commits. Com-
mit representations capture the information contained in commits in a way that can be
processed by machine learning algorithms, typically resulting in variable-length vectors.
Representations are designed based on data contained in the commits such as the commit
messages [6], the changed lines of code (patches) [7], or commit metadata and patches
together [2,8]. Some approaches also use code metrics to supplement the commit metadata
to predict potential vulnerability-contributing commits, such as VCCFinder [9].

Commit representations that use source code as input also vary in what form they
take the source code and what granularity they parse it. Source code can be used in its
raw form as raw text and processed by popular NLP methods, intermediate representation
forms can be used such as the abstract syntax tree (AST) [7] or code metrics derived from
the source code can also be used [9]. The granularity is also an essential factor, as it directly
affects the usability of the representation and it varies a lot: the commit can be taken as a
whole by aggregating the patches of all the changed files [8], or it can be trained at the file,
class, method, or even line level. A finer granularity will contain fewer data but provide a
more precise location of a suspected vulnerable piece of code than a coarser-grained one.

In this paper, the aim is to provide an overview of these factors of commit represen-
tations by comparing three different commit representations for vulnerability prediction:
CC2Vec, DeepJIT, and a code-change-tree-based representation. As part of the research,
an evaluation was performed of these representations in identifying and predicting vul-
nerable commits using two recently published datasets: a dataset based on ProjectKB,
which contains vulnerability-introducing commits of Java open-source projects [10] and
Defectors [11], a larger dataset that comprises a large number of defective pieces of Python
source code with commit information. These findings can inform the development of more
effective commit representation techniques for identifying and addressing vulnerabilities
in software systems guided by the following research questions:

RQ1: How effective are commit representations in predicting vulnerability contributing
commits?

RQ2: How does granularity affect the overall vulnerability prediction power?

Our work follows a typical structure of related work, methodology, experimental
setup, results, conclusion, and future research. The related work (Section 2) provides
an overview of the previous studies related to the topic of JIT vulnerability prediction
and commit representation, Section 3 gives technical details about the candidate models,
the methodology section (Section 4) describes the detailed approach used in the study,
Section 5 presents the data and tools used, Section 6 presents the findings, a discussion
(Section 7) interprets the results, Section 8 discusses the potential dangers to the validity of
our approach, and the conclusion and future research (Section 9) summarize the study’s
results and suggest future directions for research.

2. Related Work

The identification and prediction of vulnerable commits have been studied extensively
in recent years. In this section, we review the existing literature on commit representations
for vulnerability prediction.

An earlier line of work entails using different attributes derived from the commit
to reason about the code change’s effects. Mockus et al. used predictors such as the
size of lines of code added, deleted, and unmodified, measures of developer experience,
the type of change, etc., to predict the quality of change in regard to inspection, testing,
and delivery [12].

Kamei et al. uses source-code metrics and Kim et al. uses features extracted from the
revision history of software projects [13,14]. Similarly, other works extract features from
metrics and/or commit metadata to enhance the procedure of code quality assessment and

Computers 2024, 13, 22 3 of 14

ultimately prevent vulnerabilities [9,15]. Usually, in these methods, the extracted features
are fed into a machine learning model, such as an SVM or a random forest.

Even though metric-based approaches were an improvement over manual procedures,
they still could not capture the semantic and syntactic relations between the code elements.
Lomio et al. found that existing metrics were not sufficient enough and additional work
was needed to find more appropriate ways to facilitate JIT vulnerability prediction [16].
A possible route for improvement was based on the insight that Hindle et al. provided in
their work: source code is similar to texts written in natural languages, and as such, NLP
methods can be leveraged to improve the related models’ effectiveness [17].

Agreeing on this insight, many works in the field use the source code itself as input to
find an improvement over metric-based approaches. Minh Le et al. proposed DeepCVA,
a convolutional neural network that uses code changes (patches) and their contexts [18] for
commit-level vulnerability assessment.

Hoang et al. describe DeepJIT, an end-to-end deep learning framework also based on
the convolutional neural network architecture, which automatically extracts features from
commit messages and code changes and uses them to identify defects [2]. In their follow-up
work, Hoang et al. propose CC2Vec, a framework that also uses commit messages and code
changes as input but uses a hierarchical attention neural network to produce generally
usable vectors [8] They evaluated their method on log-message generation, bug-fixing
patch identification, and just-in-time defect prediction and found that they outperformed
previous works. Our study specifically focused on DeepJIT and CC2Vec due to their
innovative use of recent advances of machine learning approaches, such as CNNs and
HANs. These models, at the time of our investigation, were contending with each other as
state-of-the-art approaches for JIT vulnerability prediction. Their emerging prominence in
commit analysis suggested their strong potential, making them particularly relevant to our
research objectives in the dynamic field of defect prediction.

Even though these methods are promising due to their relatively high predictive
power, they take the source code as (preprocessed) text and they do not use the strictly
structured nature of source code. The available intermediate representations, such as the
abstract syntax tree (AST) and control flow graphs (CFG) are promising for providing
more structural information, as shown in works related to source code representation and
repair [19–22].

Change trees are specifically designed to keep the structural differences in changed
codes [23]. They are constructed by using the ASTs of the pre- and postcommit states and
discarding the AST paths that are the same in the two states. The resulting AST structure is
called a change tree, as it only contains the relations that are changed as part of the code
change. We selected this method as our third candidate due to its customizability. It can be
tailored for any source code element with an associated AST, potentially capturing more
nuanced information than standard feature extraction methods. This versatility makes
change trees a valuable addition to our comparative analysis in exploring the landscape of
vulnerability prediction.

In this paper, we compare three already mentioned commit representations for vul-
nerability prediction: CC2Vec, DeepJIT, and a change-tree-based model. Our evaluation
is conducted using two datasets. The first is a dataset of vulnerability-introducing com-
mits from Java open-source projects [10], which originates from a manually curated set of
vulnerability-fixing commits known as Project-KB [24], developed by software company
SAP (Walldorf, Germany). The second dataset, Defectors [11], encompasses source code
files, with approximately 93,000 defective and 120,000 defect-free entries, drawn from
24 well-known Python projects.

3. Candidate Models

In this section, the focus is on the three machine learning models previously introduced
for vulnerability prediction. We provide concise descriptions of each model, including their
respective inputs and outputs. Additionally, this section aims to highlight the unique fea-

Computers 2024, 13, 22 4 of 14

tures and differences among these models, offering insights into their individual strengths
and applications in the context of vulnerability prediction.

3.1. DeepJIT

DeepJIT ([2]) is a machine learning model that is designed to analyze code changes
by processing commit messages and corresponding code changes with the help of convo-
lutional neural networks (CNNs). To enable feature learning, the model first encodes the
raw textual data into arrays, which are then fed into the input layer. The input layer then
embeds the commit message and code changes to create embedded representations.

DeepJIT employs two dedicated convolutional neural networks for processing commit
messages and code changes. The commit message is fed into a convolutional layer with
multiple filters to extract relevant features. Meanwhile, the code change is sent to a CNN
that processes each added or removed code line using the first convolutional and pooling
layers. These layers learn semantic features based on the words within the added or
removed line. The subsequent convolutional and pooling layers aim to learn interactions
between added or removed code lines with respect to the structure of the code change.
The output of the CNNs consists of two vectors, one for the commit message and the
other for the code changes. These vectors are aggregated using a feature fusion layer,
to produce the final representation, which corresponds to the commit. In the following, a
brief overview of the architecture follows; however, for a more in-depth understanding,
please refer to the original paper.

As usual in NLP-related tasks, the input is first preprocessed with the help of the
NLTK library [25], and each word in the commit message and code changes is represented
as a fixed dimensional vector by using an embedding that is jointly learned with CNNs.
Then, an independent process follows for the commit message and code changes for each
commit, whose results are aggregated in the end.

For the commit message m, which is a sequence of words w1, . . . w|m|, this pro-
cess involves embedding the commit message into the matrix of embedded words
M ∈ R|m|×dm , where dm is the embedding dimension. Then, to extract the commit mes-
sage’s salient features, a filter f ∈ Rk×dm , followed by a ReLU activation function is
applied: ci = ReLU(f *Mi:i+k−1 + bi), where k is the window size, bi is the bias value, and
* is a sum of element-wise product. The filter f is applied to every k-words of the commit
message and the outputs are concatenated to a vector c = [c1, . . . , c|m|−k+1]. To characterize
the commit message, as common in CNN networks, the filtering operation is followed by a
pooling operation, which is in this case a max pooling operation over c, resulting in the
embedded commit message zm.

For the code changes in the commit, the input is more complex as there can be a
variable number of corresponding files [F1, . . . , Fn], where n is the number of files in the
code change. Each Fi contains a number of lines (additions and removals), and each line has
a sequence of words. Similarly to the commit messages, a word embedding is employed
to obtain the embedded code changes’ representation : Fi → Fi ∈ RN×L×dc , where N is
the number of lines, L presents the sequence of words in each line and dc is the word
embedding dimension. For each line Ni, the same convolutional operations are performed
as in the case of commit messages, to extract an embedding vector zNi . The embedding
vectors for each line corresponding to the file Fi are stacked to obtain a representation
Fi = [zN1 , . . . , zN|N|]. Again, the convolutional and pooling layers are applied to extract the
representation zFi

corresponding to the file Fi. As a result, for each change file Fi i ∈ C,
where C is the commit, we have the embedding vector zFi

. For each i, the embedding
vectors are concatenated to obtain a representation for the code change: zC = [zF1

, . . . , zFn
].

With zm and zC calculated, they are concatenated and fed into a fully connected layer
with a ReLU activation function. Finally, this vector is passed through a sigmoid function
to provide a score that is trained to correspond to the vulnerability probability of the given
commit C. The parameters are trained using the binary cross-entropy loss function with a
regularization term, using the Adam optimizer [26].

Computers 2024, 13, 22 5 of 14

3.2. CC2Vec

CC2Vec ([8]) is a deep learning architecture designed to learn vector representations of
code changes in patches. The architecture can effectively embed code changes into a vector
space, where similar changes are close to each other. The learning process is supervised
using log messages written by developers to describe the semantics of the code changes.
To be more precise, CC2Vec optimizes the vector representation of a code change to predict
appropriate words, extracted from the first line of the log message.

To represent the code changes, CC2Vec analyzes scattered fragments of removed and
added code across multiple files that are part of a commit. As related work suggests that
using an attention mechanism can help to model structural relations ([27]), CC2Vec uses a
specialized hierarchical attention network (HAN) to construct a vector representation of the
removed and added code of each affected file in a given patch. The HAN first builds vector
representations of lines, then constructs vector representations of hunks using these vectors,
and finally aggregates these vectors to construct the embedding vector of the removed or
added code. Then, CC2Vec employs multiple comparison functions that produce features
representing the relationship between the removed and added code. These features are
then concatenated to form an embedding vector for the affected file. Finally, the embedding
vectors of all the affected files are concatenated to form the vector representation of the
code change in a patch.

In more detail, in a commit there is a number of files (F); for each file, the added
(removed) code is represented as a 3D matrix B ∈ RH×L×W where H is the number of
hunks, L is the number of added (removed) lines, and W is the number of words. Since
F, H, L, W can differ significantly across different commits, each input is padded/truncated
to the same length. For each dimension in B, a separate attention mechanism is employed
to capture the structural information, referred to as feature extraction layers, which make
up the main architecture of the HAN.

For instance, each word wijk (i ∈ 1 . . . H, j ∈ 1 . . . L, k ∈ 1 . . . W) is embedded into wijk,
a fixed-length vector using a learned word-embedding matrix W ∈ R|VC |×d, where VC is the
vocabulary, and d is the embedding dimension. To capture the contextual information of the
sequence of words (line), a bidirectional GRU is used, which includes embedding the line
in a forward and backward directions. The forward GRU results in the embedded vector−→
hijk =

−−→
GRU(wijk), k ∈ 1 . . . W, and similarly, we obtain

←−
hijk for the backwards direction.

The two vectors are concatenated to hijk and fed to a fully connected layer with a ReLU
activation function to obtain the hidden representation uijk for the word wijk.

As of recent discoveries in the field of ML, sequence representation can be efficiently
improved using the attention mechanism [28], which aims to learn the “importance” re-
lations of the elements of a sequence. In the context of CC2Vec, at the word level, the au-
thors employed “word attention”, by first defining a word context vector uw (randomly
initialized and learned during the training for each word), calculating the alignment
scores αijk = so f tmax(uijk, uw), to finally obtain a line vector for the line by calculating the
weighted sum of the embedded vectors: sij = ∑k αijkhijk.

To remain concise, we do not show the rest of the architecture in detail, but similar
mechanisms are used to get context-aware vectors for the line and hunk dimensions.
After the input is ran through the HAN, the result is two vectors for the added and
removed pieces of code ea and er, respectively. To aggregate these vectors, they are fed to
the comparison layers, which employ a number of different comparison functions (such
as element-wise subtraction, element-wise multiplication, cosine and Euclidean similarity,
etc.). The output of the comparison layers are concatenated and passed through a final fully
connected hidden layer. The parameters are learned using the Adam optimizer, employing
cross-entropy with a regularization term as the loss function, conditioned to predict words
in the commit message.

To summarize, CC2Vec uses the attention mechanism to model the hierarchical struc-
ture of a code change, a mechanism that helps to capture the structural dependencies in the
code change, and thus, it can effectively learn vector representations of code changes.

Computers 2024, 13, 22 6 of 14

3.3. Code Change Tree (CCT)

A code change tree ([23]) is a novel way of presenting source code changes by repre-
senting the differences between two states of source code at a structural level. To reason
about the structure, an intermediate representation such as the abstract syntax tree (AST) is
used. The localization of the prediction is performed at different levels such as statement,
method, class, or file levels. Since the AST is used as the base structure, any source code
element that has a corresponding AST can be represented by this method.

To represent only the changes, the authors designed a novel structure called the code
change tree that captures only the differences between two ASTs. The CCT is constructed
by first representing each tree as a set of unique paths from their root to each terminal.
These paths are referred to as root paths, and are investigated in other works related to
source code representation [29,30]. Then, the root paths that are identical in both trees are
discarded from the reference AST’s set of root paths. Finally, a tree is constructed from the
reference AST’s root paths, which represents the code change tree.

For a brief and not exhaustive but more formal definition of CCT, let A = (N, E, r, γ)
be an AST corresponding to a piece of source code, where N = n1, . . . , nm is the set of m
nodes, r ∈ N is the root node, γ is a mapping that maps the nodes to their children, and E
is the set of edges between the nodes, that is, if there is an edge between ni and nj, then
(ni, nj) ∈ E. Note that generally ASTs are more complex with more attributes, but they are
omitted as they are not relevant for the definition of a CCT.

Any sequence of nodes r = n1, . . . , nk, k <= m is a root path, if n1 = r, |γ(nk)| = 0
and (ni, ni+1) ∈ E, that is, the path starts from the root node and ends in a terminal.
By traversing the tree, we can obtain any number of root paths up to the number of
terminals in the tree, so let α be the mapping that maps the tree to a set of root paths
extracted from the tree. Also, let Apre and Apost be the ASTs corresponding to the pre- and
postchange states of a piece of source code. Cpre is a code change tree representing the
differences in Apre when considering Apost, if it is built by considering the subtractions of
the root paths in Apost from the root paths in Apre: Cpre = α(Apre) \ α(Apost). This way,
any root paths found in Cpre are unique in Apre and represent the structural (AST level)
changes between Apre and Apost with Apre being the reference point. Similarly, Cpost can be
constructed to represent the structural changes between the two states, with the poststate
being the reference point.

To adapt tree-based methods for use with machine learning (ML) models, a numeric
transformation of the trees is required. A common way for this transformation is to traverse
the tree and process the nodes in the traversal order. In our work, we traversed the change
trees (both Cpre and Cpost) in a depth-first manner, padded or truncated them to the same
length, and concatenated the two sequences. We also defined a vocabulary that held the
different node types found in the trees and mapped them to unique integers using the
Gensim framework [31], then mapped the nodes to their corresponding identifier (an
integer value). For the next step, a way to transform the mapped node sequence to a
meaningful representation is needed, which can be used for vulnerability prediction. In our
work, the method of this transformation differed based on the dataset.

For the dataset derived from ProjectKB, we employed Doc2Vec to convert the se-
quences into fixed-length vectors [32]. This technique allowed us to generate document-
level vectors that could be effectively utilized by a random forest model for classification
tasks. The Doc2Vec model itself was trained on a corpus of 2 million Java methods, which
were randomly sampled from the GitHub Java Corpus [33], and after training, it was
used to embed the sequences into fixed-length vectors. In contrast, when handling the
substantially larger Defectors dataset, the computational demands were increased for the
use of random forest, and the whole dataset could not be loaded into memory, which
was problematic, as most ML frameworks do not support iterative or batched training
of random forest models. For these reasons, we implemented long short-term memory
networks (LSTMs) to process the token sequences. We also tried one-dimensional CNN
network on a smaller subset of the data, but they worked with a similar effectiveness, so

Computers 2024, 13, 22 7 of 14

we decided to use LSTMs because of their simpler interface. After running through the
LSTM layer, the resulting hidden representation was then passed through a simple dense
layer for the vulnerability classification. During training, we used the binary cross-entropy
loss function with the Adam optimizer to update the parameters.

As outlined in this technical discussion, code change trees offer an AST-like structure
that keeps only paths that are unique to the chosen (pre- or postchange) source code state,
that is, the parts of the AST that are changed with respect to the other state. This way,
unlike previous methods, the downstream methods can benefit from the advantages of the
AST structure for change representation: relations are clearly identifiable as edges, scopes
can be explored trivially by traversing the tree, hidden or implicitly defined source-code
elements are present (unlike in raw source code), etc.

4. Methodology

In this section, we outline the methodologies employed to analyze the three distinct
models in our study. Given the fundamental differences in the architectures of these models,
specific preprocessing was necessary to tailor the inputs appropriately. Below, we detail
the unique processing requirements for each model.

DeepJIT: (https://github.com/soarsmu/DeepJIT, accessed on 2 January 2024) as their
implementation does the necessary NLP preprocessing for their model (stemming,
tokenization, removal of outliers in the vocabulary, etc.). However, we still needed to
prepare the input as the implemented scripts expected it, which entailed that for each
commit in the vulnerability datasets, we extracted the added and removed lines along
with the commit messages and added the commit’s corresponding label (introducing
or nonintroducing).

CC2Vec: While CC2Vec is a model that is designed to output a commit representation that
is generally usable, the authors in their implementation provided a modification of
the model that was tailored for JIT vulnerability prediction (https://github.com/
CC2Vec/CC2Vec, accessed on 2 January 2024). We used it with close to identical
preparation to the case of DeepJIT.

Code change tree: For the code change tree (CCT) model, additional steps were necessary,
differing between the two datasets. For the Project-KB based dataset, we opted for
a method-level representation because the dataset’s smaller size allowed for a finer
granularity analysis without prohibitive computational costs. For each commit, we
extracted every function that was altered and constructed their corresponding CCTs.
As detailed in Section 4, these trees were then flattened and embedded using Doc2Vec
to produce a vector for each method.
To ascertain the vulnerability of a method, we trained and evaluated a random forest
model on the CCT vectors, as this was the best-performing traditional ML model
reported by the authors. To determine commit-level vulnerability, we examined the
predictions for every changed method within a commit; if any method was deemed
vulnerable, the entire commit was labeled as vulnerable.
Regarding the Defectors dataset, its significantly larger size made the method-mining
process computationally prohibitive. Furthermore, it was important to assess the
applicability of CCT-based models at a higher level of granularity, a key issue un-
der active investigation in our research questions. Consequently, we trained word
embeddings for each token composing the flattened tree and inputted the sequence
into a bidirectional LSTM layer, followed by a dense layer with a sigmoid activation
function. This approach translated the LSTM’s hidden state into a singular value
indicative of the vulnerability probability.

5. Materials and Methods

The experimental setup was designed to evaluate the performance of the investigated
methods and architectures. In this section, we give insight into the datasets, the prepro-

https://github.com/soarsmu/DeepJIT
https://github.com/CC2Vec/CC2Vec
https://github.com/CC2Vec/CC2Vec

Computers 2024, 13, 22 8 of 14

cessing tasks, and the metrics that were used for the evaluation in such an imbalanced
environment: accuracy, F1-score, precision, and recall.

5.1. Datasets Setup

The first dataset utilized in our study was derived from Project-KB [24], a dataset cu-
rated by SAP, cataloging vulnerability entries each associated with a unique CVE identifier.
Project-KB meticulously records the identified fixing commit for each vulnerability, along
with supplementary metadata.

The methodology outlined in [10] details a process that transforms a database of
vulnerability-fixing commits into one of vulnerability-introducing commits. Specifically,
it employs a two-phase algorithm: initially, it identifies a pool of candidate vulnerability-
contributing commits using the SZZ algorithm [34]. Given that SZZ has a tendency to
produce numerous false positives and offers limited customization, the subsequent phase
applies a targeted filter, utilizing relevance scores to assess the probability that a particular
commit is the true introducer.

However, the dataset in its initial form contained insufficient entries for a substantive
analysis, prompting us to manually augment it. Considering the extremely low likelihood
that a randomly chosen commit would be vulnerability-inducing, we operated under
the assumption that such commits were nonintroducing. Adopting this methodology,
we paired each identified vulnerability-contributing commit with four noncontributing
counterparts. It should be noted that on occasion, the process of randomly selecting
commits was hindered by the unavailability of certain repositories, but generally, this
sampling procedure proved to be successful.

As a consequence, the expanded Project-KB based dataset employed for our analysis
comprised 474 positive instances (vulnerability-introducing commits) and 2114 negative
instances (the corresponding fixing commits and the noncontributing commits sampled),
culminating in a positive–negative ratio of 22.4% within the dataset.

Regarding the Defectors dataset, only minimal adjustments and refinements were
necessary: we extracted the associated commit messages and reconstructed the precommit
states for each record. Furthermore, any entries with empty “git diff” or “content” columns
were excluded. It must also be noted that the authors of Defectors provided dedicated train
and test splits, which we used. Consequently, the refined dataset used for training contained
91,177 vulnerable and 102,243 nonvulnerable files, resulting in a positive–negative ratio
of 47.1%. For the testing split, it included 1246 vulnerable and 8754 nonvulnerable files,
yielding a positive–negative ratio of 12.5%.

5.2. Datasets Structure and Example

Both datasets in our study have a similar structure, encompassing key metadata for
vulnerability or defective commit analysis. This includes the commit SHA, repository
identifier, filepath, and vulnerability labels. To give a clearer picture of how these datasets
are structured, and to understand the nature of the defects and vulnerabilities our work
aimed to examine, we present a straightforward example. This will help in illustrating the
datasets’ composition and inform our comparison of the candidate models.

In the Project-KB dataset, a typical entry, such as one involving the “Openfire” software
in the “igniterealtime/Openfire” repository, is detailed with specific data like the commit
hash “c9cd1e521673ef0cccb8795b78d3cbaefb8a576a” and the affected file “ConnectionMan-
agerImpl.java”. This example represents a fixing commit for a DOS attack vulnerability,
labeled as “negative” (indicating it is not vulnerable). Project-KB also includes “positive”
examples, where the commits introduced the vulnerability (in this case, the exposition to
DOS attack), identified through a method briefly described later. Each entry in Project-
KB correlates with a vulnerability listed in the National Vulnerability Database (NVD)
(https://nvd.nist.gov/ accessed on 2 January 2024).

The Defectors dataset, while sharing common fields with Project-KB such as commit
SHA and repository identifier, adds additional information like commit date and git diffs.

https://nvd.nist.gov/

Computers 2024, 13, 22 9 of 14

However, for our analysis, we primarily utilized the common fields. Also, Defectors
encompasses a broader range of vulnerabilities and defects, not restricted to NVD entries
but identified through manually designed patterns by its authors. To address potential
false positives, they implemented multiple filtering methods.

Finally, it is important to note that the two datasets concentrate on different pro-
gramming languages: Project-KB is compiled from open-source Java projects, whereas
Defectors comprises Python projects. Consequently, our comparison not only serves to
evaluate the methods but also to deduce the effectiveness of different approaches across
programming languages.

5.3. Metrics

To assess the performance of the different algorithms and models on the dataset,
we used multiple metrics. The most straightforward metric used to quantify a model’s
performance is accuracy, a metric that measures the overall correctness of a classification
model. It is the ratio of the number of correct predictions made by the model to the total
number of predictions made.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

However, in imbalanced datasets such as the one we presented in Section 5, where one
class is significantly more prevalent than the other, accuracy may not be a good measure
of model performance because the model may predict the majority class most of the time,
resulting in high accuracy but poor performance on the minority class. To combat this,
researchers usually employ metrics more descriptive of performance in an imbalanced
environment.

One common metric is precision, which is a metric that measures the proportion of
true positive predictions among all the positive predictions made by the model. This metric
is important in situations where the cost of false positives is high.

precision =
TP

TP + FP
(2)

Recall is another metric that complements precision in a way that it measures the cost
of false negatives.

recall =
TP

FN + TP
(3)

To describe the overall performance of a model with a single indicator, similar to
accuracy but better suited for imbalanced datasets, the Fβ score can be used, which combines
precision and recall with respect to the β parameter. To be more precise, Fβ measures the
effectiveness of retrieval with respect to a user who attaches β times as much importance to
recall as precision.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(4)

In our work, we used F1, F2, and F0.5 scores to reason about use cases where: recall is
as important, twice as important, or half as important as precision.

6. Results

In this section, we present our findings and in the following section we interpret them
in more detail by answering two research questions previously introduced, based on the
results presented in Table 1. The results were calculated by training and evaluating the
three methods investigated on the datasets as explained in Section 5.

Computers 2024, 13, 22 10 of 14

Table 1. The performance measured by various metrics for each model, averaged over a tenfold
cross-validation process for ProjectKB and evaluated on the test set for the Defectors dataset.

Dataset Model Accuracy F1 F0.5 F2 Precision Recall

ProjectKB

DeepJIT 0.74 0.47 0.41 0.56 0.38 0.64
CC2Vec 0.59 0.37 0.3 0.51 0.32 0.64

CCT + RF 0.7 0.33 0.3 0.37 0.29 0.4
Baseline 0.65 0.22 0.22 0.22 0.22 0.22
DeepJIT 0.71 0.35 0.27 0.47 0.24 0.63
CC2Vec 0.75 0.39 0.31 0.50 0.28 0.63

CCT + LSTM 0.66 0.3 0.23 0.42 0.20 0.58Defectors

Baseline 0.78 0.13 0.13 0.13 0.13 0.13

In the case of the Project-KB based dataset, since the number of entries is limited, split-
ting the data into train–test splits would be highly influenced by randomness. To mitigate
the effects of randomness, the values were calculated using a 10-fold stratified cross-
validation process employing scikit-learn’s implementation [35], and the averaged values
are presented in Table 1. For more detailed information about the distribution of the scores,
please refer to Figure 1, where the values corresponding to the accuracy, F1, F2, and F0.5
metrics are illustrated in box plots. In the case of the Defectors dataset, which is sufficiently
large, we used the train–test split sets that were provided with the dataset.

0.5

0.6

0.7

0.8

Accuracy

0.3

0.4

0.5

F1 score

DeepJIT CC2Vec CTT

0.4

0.5

0.6

F2 score

DeepJIT CC2Vec CTT
0.2

0.3

0.4

0.5

F0.5 score

Figure 1. The distribution of accuracy, F1, F2, and F0.5 scores shown in box plots

To establish a simple baseline, we included metrics for a dummy classifier that labeled
vulnerable entries according to the positive–negative ratio of the dataset (denoted as
“Baseline” in Table 1). Specifically, this classifier predicted an entry to be vulnerable with
a 22% probability for the Project-KB dataset and a 12.5% probability for the Defectors
dataset, respectively.

7. Discussion

In this section, we delve into a comprehensive discussion on the state of just-in-
time (JIT) vulnerability prediction. Our aim is to give insight into the strengths and
disadvantages of the candidate methods by answering two research questions that stem
from our experimental findings.

7.1. RQ: Can Commit Representations Be Used to Predict Vulnerability-Contributing Commits?

Based on our results, the investigated commit representation can be useful to a different
degree depending on the use case. As a general verdict when the cost of false positives and

Computers 2024, 13, 22 11 of 14

false negatives are equal, the F1 score shows that all of the methods beat the baseline in
both datasets.

Even though the improvement is noticeable, the baseline itself is quite simple, and
we cannot conclude that these representations and architectures are sufficient enough
by themselves for vulnerability prediction in their current state. However, they can still
be used as supplementary tools for the manual workflow of vulnerability prevention
and provide useful insights to security experts or notify suspicious commits for further
inspection. As such, in the industrial environment, different use cases are possible when
the cost of false negatives and false positives are not equal:

The cost of false negatives is the priority: Where the FNs are costly, a high recall value is
desirable. In these cases, the F2 score is a good indicator of the performance. In these
cases, the investigated representation forms provide useful information as they beat
the baseline by a larger margin. It is important to note that improving recall is fairly
simple by being more permissive when labeling entries as vulnerable, which incurs a
costly trade-off for precision.

The cost of false positives is the priority: In these cases, the F0.5 score is a relevant metric to
measure the effectiveness of the different approaches. Based on our results in these
cases the commit representation methods are providing only marginal improvement
over the baseline, which makes their usability questionable.

This use case is particularly important, as in many software development workflows,
the cost of false positives is very high, and the human workforce will quickly abandon
methods that make consistent errors, as shown in many empirical studies [36–38].
Because of this, for supplementary tools, high precision is fundamental so that they
do not generate too much overhead work. As in this study, the investigated commit
representations fall short in terms of precision and as such F0.5 score, finding more
appropriate methods that work with better precision (even at the cost of a lower recall)
is an area where improvement would definitely be welcome, both by the industry
and the research communities.

7.2. RQ: Can Commit Representations Be Used for More Localized Vulnerability Predictions?

The different representation forms investigated in our work differ not only in their
architecture but in the granularity with which they can be used. DeepJIT and CC2Vec work
at a commit level and are hardly customizable for finer-grained predictions as they use
commit-level metadata. On the other hand, the CCT-based approaches can be used for any
source code element that has a corresponding AST, making them arbitrarily customizable
in terms of granularity.

In our work, we trained the CCT-based model for method-level predictions and ag-
gregated the results as described in Section 5. Even though, as seen in Table 1, the overall
performance of the CCT falls short compared to DeepJIT and CC2Vec, the noticeable differ-
ence comes from the recall, while in precision, it works similarly to the other approaches.
As already discussed in the previous RQ, in many use cases in the software development
process and industry, precision is the decisive factor because of the high cost of false posi-
tives. This finding, complemented by the finer granularity that CCT provides, makes it a
good decision for situations where more localized vulnerability reports are expected.

8. Threats to Validity

In this section, we acknowledge several potential limitations and the measures taken
to mitigate them. Concerns regarding the generalizability across different programming
languages are partially addressed by incorporating datasets from both Java and Python.
While this enhances the study’s scope, it remains an area for future expansion.

The chosen evaluation metrics and their interpretation, particularly F-scores and
accuracy, are heavily influenced by the distribution of the datasets. To mitigate the risks
of misleading results from imbalanced datasets, we incorporated a dummy classifier as a

Computers 2024, 13, 22 12 of 14

baseline. This approach helps illustrate the datasets’ complexity and the relative predictive
power of our models.

The number of investigated models (DeepJIT, CC2Vec, code change tree) was limited
to three, which may not comprehensively cover the vulnerability prediction landscape.
However, this selection provides valuable insights and serves as a foundation for future
research to expand upon.

Different types of models were employed in the case of code change trees, notably the
use of random forest on the Project-KB dataset and LSTM for Defectors. While our primary
objective was to evaluate the effectiveness of commit representation forms rather than the
underlying classifier models, to ensure consistency, we tested LSTM on the Project-KB
dataset and found similar results to random forest, leading us to continue with the latter
for alignment with previous research on code change trees.

The models demonstrate limited predictive power, making them not yet viable for
practical, stand-alone use. To mitigate this, we provide a comprehensive discussion on
potential use cases. This discussion highlights scenarios where prioritizing the minimiza-
tion of either false positives or false negatives could be beneficial. Such prioritization is
crucial in contexts where the cost of one type of error outweighs the other, allowing for
more tailored and effective application of these models despite their limitations.

9. Conclusions and Future Research

In this study, we presented a comparative analysis of three different commit represen-
tations for vulnerability prediction, namely CC2Vec, DeepJIT, and code change trees (CCT),
with the aim of providing insights into the landscape of just-in-time (JIT) vulnerability
prediction. Our results showed that all three methods beat the baseline and that DeepJIT
and CC2Vec were more effective for commit-level predictions, while CCT was more flexible
and customizable for finer-grained predictions. Since at the time of this publication, CC2Vec
and DeepJIT were state-of-the-art approaches for the topic of JIT vulnerability prediction
(to the best of our knowledge), reasoning about their usage, performance, and comparison
with the change-tree-based models can be interpreted as an analysis of the current state of
JIT vulnerability prediction. To provide a more detailed discussion with real-world usage
in focus, we identified different use cases where these representations could be useful for
vulnerability prediction, depending on the cost of false positives and false negatives.

Our study has several implications for developers, security analysts, and researchers,
as it provides valuable insights into the effectiveness of different commit representations
for predicting vulnerable commits. However, there are several avenues for future research
that can build on this work.

First, our study only investigated three commit representations, and there are several
other representations that could be explored. For instance, future studies could investigate
the effectiveness of graph neural networks, convolutional neural networks, or other types
of tree-based models. Additionally, future research could also explore the combination of
different representations to improve predictive performance.

Second, our study focused on vulnerability prediction at the commit level, and there
is a need to investigate vulnerability prediction at different granularities. For instance,
future research could investigate the effectiveness of commit representations for predicting
vulnerabilities in specific source code elements such as methods, classes, or packages.

Third, our study used two datasets for training and testing, and future research could
investigate the generalizability of the findings on other datasets. Additionally, future
research could also investigate the effectiveness of the different commit representations on
different programming languages and software systems.

Overall, our study provides valuable insights into the effectiveness of different commit
representations for vulnerability prediction, and future research can build on this work to
improve the security and quality of software systems.

Computers 2024, 13, 22 13 of 14

Author Contributions: Conceptualization, T.A. and P.H.; methodology, T.A.; software, T.A.; valida-
tion, T.A., P.H., and R.F.; investigation, T.A.; resources, R.F.; data curation, T.A.; writing—original
draft preparation, T.A.; writing—review and editing, T.A.; supervision, R.F. and P.H.; project adminis-
tration, R.F. and P.H.; funding acquisition, R.F. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was supported by the the European Union project RRF-2.3.1-21-2022-00004
within the framework of the Artificial Intelligence National Laboratory and by project TKP2021-
NVA-09, implemented with the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme. The work was partly supported by the EU-funded project Sec4AI4Sec
(grant no. 101120393) as well.

Data Availability Statement: The data we used for evaluation can be found at the following links:
Project-KB based dataset: https://zenodo.org/records/5855085 (accessed on 12 November 2023),
Defectors dataset: https://zenodo.org/records/7708984 (accessed on 12 November 2023).

Acknowledgments: The authors would like to thank Árpád Beszédes for his invaluable contributions
to this work.

Conflicts of Interest: The author Tamás Aladics was employed by the company FrontEndArt Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. The 2021 Threat Landscape Retrospective: Targeting the Vulnerabilities that Matter Most. 2022. Available online: https:

//www.tenable.com/cyber-exposure/2021-threat-landscape-retrospective (accessed on 20 December 2023).
2. Hoang, T.; Khanh Dam, H.; Kamei, Y.; Lo, D.; Ubayashi, N. DeepJIT: An End-to-End Deep Learning Framework for Just-in-Time

Defect Prediction. In Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
Montreal, QC, Canada, 25–31 May 2019; pp. 34–45. [CrossRef]

3. Meneely, A.; Srinivasan, H.; Musa, A.; Tejeda, A.R.; Mokary, M.; Spates, B. When a Patch Goes Bad: Exploring the Properties of
Vulnerability-Contributing Commits. In Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, Baltimore, MD, USA, 10–11 October 2013; pp. 65–74. [CrossRef]

4. Morrison, P.; Herzig, K.; Murphy, B.; Williams, L. Challenges with Applying Vulnerability Prediction Models. In Proceedings of
the 2015 Symposium and Bootcamp on the Science of Security, HotSoS ’15, Urbana, IL, USA, 21–22 April 2015. [CrossRef]

5. Hogan, K.; Warford, N.; Morrison, R.; Miller, D.; Malone, S.; Purtilo, J. The Challenges of Labeling Vulnerability-Contributing
Commits. In Proceedings of the 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),
Berlin, Germany, 27–30 October 2019; pp. 270–275. [CrossRef]

6. Zhou, Y.; Sharma, A. Automated Identification of Security Issues from Commit Messages and Bug Reports. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, 4–8 September 2017;
pp. 914–919. [CrossRef]

7. Lozoya, R.C.; Baumann, A.; Sabetta, A.; Bezzi, M. Commit2Vec: Learning Distributed Representations of Code Changes. arXiv
2021, arXiv:1911.07605.

8. Hoang, T.; Kang, H.J.; Lo, D.; Lawall, J. CC2Vec. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, Seoul, Republic of Korea, 27 June–19 July 2020; ACM: New York, NY, USA, 2020. [CrossRef]

9. Perl, H.; Dechand, S.; Smith, M.; Arp, D.; Yamaguchi, F.; Rieck, K.; Fahl, S.; Acar, Y. VCCFinder: Finding Potential Vulnerabilities
in Open-Source Projects to Assist Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, Denver, CO, USA, 12–16 October 2015; pp. 426–437. [CrossRef]

10. Aladics, T.; Hegedűs, P.; Ferenc, R. A Vulnerability Introducing Commit Dataset for Java: An Improved SZZ based Approach.
In Proceedings of the 17th International Conference on Software and Data Technologies (ICSOFT), INSTICC, Lisbon, Portugal,
11–13 July 2022; SciTePress: Setúbal, Portugal, 2022; pp. 68–79. [CrossRef]

11. Mahbub, P.; Shuvo, O.; Rahman, M.M. Defectors: A Large, Diverse Python Dataset for Defect Prediction. In Proceedings of the
2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 15–16 May 2023;
pp. 393–397. [CrossRef]

12. Mockus, A.; Weiss, D.M. Predicting risk of software changes. Bell Labs Tech. J. 2000, 5, 169–180. [CrossRef]
13. Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A.E.; Mockus, A.; Sinha, A.; Ubayashi, N. A large-scale empirical study of just-in-time

quality assurance. IEEE Trans. Softw. Eng. 2013, 39, 757–773. [CrossRef]
14. Kim, S.; Whitehead, E.J.; Zhang, Y. Classifying Software Changes: Clean or Buggy? IEEE Trans. Softw. Eng. 2008, 34, 181–196.

[CrossRef]
15. Riom, T.; Sawadogo, A.D.; Allix, K.; Bissyandé, T.F.; Moha, N.; Klein, J. Revisiting the VCCFinder approach for the identification

of vulnerability-contributing commits. Empir. Softw. Eng. 2021, 26, 46. [CrossRef]

https://zenodo.org/records/5855085
https://zenodo.org/records/7708984
https://www.tenable.com/cyber-exposure/2021-threat-landscape-retrospective
https://www.tenable.com/cyber-exposure/2021-threat-landscape-retrospective
http://doi.org/10.1109/MSR.2019.00016
http://dx.doi.org/10.1109/ESEM.2013.19
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1109/ISSREW.2019.00083
http://dx.doi.org/10.1145/3106237.3117771
http://dx.doi.org/10.1145/3377811.3380361
http://dx.doi.org/10.1145/2810103.2813604
http://dx.doi.org/10.5220/0011275200003266
http://dx.doi.org/10.1109/MSR59073.2023.00085
http://dx.doi.org/10.1002/bltj.2229
http://dx.doi.org/10.1109/TSE.2012.70
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1007/s10664-021-09944-w

Computers 2024, 13, 22 14 of 14

16. Lomio, F.; Iannone, E.; De Lucia, A.; Palomba, F.; Lenarduzzi, V. Just-in-time software vulnerability detection: Are we there yet?
J. Syst. Softw. 2022, 188, 111283. [CrossRef]

17. Hindle, A.; Barr, E.T.; Su, Z.; Gabel, M.; Devanbu, P. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, Zurich, Switzerland, 2–9 June 2012; IEEE Press: Piscataway, NJ, USA, 2012;
pp. 837–847.

18. Minh Le, T.H.; Hin, D.; Croft, R.; Ali Babar, M. DeepCVA: Automated Commit-level Vulnerability Assessment with Deep
Multi-task Learning. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Melbourne, Australia, 15–19 November 2021; pp. 717–729. [CrossRef]

19. DeFreez, D.; Thakur, A.V.; Rubio-González, C. Path-Based Function Embedding and Its Application to Error-Handling Specifica-
tion Mining. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2018, Lake Buena Vista, FL, USA, 4–9 November 2018; pp. 423–433.
[CrossRef]

20. Devlin, J.; Uesato, J.; Singh, R.; Kohli, P. Semantic Code Repair using Neuro-Symbolic Transformation Networks. arXiv 2017,
arXiv:1710.11054. [CrossRef]

21. Pan, C.; Lu, M.; Xu, B.; Gao, H. An Improved CNN Model for Within-Project Software Defect Prediction. Appl. Sci. 2019, 9, 2138.
[CrossRef]

22. Nguyen, A.T.; Nguyen, T.N. Graph-Based Statistical Language Model for Code. In Proceedings of the 37th International
Conference on Software Engineering, ICSE ’15, Florence, Italy, 16–24 May 2015; IEEE Press: Piscataway, NJ, USA, 2015; Volume 1,
pp. 858–868.

23. Aladics, T.; Hegedűs, P.; Ferenc, R. An AST-based Code Change Representation and its Performance in Just-in-time Vulnerability
Prediction. arXiv 2023, arXiv:2303.16591.

24. Ponta, S.E.; Plate, H.; Sabetta, A.; Bezzi, M.; Dangremont, C. A Manually-Curated Dataset of Fixes to Vulnerabilities of Open-
Source Software. In Proceedings of the 16th International Conference on Mining Software Repositories, Montreal, QC, Canada,
26–27 May 2019.

25. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly
Media, Inc.: Sebastopol, CA, USA, 2009.

26. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diega, CA, USA, 7–9 May 2015.

27. Kim, Y.; Denton, C.; Hoang, L.; Rush, A.M. Structured Attention Networks. arXiv 2017, arXiv:1702.00887.
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In

Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

29. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. A General Path-Based Representation for Predicting Program Properties. arXiv 2018,
arXiv:1803.09544. [CrossRef]

30. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. Code2Vec: Learning Distributed Representations of Code. Proc. ACM Program. Lang.
2019, 3, 40:1–40:29. [CrossRef]

31. Rehurek, R.; Sojka, P. Gensim–Python Framework for Vector Space Modelling; NLP Centre, Faculty of Informatics, Masaryk University:
Brno, Czech Republic, 2011; Volume 3.

32. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. arXiv 2014, arXiv:1405.4053.
33. Allamanis, M.; Sutton, C. Mining Source Code Repositories at Massive Scale using Language Modeling. In Proceedings of the

The 10th Working Conference on Mining Software Repositories, San Francisco, CA, USA, 18–19 May 2013; IEEE: Piscataway, NJ,
USA, 2013; pp. 207–216.

34. Sliwerski, J.; Zimmermann, T.; Zeller, A. When do changes induce fixes? ACM Sigsoft Softw. Eng. Notes 2005, 30, 1–5. [CrossRef]
35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
36. Christakis, M.; Bird, C. What Developers Want and Need from Program Analysis: An Empirical Study. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering, ASE ’16, Singapore, 3–7 September 2016; pp. 332–343.
[CrossRef]

37. Johnson, B.; Song, Y.; Murphy-Hill, E.; Bowdidge, R. Why don’t software developers use static analysis tools to find bugs? In
Proceedings of the 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013;
pp. 672–681. [CrossRef]

38. Nadeem, M.; Williams, B.J.; Allen, E.B. High False Positive Detection of Security Vulnerabilities: A Case Study. In Proceedings of
the 50th Annual Southeast Regional Conference, ACM-SE ’12, Tuscaloosa, Alabama, 29–31 March 2012; pp. 359–360. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2022.111283
http://dx.doi.org/10.1109/ASE51524.2021.9678622
http://dx.doi.org/10.1145/3236024.3236059
https://doi.org/10.48550/ARXIV.1710.11054
http://dx.doi.org/10.3390/app9102138
https://doi.org/10.48550/ARXIV.1803.09544
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/1082983.1083147
http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1109/ICSE.2013.6606613
http://dx.doi.org/10.1145/2184512.2184604

	Introduction
	Related Work
	Candidate Models
	DeepJIT
	CC2Vec
	Code Change Tree (CCT)

	Methodology
	Materials and Methods
	Datasets Setup
	Datasets Structure and Example
	Metrics

	Results
	Discussion
	RQ: Can Commit Representations Be Used to Predict Vulnerability-Contributing Commits?
	RQ: Can Commit Representations Be Used for More Localized Vulnerability Predictions?

	Threats to Validity
	Conclusions and Future Research
	References

